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Introduction

The amount of unclassified digital documents requires automatic
tools for text classification.

A preliminary step for text classification is segmentation:

bag-of-word approach: simple and language independent,
but may lead to a data sparseness problem.

segmentation based upon a morphological analisys: very
refined, but introduces costs for any language used.
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Introduction

The amount of unclassified digital documents requires automatic
tools for text classification.

A preliminary step for text classification is segmentation:

bag-of-word approach: simple and language independent,
but may lead to a data sparseness problem.

segmentation based upon a morphological analisys: very
refined, but introduces costs for any language used.

A new approach is based upon an optimal reduction of the suffix
tree of a training test.
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Suffix tree

First a preprocessing on the text is made, reducing the alphabet to
lower case letters plus a unique non alphabetic character.

t re nt at re -t re nt in i- en tr ar on o- a- t re nt o $
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
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Reduction of the suffix tree

A first pruning is made, based upon a minimal and a maximal
lenght of the suffix, and a minimal number of occurrences in the
text.

Such a reduction is not sufficient, there are still too many suffixes.

In this work we have studied a further reduction of the suffix tree
that tries to keep only the important suffixes, those that describe
the training text in the best way.

Sandro Bosio, Giovanni Righini “A combinatorial optimization problem arising from text classification” – pag. 4 di 25



Reduction of the suffix tree

A first pruning is made, based upon a minimal and a maximal
lenght of the suffix, and a minimal number of occurrences in the
text.

Such a reduction is not sufficient, there are still too many suffixes.

In this work we have studied a further reduction of the suffix tree
that tries to keep only the important suffixes, those that describe
the training text in the best way.

Sandro Bosio, Giovanni Righini “A combinatorial optimization problem arising from text classification” – pag. 4 di 25



Reduction of the suffix tree

A first pruning is made, based upon a minimal and a maximal
lenght of the suffix, and a minimal number of occurrences in the
text.

Such a reduction is not sufficient, there are still too many suffixes.

In this work we have studied a further reduction of the suffix tree
that tries to keep only the important suffixes, those that describe
the training text in the best way.

Sandro Bosio, Giovanni Righini “A combinatorial optimization problem arising from text classification” – pag. 4 di 25



TCSS

Given:

a text W (the training text)

a set of strings S (the units of the suffix tree)

the set O of the occurrences of the strings over the text

Find Y ⊆ S e X ⊆ O such that:

the occurrences in X are occurrences of the strings in Y

the occurrences in X do not overlap (not even partially)

The name given to that problem is TCSS, that stands for
Text Covering with Strings Subset.
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TCSS

The objectives are:

maximize the covering of the text by the occurrences in X

minimize a cost function of the strings in Y

These objectives are in contrast, because to cover a larger portion
of text a larger number of strings is needed.

For classification purposes the use of long strings is preferable to
that of short ones, so the cost coefficient used is the inverse of the
string length.
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Istances

The number of strings, occurrences and characters obtained for
class instances is the following:

CLASS |S| |O| |W |

A 170 2850 8870
B 2200 55700 49000
C 9950 375000 218000
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ILP model for TCSS

A formulation for this problem is the following:
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ILP model for TCSS

A formulation for this problem is the following:

TCSS) max z = α
|O|
∑

j=1
lu(j)xj − (1− α)

|S|
∑

i=1

1
li
yi

s.t.



























|O|
∑

j=1
atjxj 6 1 t = 1 . . . |W |

xj − yu(j) 6 0 j = 1 . . . |O|

xj ∈ {0, 1} j = 1 . . . |O|

yi ∈ {0, 1} i = 1 . . . |S|
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Binary variables y for the strings.
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ILP model for TCSS

A formulation for this problem is the following:

TCSS) max z = α
|O|
∑

j=1
lu(j)xj − (1− α)

|S|
∑
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1
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|O|
∑

j=1
atjxj 6 1 t = 1 . . . |W |

xj − yu(j) 6 0 j = 1 . . . |O|

xj ∈ {0, 1} j = 1 . . . |O|

yi ∈ {0, 1} i = 1 . . . |S|

The objective 1 tries to maximize the number of covered
characters.
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TCSS) max z = α
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The objective 2 tries to minimize the cost of the used strings.
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ILP model for TCSS

A formulation for this problem is the following:

TCSS) max z = α
|O|
∑

j=1
lu(j)xj − (1− α)

|S|
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1
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xj − yu(j) 6 0 j = 1 . . . |O|
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yi ∈ {0, 1} i = 1 . . . |S|

The two objectives are combined with a parameter α.
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ILP model for TCSS

A formulation for this problem is the following:

TCSS) max z = α
|O|
∑
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Packing constraints.
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A formulation for this problem is the following:

TCSS) max z = α
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Variable upper bound constraints.

Sandro Bosio, Giovanni Righini “A combinatorial optimization problem arising from text classification” – pag. 8 di 25



Subproblem MPP

When Y is fixed, the problem reduces to the maximization of the
covering with the occurrences OY of these strings.

MPP) max zMPP = α
∑

j∈OY

lu(j)xj

s.t.







∑

j∈OY

atjxj 6 1 t = 1 . . . |W |

xj ∈ {0, 1} j ∈ OY

For the structure of the matrix |atj |, this problem can be solved in
polynomial time.
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Subproblem MPP

The text can be seen as a graph:

...1 2 3 W4 5 W+1

The solution of a Max Path Problem, from the node 1 to the node
|W |+ 1, corresponds to the maximum cover of the text.

This graph is acyclic and directed and the optimal solution can be
found in polynomial time.
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The text can be seen as a graph:

...1 2 3 W4 5 W+1

Every occurrence is an arc, outgoing from the node correspondent
to its first covered character and entering the node correspondent
to the character after the last covered character, and having as
weight the number of covered characters.
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Subproblem MPP

The text can be seen as a graph:

...1 2 3 W4 5 W+1

Add one arc from every node the next one (except the last one).
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The solution of a Max Path Problem, from the node 1 to the node
|W |+ 1, corresponds to the maximum cover of the text.

This graph is acyclic and directed and the optimal solution can be
found in polynomial time.
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CPLEX 6.5

Three equivalent formulations have been solved with CPLEX:
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∑
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1
li
yi
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|O|
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CPLEX 6.5

Three equivalent formulations have been solved with CPLEX:
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CPLEX 6.5

Three equivalent formulations have been solved with CPLEX:

Relaxing 3:

TCSS3) max z = α
|O|
∑

j=1
lu(j)xj − (1− α)

|S|
∑

i=1

1
li
yi

s.t.



































|O|
∑

j=1
atjxj 6 1 t = 1 . . . |W |

∑

j∈OS(i)

xj − yi|OS(i)| 6 0 i = 1 . . . |S|

xj ∈ [0, 1] j = 1 . . . |O|

yi ∈ {0, 1} i = 1 . . . |S|
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Lagrangean relaxation

The TCSS problem has two distinct sets of constraints that can be
dualized, and therefore we studied two different Lagrangean
relaxations:

relaxation of packing constraints

relaxation of variable upper bound constraints

Both of them were used to compute dual bounds in a branch and
bound framework, solving in an approximate way the Lagrangean
dual with Subgradient Optimization.
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Relaxation of Packing constraints

Relaxing the Packing constraints we obtain:

LR1) max zLR1(λ)=
|O|

j=1

αlu(j)−
|W |

t=1

λtatj xj−(1−α)
|S|

i=1

1
li

yi+

|W |
∑

t=1
λt

s.t.







xj − yu(j) 6 0 j = 1 . . . |O|

xj ∈ {0, 1} j = 1 . . . |O|

yi ∈ {0, 1} i = 1 . . . |S|

Let cj be the coefficient of xj . Every problem is solved fixing:

yi =







1 if
∑

j∈OS(i)|cj>0

cj −
1−α
li

> 0

0 otherwise
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Branching strategy

Given the optimal solution (x∗, y∗), define:

qt =

|O|
∑

j=1

atjx
∗
j and Vt =

{

j|atjx
∗
j = 1

}

= {v(t)1, . . . , v(t)qt
}

Let be k = arg maxt∈W {qt}. The tested branching strategies are:

on characters. Generate qk + 1 nodes; in node r = 1, . . . , k
fix vr ← 1, and in node qk + 1 fix to 0 all occurrences in Vk.

on occurences. Select ̄ = arg maxj∈Vk
{cj}. Generate two

nodes, fixing respectively x̄ = 1 and x̄ = 0.

on strings. Select the string ı̄ = u(̄) and generate two nodes
fixing respectively yı̄ = 1 and yı̄ = 0.
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Lagrangean heuristic

The optimal solution (x∗, y∗) of LR1 can violate some of the
packing constraints constraints.

It is possible to obtain a feasible solution by solving an MPP
subproblem keeping the values of the y∗ fixed:

MPP) max z = α
|O|
∑

j=1
lu(j)xj

s.t.



















|O|
∑

j=1
atjxj 6 1 t = 1 . . . |W |

xj 6 y∗
u(j) j = 1 . . . |O|

xj ∈ {0, 1} j = 1 . . . |O|
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Relaxation of vub constraints

Relaxing the variable upper bound constraints we obtain:

LR2) max zLR2(µ)=
|O|�

j=1
(αlu(j)−µj)xj+

|S|�

i=1

− 1−α
li

+

�

j∈OS(i)

µj yi

s.t.



















|O|
∑

j=1
atjxj 6 1 t = 1 . . . |W |

xj ∈ {0, 1} j = 1 . . . |O|

yi ∈ {0, 1} i = 1 . . . |S|

that can be decomposed into two independent problems:

LR2y is a trivial problem

LR2x is an MPP instance whose coefficients depend on µ
values
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Branching strategy

Let (x∗, y∗) be the solution of LR2(µ) and

V (i) =
{

j | x∗
j > y∗i , u(j) = i

}

.

Fixing a variable yi:

if yi would be fixed to 0 then the occurrences should be fixed
to 0 and zLR2(µ) would decrease by σ0

i =
∑

j∈V (i)

(αli − µj)

if yi would be fixed to 1 then the string should be paid and
zLR2(µ) would decrease by σ1

i = 1−α
li
−

∑

j∈OS(i)

(µj)

The branching variable is the one that maximizes the minimum
decrement of z∗LR2(µ):

i = arg max
k

{

min
{

σ0
k, σ

1
k

}}
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Lagrangean heuristic

The optimal solution (x∗, y∗) of LR2 can violate some variable
upper bound constraints. To obtain a feasible solution it is
necessary to flip some variables.

One way is to evaluate the costs of strings and occurrences and fix:

yi =







1 if
∑

j∈OS(i)

αlix
∗
j >

(1−α)
li

0 otherwise, fixing to 0 also the occurrences

A more sophisticated heuristic consists of solving an MPP
problem on a graph containing only the arcs corresponding to the
occurrences of the strings such that y∗i = 1.
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Local search heuristics

A local search algorithm moves from st to st+1 ∈ N(st).

Let z(s) be the value of a solution s.

There are at least three strategies for the choice of st+1 ∈ N(st):

best improve. Find n∗ = arg max
n∈N(st)

z(n).

first improve. Select ni ∈ N(st). If not improving select
another neighbor ni+1.

hybrid strategies. Find n∗
i = arg max

n∈Ñi(st)⊆N(st)
z(n).

If not improving consider another subset Ñi+1 ⊆ N(st).
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Sandro Bosio, Giovanni Righini “A combinatorial optimization problem arising from text classification” – pag. 20 di 25



Local search heuristics

A local search algorithm moves from st to st+1 ∈ N(st).

Let z(s) be the value of a solution s.

There are at least three strategies for the choice of st+1 ∈ N(st):

best improve. Find n∗ = arg max
n∈N(st)

z(n).

first improve. Select ni ∈ N(st). If not improving select
another neighbor ni+1.

hybrid strategies. Find n∗
i = arg max
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Application to TCSS

To apply a local search method to TCSS we defined:

Solutions space. A solution s consists of the values ys of all
string variables. A complete solution is obtained solving a
correspondent MPP problem over these values.

Neighborhood. N(s) is the set of solutions that differ from s

by the value of exactly one variable.

Subneighborhoods. |N(s)| = |S| and the evaluation is heavy,
so the search strategy is a hybrid one. N(s) is explored by
sets of NBR elements in two ways:

by a ciclyc predefined order.
extracting NBR elements randomly.

Starting solution. The starting solution is ys0

i = 1 ∀i.
Also an initialization to zero and a random initialization have
been tested.
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Subneighborhoods. |N(s)| = |S| and the evaluation is heavy,
so the search strategy is a hybrid one. N(s) is explored by
sets of NBR elements in two ways:

by a ciclyc predefined order.
extracting NBR elements randomly.

Starting solution. The starting solution is ys0

i = 1 ∀i.
Also an initialization to zero and a random initialization have
been tested.
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Threshold accepting

In this method also some worsening solution, those under a certain
threshold, can be accepted. Let:

kt be the threshold at iteration t

n be the neighbor selected by the chosen strategy

ct be the benchmark solution at time t

If z(n) + kt > z(ct) then st+1 := n.

The threshold value at iteration t is set to kt = (1−α)
1+t div |S|

Two versions of the acceptance test have been tested:

compare n with the current solution (ct = st).

compare n with the best solution found (ct = max
τ t

(sτ )).
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Simulated annealing

The acceptance of a worsening solution is probabilistic:

p(n, s, T ) = e
z(n)−z(s)

T , where T is a parameter, the temperature.

The cooling schedule used is Tt = Tstart · (Tcool)
t (Tcool<1).

These two parameters have been made input dependent:

Tstart =
−Lα

ln(0.5)
Tcool = |S|

√

ln(0.5)

L ln(0.01)

When the selected neighbor is not accepted the subneighborhood
enlarges itself. In that way every time the test is made against the
most probable neighbor.
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Comparisons
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Comparisons of all the methods
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