
Computers & Operations Research 35 (2008) 854–862
www.elsevier.com/locate/cor

Solving the swath segment selection problem through
Lagrangean relaxation

Roberto Cordone, Federico Gandellini, Giovanni Righini∗

Università degli Studi di Milano, Dipartimento di Tecnologie dell’Informazione, Via Bramante 65, 26013 Crema, Italy

Available online 6 June 2006

Abstract

The swath segment selection problem (SSSP) is anNP-hard combinatorial optimization problem arising in the context of planning
and scheduling satellite operations. It was defined by Muraoka et al. [ASTER observation scheduling algorithm. In: Proceedings of
SpaceOps 1998, Tokyo, Japan, 1998] and Knight and Smith [Optimal nadir observation scheduling. In: Proceedings of the fourth
international workshop on planning and scheduling for space (IWPSS 2004), Darmstadt, Germany, 2004], who respectively proposed
a greedy algorithm, named ASTER, and a branch-and-bound algorithm based on a network flow relaxation. Here we tackle the
problem with more advanced mathematical programming tools: using a Lagrangean relaxation, coupled with a Lagrangean heuristic
and subgradient optimization, we solve in one hour instances with up to 500 000 swath segments within 0.4% of the optimum.
The algorithm also proves experimentally superior to commercial MIP solvers in computing heuristic solutions.
� 2006 Elsevier Ltd. All rights reserved.

Keywords: Earth observation satellites; Lagrangean relaxation; Combinatorial optimization

1. Introduction

The development of aerospatial programs for the observation of the Earth has opened an interesting field of application
for OR techniques. A typical optimization problem arising in this context is the satellite scheduling problem [1,2], which
has been tackled with a number of different heuristic algorithms, see for instance [3–7].

Satellites for Earth observation can be equipped with many different instruments and may have different degrees of
freedom in their movements. In this paper we consider those endowed with an instrument pointing in a fixed Nadir
direction, that is downwards, and following quasi-polar orbits. During each semi-orbit, from pole to pole, these satellites
observe a stripe of the Earth surface, named swath. When a target is too large to be observed in one shot, it is decomposed
into pieces, belonging to different swaths and it is observed during different transits of the satellite. Different swaths
can intersect each other, when they cover the same part of the Earth surface.

Following the problem definition given by Knight and Smith [2], we assume that a set of swaths and a set of target
areas are given. Due to the quasi-polar orbit, swaths are partitioned into two subsets, corresponding to descending semi-
orbits (from North-East to South-West) and ascending semi-orbits (from South-East to North-West). The combination
of the movement of the satellite and the rotation of the Earth implies that descending and ascending swaths intersect,
whereas two swaths in the same direction overlap only near the poles, as shown in Fig. 1.

∗ Corresponding author. Tel.: +39 0373 898060; fax: +39 0737 898010.
E-mail address: righini@dti.unimi.it (G. Righini).

0305-0548/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2006.04.005

http://www.elsevier.com/locate/cor
mailto:righini@dti.unimi.it

R. Cordone et al. / Computers & Operations Research 35 (2008) 854–862 855

Fig. 1. A satellite in quasi-polar orbit, an ascending and a descending swath.

Ascending
swath

Descending
swath

Overlapping
swath
segments

Shard

Target

Fig. 2. An ascending and a descending swath (dashed) intersect, identifying two overlapping swath segments (squared); a target area (in bold)
intersects the two segments in a shard (filled).

A swath is composed of a sequence of swath segments, corresponding to its intersections with the swaths in the
opposite direction, and each portion of a target included in a segment is named shard. Therefore, a shard always
belongs to an ascending and a descending segment, whereas a segment either includes a shard or none (see Fig. 2).

In our problem a given reward is associated with the observation of each shard. The amount of memory required
to store an image on board, however, may be different if the shard is observed during an ascending or a descending
transit. This is because the height and width of the two corresponding segments with opposite directions exchange and,
while the height of the image stored equals the height of the shard, its width is fixed. Therefore, memory consumption
is associated with segments instead of shards (see Fig. 3).

Since the images obtained are temporarily stored in a memory device on board and later downlinked to ground
stations, memory is a critical resource. We assume that a satellite can downlink all stored data between two consecutive
swaths, so that the memory capacity constraint can be enforced on each swath independently of the others.

856 R. Cordone et al. / Computers & Operations Research 35 (2008) 854–862

Descending
swath

Image
height

Image
width

Ascending

swath

Image
width

Image
height

Fig. 3. Since the width of the image stored is fixed, observing the shard during the descending transit (on the left) implies acquiring a large uninteresting
area (marked in dashed lines). Observing it during the ascending transit (on the right) strongly reduces the height, and therefore the area acquired.

The swath segment selection problem (SSSP) consists in selecting the shards to be observed and the appropriate
corresponding segment to observe each of them (whether ascending or descending), in order to maximize the overall
reward of the images collected, complying with the memory capacity constraints.

The SSSP is different from the already mentioned satellite scheduling problem, where requests can be issued dynam-
ically and other operational constraints should be taken into account. However in dynamic environments it is common
to build observation plans by first scheduling long term and high priority observations and then adding to the plan
further observations in order to exploit the residual available resources. Therefore the observation of a large target
area requires the solution of an optimization problem in which all the detailed operational constraints are not taken
into account because they are not binding, but rather they are represented by a unique surrogate capacity constraint
to be satisfied every time the satellite flies over the target area. Hence in the framework of satellite scheduling the
SSSP considered here well represents the first “high level” phase to be followed by more detailed “low level” planning
decisions.

At the best of our knowledge the only algorithmic solutions to the SSSP available in the literature are the ASTER
algorithm due to Muraoka [1] and a branch-and-bound algorithm due to Knight and Smith [2]. The former is a greedy
constructive deterministic algorithm: it is very fast but the quality of the solutions produced is largely suboptimal.
The branch-and-bound algorithm of Knight and Smith consistently obtains solutions whose reward is twice as large.
This last algorithm is a depth-first-search branch-and-bound, where the dual (upper) bound is computed by solving to
optimality a relaxation of the SSSP, transformed into a max-flow problem on a special layered graph. This reformulation
has two major drawbacks: first, it assumes that the rewards scale linearly with the size of the corresponding shards,
which is not always the case, as the authors admit; second, the upper bound provided by the network flow reformulation
is loose, because it corresponds to a linear relaxation of the SSSP.

In this paper we give a mathematical model of the SSSP and we show that it is equivalent to a set of binary knapsack
problems, one for each swath, coupled by constraints due to the common shards. This suggests to apply Lagrangean
relaxation to the coupling constraints in order to achieve an upper bound. The Lagrangean subproblem does not
possess the integrality property, because it decomposes into a number of independent binary knapsack subproblems,
and therefore the upper bound dominates that provided by the linear programming relaxation. Moreover a Lagrangean
heuristic easily provides feasible solutions and corresponding lower bounds during the search. We show computational
results on random instances with a number of segments ranging from 200 to 500 000, with different reward, memory
consumption and downlink capacity. We compare the performances of our algorithm with those of ILOG CPLEX 8.0;
the results prove the superiority of our approach with respect to the quality of both upper and lower bounds and to the
computational time required.

In Section 2 we outline the mathematical formulation of the SSSP and we discuss its complexity; in Section 3 we
describe our algorithm; in Section 4 we present our experimental results.

2. Formulation and Lagrangean relaxation

Knight and Smith [2] compared their branch-and-bound algorithm against an IP solver, without explicitly defining
the formulation used. Hereafter, we present a mathematical model of the SSSP.

R. Cordone et al. / Computers & Operations Research 35 (2008) 854–862 857

We are given a set S of swaths, a set H of shards and a set Ni of observable swath segments in each swath i ∈ S.
Let N= ∪i∈SNi be the set of all segments. For each shard k ∈ H, we indicate by Gk the subset of segments, that is
observation opportunities, covering the shard. We are given a reward rk for each shard k ∈ H, a memory consumption
aj for each segment j ∈ N and a capacity bi for each swath i ∈ S. For each segment j ∈ N we introduce a binary
variable xj , which is equal to 1 if an observation is done along the segment and to 0 otherwise. In case the instrument
observation capability depends on the illumination conditions, we may take this into account by setting to zero the xj

variables corresponding to unfeasible observations.
Two swaths have either zero or one shard in common, and Gk contains exactly two segments for each shard k ∈ H

(one ascending and one descending). Our model is more general than the one considered by Knight and Smith [2],
where all swaths have the same capacity b and the memory consumption aj is the same for all segments covering the
same shard.

SSSP : max z =
∑
k∈H

⎛
⎝rk

∑
j∈Gk

xj

⎞
⎠ (1)

s.t.
∑

j∈Ni

aj xj �bi ∀i ∈ S, (2)

∑
j∈Gk

xj �1 ∀k ∈ H, (3)

xj ∈ {0, 1} ∀j ∈ N. (4)

The objective function (1) asks for the maximization of the overall reward given by the shards observed; constraints (2)
impose the capacity restriction on the observations in each swath i ∈ S; constraints (3) forbid multiple observations
of a same shard k ∈ H in different swaths. The SSSP is obviously NP-hard because it contains the binary knapsack
problem as a special case.

A Lagrangean relaxation of the SSSP is the following:

LR(�) : max zLR(�) =
∑
k∈H

⎛
⎝rk

∑
j∈Gk

xj

⎞
⎠ +

∑
k∈H

�k

⎛
⎝1 −

∑
j∈Gk

xj

⎞
⎠ (5)

s.t.
∑

j∈Ni

aj xj �bi ∀i ∈ S, (6)

xj ∈ {0, 1} ∀j ∈ N, (7)

where �k is the Lagrangean multiplier associated with shard k ∈ H. Since each segment j ∈ N belongs to a single
swath i ∈ S, problem LR(�) decomposes into the following |S| independent binary knapsack subproblems:

LRi(�) : max zLR
i (�) =

∑
j∈Ni

(rkj
− �kj

)xj (8)

s.t.
∑

j∈Ni

aj xj �bi , (9)

xj ∈ {0, 1} ∀j ∈ Ni , (10)

where kj is the index of the unique shard covered by segment j and zLR(�) = ∑
i∈S zLR

i (�) + ∑
k∈H �k .

The binary knapsack problem isNP-hard (see [8] for a classical reference) and hence it does not have the integrality
property. Therefore the upper bound provided by the optimal solution of LR dominates the upper bound given by the
linear relaxation of SSSP. Hence this approach allows to make the best of the existing optimization algorithms for the
binary knapsack problem to achieve a good upper bound for the SSSP.

3. The algorithm

Our algorithm is a branch-and-bound relying on the Lagrangean relaxation outlined in the previous section. At
each node of the search tree we iteratively solve problem LR(�) with different values of �, updated by subgradient

858 R. Cordone et al. / Computers & Operations Research 35 (2008) 854–862

optimization. During the process, heuristic solutions are computed from the solutions of the current Lagrangean
subproblem. The best Lagrangean multipliers found during the process also guide the branching strategy. In this
section we describe the components of our algorithm.

Upper bounds. For each choice of � we solve |S| binary knapsack problem instances to optimality with a modified
version of the MINKNAP algorithm [9]; the Lagrangean subproblems LRi(�), in fact, have real-valued rewards, while
MINKNAP deals with knapsack instances whose rewards have integer values. To overcome this limitation, we employed
the MINKNAP code generalized by Ceselli [10].

For any ��0, the optimal solution zLR(�) provides an upper bound to the SSSP. To achieve the tightest possible
upper bound, one has to solve the Lagrangean dual problem

min
��0

{
max

x
{zLR(�)}

}

which can be done via subgradient optimization. The updated rule used by the subgradient optimization algorithm [11]
is

�(t+1)
k = min

{
max

{
�(t)
k + �(t)sk(�

(t))
|z(�(t)) − LB|

‖sk(�(t))‖2
, 0

}
, rk

}
, (11)

where sk(�
(t))=∑

j∈Gk
xj −1 is the amount by which constraint (3) is violated for shard k ∈ H at iteration t, LB is the

best incumbent lower bound, that is the value of the best known feasible solution found so far, and �(t) is a step coefficient
decreasing with t. Besides being constrained to be non-negative, the Lagrangean multipliers are also constrained to be
not greater than the corresponding rewards rk , because larger values would yield dominated relaxations.

The subgradient optimization algorithm stops after a predefined number of iterations or when �zLR(�(t))��LB,
which means that LB cannot be improved since the rewards are integer. The value mint {�zLR(�(t))�}, that is the
minimum upper bound found by the subgradient optimization algorithm, is retained as the final upper bound for the
current node of the search tree.

In our experimental campaign, the subgradient optimization subroutine has been run for 1000 iterations at the root
node, and for 100 iterations at the other nodes; the starting value for all multipliers has been set to zero, while the initial
step coefficient was set to �(0) = 2.0 and it was multiplied by 0.99 at each iteration.

Lower bounds. At each subgradient iteration we also compute feasible solutions to the SSSP. Since constraints (3)
have been relaxed, the current optimal solution of the Lagrangean relaxation may correspond to observe some shards
more than once. Heuristic feasible solutions can be obtained as follows: all binary variables corresponding to the shards
observed exactly once in the current optimal solution of LR(�) are fixed to their current values; then a binary knapsack
problem instance LRi(�) is solved for each swath i ∈ S, where some of the variables have been fixed as above. To
avoid observing a shard more than once, the knapsack instances are solved sequentially in a suitable order, so that if a
segment covering a shard is selected, then the other segment covering the same shard is forbidden.

The solution obviously depends on the order in which the swaths are considered. For the sake of simplicity, we
have considered only two orders: either the knapsack problem instances corresponding to ascending swaths are solved
before those corresponding to descending swaths or the other way around. Therefore we obtain two heuristic solutions
corresponding to these two orders and we check whether any of the two improves the current best incumbent solution,
whose value is LB.

In our experimental campaign, the two heuristic solutions are computed every time the current upper bound improves.
Branching strategy. The branching operation in the branch-and-bound algorithm of Knight and Smith [2] gener-

ates as many children nodes as the number of segments in the problem. This produces a search tree of very large
breadth. To avoid this drawback, we use ternary branching; given the optimal solution of the Lagrangean relaxation
corresponding to the best upper bound at the father node, we select one of the shards, say k, and we generate three
subproblems: in the first one, shard k is observed in the ascending swath; in the second one, shard k is observed in the
descending swath; in the third one, shard k is not observed. This implies fixing two binary variables in each of the three
children nodes.

The choice of the branching shard k is based on the Lagrangean solution and on the Lagrangean rewards (rk − �k)

corresponding to the best known multipliers. If any of the shards is observed more than once in the Lagrangean

R. Cordone et al. / Computers & Operations Research 35 (2008) 854–862 859

solution, we choose the one with the largest Lagrangean reward. If none is, we choose the unobserved shard with
the largest Lagrangean reward. If all shards are observed exactly once, then the Lagrangean solution is feasible
and it is also optimal for its node, since complementary slackness conditions hold; in this case no branching is
required.

Search strategy. The branching tree is visited according to a best-first search strategy: the node with the largest upper
bound is considered first.

4. Experimental results

The algorithm proposed was implemented in C language and tested on a 1.6 GHz Pentium PC with 512 MB RAM
and Linux operating system.

Data-sets. Since the test data of Knight and Smith [2] had not been made available to us, we generated random test
instances in the following way. We considered a square target region covered by S/2 ascending and S/2 descending
orthogonal swaths. Parallel swaths do not overlap, whereas each ascending swath intersects each descending swath on
a square region. Therefore there are S2/4 shards and S2/2 segments. We generated problem instances of increasing
size, ranging from S/2 = 10 to 100 by steps of 10 and from S/2 = 100 to 500 by steps of 100. The number of swath
segments, therefore, ranges from 200 to 500 000 and the total number of size classes is 14.

The rewards associated to the shards have been randomly generated as integer numbers with uniform probability
distribution in two different ranges: [1, 100] and [51, 100]. The memory consumption associated to the two swath
segments covering a same shard can be either the same for both segments or independently generated. In either cases,
it is represented by one or two random integers in [1, 100] or in [51, 100]. The combinations of these three parameters
yield 2 × 2 × 2 = 8 classes of instances.

The algorithm can manage any value for the capacity bi of each swath i ∈ S. However our experiments proved that
the value of the capacity is not a relevant feature of the instances. Therefore for the sake of simplicity we assigned an
identical capacity b to all swaths. This capacity is defined as a fraction � of the total potential memory consumption
along the swath with the lowest demand: b = � mini∈S {∑j∈Ni

aj }. The scaling parameter �, which modulates the
tightness of the capacity constraint, assumes three different values in our tests: 20%, 30% and 40%. Hence we have
three classes of instances according to the capacity.

Since we have one instance for each combination of size (14 classes), rewards and consumptions (8 classes) and
capacity (3 classes), our test set is made of 14 × 8 × 3 = 336 instances.

Comparison with CPLEX. All computational results are presented by comparing the performance of the algorithm
here proposed and that of ILOG CPLEX 8.0 applied to formulation (1)–(4). To enhance the performance of CPLEX,
the following parameter setting has been used; the absolute gap below which a solution is declared optimal has been
set to 1.0 (because all data are integer), a built-in heuristic rounding procedure has been called at the root node and all
general purpose cuts have been enabled both at the root node and in the branching nodes. This implies that, though the
linear relaxation of formulation (1)–(4) is dominated by the Lagrangean relaxation, the gap obtained by CPLEX at the
root node using valid inequalities can be lower than the gap obtained by our algorithm and this is actually the case for
some of the instances. The linear relaxation is solved by the dual simplex algorithm, in order to exploit the fact that
the formulation has less constraints than variables, and in order to obtain a valid upper bound at any moment during
the computation. It must be noticed that this parameter setting is relevant, since the standard one yields significantly
worse performances.

Table 1 presents the computational results on the 336 instances in one hour of computation. Each row reports average
results on the 12 instances having the same size and the same relation between ascending and descending memory
consumption; the upper half of the table refers to the instances in which the two memory consumptions are independently
generated, while the lower half refers to the instances in which they are identical. The first column reports the size
of the instances, the next four columns report the results of our algorithm, namely the average best known solution
(z∗), the average upper bound (Bound), the average primal-dual gap (�) and the number of branching nodes (#B). The
primal-dual gap is defined as (Bound −z∗)/z∗. The last four columns report the same data for CPLEX. The best values
in each row are bolded.

The first remark which can be done is that the SSSP appears to be a rather hard problem, since the size of the
instances which can always be solved exactly is S/2 = 10. However, the hardness of the problem strongly depends on
the structure of the instance, since we observed solved instances with size up to S/2 = 70. The percentage gap is most

860 R. Cordone et al. / Computers & Operations Research 35 (2008) 854–862

Table 1
Comparison between the SSSP solver and CPLEX in one hour of computation (average results for each size)

Size SSSP solver CPLEX

z∗ Bound � (%) #B z∗ Bound � (%) #B

10 4881 4881 0.00 16 4881 4881 0.00 57
20 20 633 20 655 0.09 4856 20 620 20 660 0.16 18 809
30 47 122 47 193 0.13 4021 47 043 47 221 0.33 26 318
40 84 617 84 792 0.19 2326 84 433 84 847 0.50 38 894
50 131 768 131 999 0.17 1699 131 452 132 088 0.50 41 515
60 191 308 191 673 0.18 1320 190 916 191 786 0.48 39 195
70 259 871 260 339 0.18 1047 259 445 260 506 0.44 38 182
80 342 310 342 958 0.19 715 341 983 343 113 0.36 30 053
90 433 966 434 735 0.18 579 433 504 434 924 0.34 23 587

100 534 394 535 321 0.18 521 534 004 535 514 0.30 16 572
200 2 155 259 2 158 306 0.15 107 2 138 639 2 158 208 0.17 1469
300 4 870 804 4 877 656 0.15 47 4 870 298 4 876 518 0.14 1208
400 8 650 279 8 663 104 0.16 29 8 650 545 8 660 235 0.12 2308
500 13 530 228 13 550 970 0.17 17 13 531 935 13 546 659 0.12 926

10 4453 4453 0.00 330 4450 4454 0.06 42 078
20 18 564 18 829 1.34 7897 18 485 18 837 1.81 230 689
30 42 394 42 880 1.17 3955 42 173 42 865 1.71 190 907
40 74 954 75 554 0.83 2558 74 615 75 523 1.27 148 539
50 118 315 119 046 0.64 1827 117 882 119 000 1.01 142 465
60 170 160 170 957 0.49 1401 169 580 170 903 0.83 148 372
70 232 296 233 172 0.39 1121 231 741 233 109 0.64 118 733
80 305 003 305 981 0.33 915 304 354 305 900 0.54 80 899
90 385 219 386 281 0.28 752 384 537 386 166 0.45 51 861

100 475 897 477 050 0.25 626 475 173 476 871 0.39 28 222
200 1 914 481 1 917 779 0.18 176 1 911 904 1 916 168 0.24 207
300 4 314 081 4 321 814 0.19 73 4 305 733 4 316 465 0.28 0
400 7 702 877 7 717 979 0.20 41 7 687 658 7 706 078 0.26 0
500 12 030 572 12 055 997 0.22 23 12 007 501 12 034 732 0.24 0

of the time quite small and it tends to decrease as the size increases; all instances with S/2�100 have a gap smaller
than 0.4%. The instances with identical memory consumptions during ascending and descending transits appear to be
harder for both algorithms, though the effect is more marked for our solver than for CPLEX.

Our algorithm provides better heuristic results on almost all size classes. When considering the detailed results (not
presented here for obvious reasons of space limit), our algorithm beats CPLEX in 288 cases out of 336, solving to
optimality 56 instances against 49 solved by CPLEX. As far as the upper bound is concerned, our algorithm performs
better than CPLEX when the memory consumptions during ascending and descending transits are independent, while
it performs worse when they are identical. In detail, the upper bound provided by our algorithm is the best 139 times,
while CPLEX wins 197 times. Finally, our primal-dual gap is smaller 249 times over 336. In practical cases, a mixed
situation is to be expected; the shards inside the target region are likely to have identical consumption in both directions,
whereas the shards on the borders of the target region are likely to have different consumptions.

The comparable quality of the linear relaxation upper bound and the Lagrangean relaxation upper bound is entirely
due to the generation of all additional general-purpose cuts available in CPLEX, which substantially improve the
linear relaxation. Preliminary experiments performed with CPLEX standard parameter setting, in which the cuts to be
generated are chosen automatically, showed that CPLEX consistently provided worse upper bounds, as well as worse
heuristic solutions.

The number of branching nodes generated by our algorithm is from one to three orders of magnitude inferior to that
generated by CPLEX. Therefore, our algorithm is far more efficient from the point of view of memory requirements.
For large instances, however, CPLEX does not generate branching nodes, since the time limit of one hour is insufficient
to solve to optimality the linear relaxation of the problem.

R. Cordone et al. / Computers & Operations Research 35 (2008) 854–862 861

Table 2
Comparison between the SSSP solver and CPLEX in one hour of computation (average results for each reward and memory class)

Memory Reward Independent aj Identical aj

SSSP solver (%) CPLEX (%) SSSP solver (%) CPLEX (%)

[1, 100] [1, 100] 0.10 0.14 0.51 0.65
[1, 100] [51, 100] 0.12 0.20 0.47 0.53
[51, 100] [1, 100] 0.25 0.40 0.53 0.79
[51, 100] [51, 100] 0.12 0.39 0.35 1.81

Table 3
Comparison between the SSSP solver and CPLEX in one hour of computation (average results for each capacity class)

Downlink capacity (%) Independent aj Identical aj

SSSP solver (%) CPLEX (%) SSSP solver (%) CPLEX (%)

20 0.09 0.31 0.48 0.82
30 0.19 0.31 0.46 0.70
40 0.18 0.23 0.46 0.56

Dependency on the data. Table 2 shows the results obtained by our solver and by CPLEX from a different point
of view; here they are averaged with respect to the memory and reward ranges, indicated in the first column. The
following two columns report (respectively, for our solver and for CPLEX) the percentage gap on the instances in
which the memory consumption during ascending and descending transits are independently generated. The last two
columns provide the same results for the instances with identical memory consumption. The purpose is to evaluate how
the performance of our algorithm depends on the structure of the specific instance class considered.

Intuitively we expected instances with rewards and memory consumptions in [51, 100] to be harder to solve, as it
should be more difficult to distinguish between good and bad choices. For the same reason, instances with an identical
memory consumption in the ascending and descending swath segments were expected to be harder. These expectations
were confirmed, at least in part, by the outcome of the experiments. The comparison between the left and the right part
of the table shows that the instances with identical consumptions in both directions are actually harder. The instances
whose rewards and memory consumptions have been both generated in [51, 100] are harder for CPLEX, but this not
so evident for our algorithm; while narrowing the memory consumption range seems to make the instances slightly
harder, narrowing the reward range often makes them easier.

Finally, Table 3 concerns the same instances, but the results are averaged with respect to each value of the capacity
parameter (first column). The instances with a loose capacity constraint are harder for our algorithm when the
memory consumption in the two directions are independent (left part of the table), whereas no clear dependence
is observed in the opposite case. CPLEX, on the contrary, seems to become more effective as the constraint is
relaxed.

5. Conclusions

This paper presents an exact algorithm for the SSSP, a combinatorial optimization problem with relevant applications
in planning and scheduling of Nadir observations. We have described a branch-and-bound algorithm based on the
Lagrangean relaxation of the constraints that forbid multiple observations of the same shard, enriched with a Lagrangean
heuristic. The experimental comparison proves the effectiveness of this approach: though only small instances can be
solved to optimality, the algorithm outperforms the state-of-the-art MIP solver ILOG CPLEX 8.0 with respect to the
quality of the heuristic solutions provided and the primal-dual gap obtained in the same computing time. The upper
bounds provided by our algorithm are dominated by the ones provided by CPLEX when all general-purpose cuts
are added to the initial formulation, whereas the opposite occurs when using CPLEX’s standard parameter setting.
The experimental results also prove the hardness of the problem; in spite of the impossibility to solve medium-sized

862 R. Cordone et al. / Computers & Operations Research 35 (2008) 854–862

instances to optimality, our algorithm yields in one hour primal-dual gaps smaller than 0.4% on benchmarks instances
with up to 500 000 swath segments.

The rewards associated to the shards can be figures of merit conventionally set by the users. However, they may as
well represent the price at which the acquired images are sold to the end users. Owing to the very long operational
life of Earth observation satellite systems, even a very small improvement in these gains may result into a significant
additional revenue.

References

[1] Muraoka H, Cohen RH, Ohno T, Doi N. ASTER observation scheduling algorithm. In: Proceedings of SpaceOps 1998, Tokyo, Japan. 1998.
[2] Knight R, Smith B. Optimal nadir observation scheduling. In: Proceedings of the fourth international workshop on planning and scheduling

for space (IWPSS 2004), Darmstadt, Germany. 2004.
[3] Wolfe WJ, Sorensen SE. Three scheduling algorithms applied to the earth observing systems domain. Management Science 2000;46(1):

148–68.
[4] Vasquez M, Hao JK. A “logic-constrained” knapsack formulation and a tabu algorithm for the daily photograph scheduling of an earth

observation satellite. Journal of Computational Optimization and Applications 2001;20:137–57.
[5] Vasquez M, Hao JK. Uppers bounds for the SPOT 5 daily photograph scheduling problem. Journal of Combinatorial Optimization 2003;7(1):

87–103.
[6] Lemaître M, Verfaillie G, Jouhaud F, Lachiver JM, Bataille N. Selecting and scheduling observations of agile satellites. Aerospace Science and

Technology 2002;6:367–81.
[7] Bianchessi N, Piuri V, Righini G, Roveri AZM, Laneve G. An optimization approach to the planning of earth observing satellites. In: Proceedings

of the fourth international workshop on planning and scheduling for space (IWPSS), Darmstadt. 2004.
[8] Martello S, Toth P. Knapsack problems: algorithms and computer implementations. New York: Wiley; 1990.
[9] Pisinger D. A minimal algorithm for the 0–1 knapsack problem. Operations Research 1997;45:758–67.

[10] Ceselli A. Two optimization algorithms for the capacitated p-median problem. 4OR 2003;1(4):319–40.
[11] Held M, Wolfe P, Crowder HP. Validation of subgradient optimization. Mathematical Programming 1974;6:62–88.

	Solving the swath segment selection problem throughLagrangean relaxation
	Introduction
	Formulation and Lagrangean relaxation
	The algorithm
	Experimental results
	Conclusions
	References

