EXACT SOLUTION OF LARGE SCALE ASYMMETRIC
TRAVELLING SALESMAN PROBLEMS.

G. Carpaneto (+), M. Dell’Amico (1), P. Toth (1)

(+) Dipartimento di Economia Politica, Universitd di Modena, Italy.
(1) Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy.
(1) D.E.LS., Universita di Bologna, Italy.

Categories and Subject Descriptors: G.2.1 [Discrete Mathematics]:
Combinatorics-combinatorial algorithms; G.2.2 [Discrete Mathemat-
ics]: Graph Theory-graph — algorithms, path and circuit problems.

General Terms : Algorithms

Additional Key Words and Phrases: Branch and Bound, Asymmetric
Travelling Salesman Problem, Assignment Problem, Subtour Elimination,
Reduction Procedure.

Abstract

A lowest-first branch and bound algorithm for the Asymmetric Travelling
Salesman Problem is presented. The method is based on the Assignment
Problem relaxation and on a subtour elimination branching scheme. The
effectiveness of the algorithm derives from reduction procedures and para-
metric solution of the relaxed problems associated with the nodes of the
branch-decision tree. Large size uniformly randomly-generated instances
of complete digraphs with up to 2,000 vertices are solved on a DECstation
5000/240 computer in less than 3 minutes of CPU time. In addition, we
solved on a PC 486/33 no-wait flow shop problems with up to 1,000 jobs
in less than 11 minutes, and real world stacker crane problems with up to
443 movements in less than 6 seconds.

1 INTRODUCTION

Consider a complete digraph G = (V, A) with vertex set V' = {1,...,n},
arcset A= {(i,5): i €V, j € V}, and a cost a; j associated with each arc
(4,9) € A (ai; = oo Vi € V). We define a new graph G’ = (V', A') with ver-
tex set V' = {vy,...,v,} C V andarcset A" = {(v1,v2), (v2,v3),..., (vp,v1)} C
A as a tour (or Hamiltonian circuit) if p = n and a subtour if p < mn. The

cost of a tour is given by the sum of the costs of its arcs. The Asymmet-
ric Travelling Salesman Problem (ATSP) is to find a tour with minimum
cost z*. The problem is known to be NP — hard and has many important
applications (scheduling, distribution, wiring, FMS, ...).

ATSP can be mathematically formulated as:

n n
2F = mmzz i jTi (1)

i=1j=1

subject to:

Y>> wmy < [S|-1, vScv, S #10 (4)

i€S jeS

xi,j € {Oal}) iajzla"'an (5)

where z; ; = 1, if arc (¢, j) belongs to the optimal tour, z; ; = 0 otherwise.
Without loss of generality, we will assume that costs are non-negative inte-
gers. (1), (2), (3) and (5) define the well known Assignment Problem (AP).
Constraints (4) exclude subtours (loop included).

Many algorithms have been developed for the exact solution of ATSP.
The most effective ones are the branch and bound methods proposed by
Smith, Srinivasan and Thompson [16], Carpaneto and Toth [4], Balas and
Christofides [1] and Pekny, Miller and Stodolsky [14]; a survey of enumer-
ative algorithms for the TSP is given in Balas and Toth [2]. A parallel
algorithm has recently been proposed by Miller and Pekny [10, 14]. As for
sequential algorithms the maximum size of uniformly randomly-generated
for which many instances have been solved is 5,000, although single ran-
dom instances with as many as 500,000 vertices (but small cost ranges)
have been solved by Miller and Pekny [11]. For the undirected graph case
(Symmetric Travelling Salesman Problem), a Euclidean instance with 2,392

vertices has been solved through a sequential branch and cut procedure, us-
ing facet-inducing linear inequalities, in more than 27 hours on a CYBER
205 (see Padberg and Rinaldi [12]). A similar approach was recenty pre-
sented by Applegate, Bixby, Chvatil and Cook at the SIAM conference
1993. They solved instances with 3,038 and 4,461 vertices.

We present a sequential lowest-first branch and bound algorithm based
on the AP relaxation and a subtour elimination branching scheme. The
FORTRAN implementation of the algorithm is given in [7]. The effective-
ness of the algorithm derives from reduction procedures and parametric
solution of the relaxed problems associated with the nodes of the branch-
decision tree. Large size uniformly randomly-generated instances of com-
plete digraphs with up to 2,000 vertices are solved on a DECstation 5000/240
computer (with 16 Mbytes of main memory) in less than 3 minutes of CPU
time. In addition, we solved on a PC 486/33 (with 8 Mbytes of main mem-
ory) no-wait flow shop problems (see Papadimitriou and Kanellakis [13])
with up to 1,000 jobs in less than 11 minutes and real world stacker crane
problems with up to 443 movements in less than 6 seconds. According to
our experience the DECstation 500/240 is about two times faster than the
PC 486/33.

Finally we note that the proposed approach is not useful for instances
where the asymmetric nature of the problem disappears (Symmetric and
Quasi Symmetric TSP). In particular many small (n < 100) instances in
TSPLIB are of this kind, so our code cannot solve them.

A preliminary version of the paper has been presented at the 13-th
AMASES congress [6].

2 ALGORITHM

The algorithm is derived from the lowest-first branch and bound pro-
cedure TSP1 presented in Carpaneto and Toth [4]. At each node h of the
decision tree TSP1 solves a Modified Assignment Problem (M AP;,) defined
by (1), (2), (3), (5) and the additional constraints associated with arc sub-
sets E,, and Iy, where:

Ey, = {(i,j) €A : z;; is fixed to 0} (excluded arcs);
I = {(i,j) €A : x;; is fixed to 1} (included arcs).

If the optimal solution to M AP, does not define a Hamiltonian circuit and
its value LBy, (giving the lower bound associated with node h) is less than

the current optimal solution value, say UB, then m descending nodes are
generated from node h according to the following branching scheme (which
is a modification of the subtour elimination rule proposed by Bellmore and

Malone [3]).

Let Gy, ..., G4 be the subtours defined by the optimal solution to M APy,
where, for ¢ = 1, ..., d, Gg = (V,, Ag) with V, = {rg1,..., Tge,}
A, = {(rq1, re2), (rg2, T¢3), - (rqyeq, rq1)}, and e, = number of

vertices (and arcs) of the ¢ — th subtour.
The subtour, say G, having the minimum number of not included arcs,
that is the subtour such that

m = e — | AN, | = ming=, . aieq — | A4gNIy | },

is chosen for branching.

Let A = {(s1, t1), -y (Sm,y tm)} = A, \ I, be the subset of not included
arcs of A, (the order of the arcs in 4 is the same as that of the corresponding
arcs in Ay). The subset of the excluded and included arcs associated with
the j-th descending node, say g(j), of node h are (j =1, ..., m):

Eyjy = En U {(s5, tj)}

Ig(]) = Ih U {(Si7 tl) SRS]-7 ey]_1}

Each subset F,;), with j > 1, is enlarged by adding arc (t;_1, s1), so as
to avoid subtours corresponding to paths containing included arcs.

The new approach differs from that presented in [4] mainly in the fol-
lowing respects:
a) application at the root node of the branch-decision tree of a reduction
procedure so as to remove from G the arcs which cannot belong to an optimal
tour. In this way the original digraph G can be transformed into a sparse
one, say G = (V, A), allowing the use of sparse cost matrix procedures for
the solution of the M AP’s associated with the nodes of the branch-decision
tree;
b) the utilization of an efficient parametric technique for the solution of the
M APs, allowing each M AP, to be solved in O(| A | log n) time;

c¢) the introduction of an effective data structure to store the information
associated with the nodes of the decision tree;

d) the application at each node h of a connecting procedure to decrease
the number of subtours defined by the optimal solution to M AP},

2.1 Reduction procedure

At the root node, say node 0, of the branch-decision tree the AP corre-
sponding to the original complete cost matrix, (a; ;), is solved through the
O(n?) primal-dual procedure CTCS presented in Carpaneto and Toth [5].
Let (u;) and (v;) be the optimal solution of the dual problem associated
with AP, i.e. the dual variables of AP and LBy the corresponding solu-
tion value. It is well hnown that for each arc (i,j) € A the reduced cost
a;j = a;j—u; —vj >0 represents a lower bound on the increase of the
optimal solution value of AP corresponding to the inclusion of arc (7, j) in
the solution of AP, hence in that of ATSP. If an ATSP feasible solution of
value UB is known, then each arc (4,7) € A such that

[N > UB — LBy

can be removed from arc set A, since its inclusion in any solution of ATSP
cannot lead to a solution value less than U B. The original complete digraph
G can thus so be transformed into the equivalent sparse one, G = (V, A),
where

A={(i,j) €A : @;<UB— LBy}

The feasible solution of value U B can be obtained through any heuristic
procedure for ATSP. In our implementation we used the patching algorithm
proposed by Karp [9].

An alternative way to compute U B is to introduce an “artificial” upper
bound [a LBy] (with o > 1) and to set

UB = [a LBy] + 1. (6)

If, at the end of the branch and bound algorithm, no feasible solution of
value less than UB is found, this means that [LBy] is not a valid upper

bound, so « must be increased and a new run, starting with the reduction
procedure, must be performed.

2.2 Parametric solution of M AP’s

Since at each node of the decision tree a M AP is solved, the effectiveness
of the ATSP algorithm greatly depends on the efficiency of the algorithm
used to solve the M AP’s. At each node h of the decision tree, instead
of solving M AP, from scratch, a parametric technique is adopted which
finds only one shortest augmenting path. In fact, to generate a descending
node h from its parent node k, we exclude only one arc, say (s,t), from the
solution of M APy, (with (s,t)=FE;\Ey). So, to obtain the optimal solution
of M AP, from that of M APy, it is only necessary to satisfy constraint (2)
for j = t and constraint (3) for 7 = s, i.e. to find a new shortest augmenting
path from vertex s to vertex ¢ in the bipartite graph corresponding to
M AP, by considering the current reduced cost matrix (a;;). Addition
of the new included arcs (contained in subset I;\Ij), does not affect the
assignment, they being in the optimal solution of M AP} (the details of the
technique used to impose the new constraints (arcs exclusion or inclusion)
are discussed in the next subsection). As graph G is sparse, the shortest
augmenting path is found through a procedure derived from the labelling
algorithm proposed by Johnson [8] for the computation of shortest paths
in sparse graphs, which utilizes a heap queue. Hence, the resulting time
complexity for solving each M AP is O(] A | log n).

The computation of the shortest augmenting path at node A is stopped
as soon as its current reduced cost (i.e. the value of the label of the next
vertex to be included in the shortest path) is greater than or equal to the
gap between the value UB of the best solution so far and the value of the
M AP associated with the parent node of h.

2.3 The decision tree

There are two kinds of nodes in the decision tree: active nodes (i.e.
nodes not yet branched) and passive nodes (i.e. nodes branched or fath-
omed). The active nodes are ordered according to the non-decreasing values
of the corresponding lower bounds; in case of a tie the ordering is based on
the following rule: first the node with the maximum number of included
arcs and, in case of a new tie, first the node with the maximum number of
excluded arcs. To store the information associated with the nodes of the

decision tree, a vector V and two matrices M F' and MV are used; vector
V contains the scalar information, the matrices the vectorial information.
For each node h the following scalar information is stored:

a) the pointer to the active node preceding h in the ordered list;
b) the pointer to the active node following A in the ordered list;
c¢) the pointer to the parent node of h;

d) the lower bound LBy, associated with h;

e) the generation number of h between the nodes descending from the
parent node k;

f) the number m of not included arcs of the subtour chosen for branching
at node h;

g) the pointer to the column of matrices MF and MV containing the
vectorial information of node h;

h) the m not included arcs of the chosen subtour.

The vectorial information stored for each active node h is the vector (f;),
with f; = j if row 7 is assigned to column j, corresponding to the primal
solution of M AP, (in matrix M F') and the vector of the dual variables
(vj) associated with M AP, (in matrix MV'). The vectorial information of
node h is used for the parametric solution of the M AP’s corresponding to
the nodes descending from h. (Note that the dual variables (u;) associated
with M AP, are not stored, since they can easily be computed through the
above information.)

Problem M AP, corresponding to node h of the decision tree is defined
through subsets E; and Ij. The constraints associated with E; and I}, are
implicitly imposed by updating, with respect to the parent node k, cost
matrix (a; ;) and dual variables (v;) as follows:

i) replace a; j with a; j + A for each arc (i,7) € Ej\Ex,
ii) replace v; with v; — X for each vertex j € V;,\Vj,

where X is a sufficiently large positive value, and V,, = {j € V : there
exists an arc (¢,7) € Ip}.

The first updating avoids the choice of any arc (i,j) € Ej, in the optimal
solution to M AP},. The second updating prevents, in the shortest augment-
ing path computation performed at node h, the labelling of any column j
associated with a vertex 7 € Vj; in this way the assignment of column
j in the optimal solution to M AP, is not changed with respect to that
corresponding to node k.

Note that at the end of the computation of the optimal solution to M AP,
dual variables v;, with j € V},, are not changed, while the remaining dual
variables are generally updated.

In order to save main memory only one copy of the cost matrix (that
corresponding to the last considered node) is used, and, for each node h,
subsets Ej, and I, are not explicitly stored. Hence the problem of implicitly
updating the subsets of the excluded and included arcs corresponding to
the nodes arises. Let r be the last considered node and %k the next node
to be explored. The current cost matrix (a; ;) (corresponding to node)
is given by the original elements with a; ; replaced by a; ; + A for each arc
(¢,7) € Eyr. In order to obtain the cost matrix associated with node k£ we
find the lowest common ancestor, say ¢, of nodes r and k, then we remove,
level by level, all constraints corresponding to arcs in E,\E, and impose,
level by level, all constraints corresponding to arcs in Ej\E,. The current
dual variables (v;) associated with node & (which implicitly define the set
of included arcs Ij) are directly obtained from the column of matrix MV
corresponding to node k.

2.4 Connecting procedure

Consider a node h of the decision tree for which several optimal solutions
to M APy, exist. In this case the optimal solution which generally leads to
the smallest number of nodes in the subtree descending from h is that
having the minimum number of subtours. A heuristic procedure which
tries to decrease the number of subtours defined by the current optimal
solution to M AP}, is obtained by iteratively applying the following rule.
Given two subtours G, = (V,,A,) and Gy, = (V3, Ap), if there exists an
arc pair (iq, jo) € Aq and (ip,jp) € Ap such that arcs (ig,jp) and (ip, Jq)
have zero reduced costs (i.e. @;, j, = @;, j, = 0), then an equivalent optimal
solution to M AP}, can be obtained by connecting subtours G, and Gy to
form a unique subtour G, = (Vo U Vy, Ag U Ap\((ias Ja) U (@b, 76)) U ((ig, p) U
(it a))).

If at the end of the connecting procedure a Hamiltonian circuit is found,

it corresponds to the optimal solution to the ATSP associated with node h
and no descending nodes are generated.

The connecting procedure is always applied at the root node of the
decision tree. For the other nodes it is applied only if the total number of
zero reduced cost arcs at the root node is greater than a given threshold
B. Indeed the procedure is effective only if the reduced graph contains
a sufficiently large number of zero cost arcs. Computational experiments
have shown that an adaptive strategy, which counts the number of zero
cost arcs at each node and then decides on the opportunity to apply the
procedure, gives worst results than the simple threshold method. In the
computational analysis presented in Section 3, we set § = 2.5n.

2.5 Comparison with the algorithms of Miller and Pekny

The most effective procedures for the solution of the ATSP are those
proposed by Miller and Pekny in the first of the nineties [10,11,14,15]. In
the same period we independently developed the code described in this pa-
per, whose first version was presented at the 13-th AMASES conference,
1989, Verona [6]. All these procedures are based on the general approach
presented in Carpaneto and Toth [4]. Here we discuss the main differences
and similitudes between these approaches. In [10] Miller and Pekny pre-
sented a preliminary algorithm which is a parallelization of the approach of
Carpaneto and Toth, improved with the application of the patching heuris-
tic [9] at the root node. Randomly generated instances with up to 3,000
vertices were solved on a Butterfly Plus computer with 14 processors in
1263.9 seconds. The entries of the cost matrix were uniformly generated in
the range [0,10%]). The algorithm presented in [15] represent a substantial
improvement of the original parallel procedure. The MAP’s at the nodes
are solved through an O(n?) procedure which computes a single augmenting
path. This procedure was implemented using a d-heap. Moreover the patch-
ing algorithm was applied at the root node and to the other nodes “with
decreasing frequency as search progresses”. In addition the branch-and-
bound phase was preceded by a sparsification of the cost matrix obtained
by removing all the entries with cost greater than a given threshold A. A
sufficent condition is given to check if the optimal solution obtained from
the sparse matrix is optimal for the original matrix. Random instances
with up to 10,000 vertices and with costs uniformly randomly generated
in [0,n] were solved on a Butterfly Plus multiprocessor in less than 1300
seconds (on average). The algorithm presented in [14] is a modification of

that presented in [15], obtained with the application, at each node, of an
exact procedure to find a hamiltonian circuit on the subgraph defined by
the arcs with zero reduced cost. Instances with 3,000 vertices and costs
randomly uniformly generated in [0, 103] were solved in 102.38 seconds on
a SUN 4/280 while for the instances with costs generated in [0,10%] the
average running time was of 1434.82 seconds. The initial cost matrix spar-
sification was not applied for these computations. The most sophisticated
version of the Miller and Pekny code appears to be that presented in [11],
which includes all the improvements previously proposed by the authors.
Many instances with 5,000 vertices and costs uniformly randomly generated
in [0,7] were solved on a SUN 4/330 in 38,1 seconds (this time does not
include the construction of the sparse matrix). One instance with 500,000
vertices and costs randomly uniformly generated in [0,n] was solved on a
CRAY 2 in 12623 seconds.

The similarities among our approach and the algorithms of Miller and
Pekny are the following: (a) the branching rule is that proposed in Carpaneto
and Toth [4], (b) the MAP’s at the nodes are solved through an O(n?) pro-
cedure, (c) the patching algorithm is applied at the root node. The two
approaches differ in the following aspects: (a) for the sparsification phase
we propose a criterion based on the comparison between the reduced costs
given by the initial linear assignment procedure and the gap between lower
and upper bound (see subsection 2.1) (If a true upper bound is used, we
only eliminate arcs which cannot belong to the optimal solution; therefore
a single run of the algorithm is required. On the contrary using an artificial
upper bound or the technique described by Miller and Pekny it can be nec-
essary to run the algorithm more than one time.) (b) we propose an efficent
technique to store and retrieve the subproblems so that the exploration of
the branch-decision-tree is accelerated; (c) we apply a fast heuristic algo-
rithm to find a hamiltonian circuit on the subgraph defined by the arcs
with zero reduced cost.

Comparing the computational results obtained by Miller and Pekny
with those presented in the last section of this paper it appears that our code
is slowler than the algorithm presented in [11], for small cost ranges (and
random instances), but it seems to be faster for large cost ranges. Using
our code D.S. Johnson solved random instance with 4,000 vertices and costs
in [0,10%], in only 14 minutes on a SGI Challenge (239 subproblems were
solved).

10

3. COMPUTATIONAL RESULTS

The algorithm has been coded as a FORTRAN subroutine called CDT
[7]. Subroutine CDT has been tested on randomly generated test problems
with up to 2,000 vertices. We considered both instances with random costs
and instances derived from real-like scheduling problems. In particular, we
solved no-wait flow shop problems which can be stated as follows: n jobs
and a set {1,2,...,m} of m machines are given. Each job must be scheduled
on machines 1,2, ...,m in such a way that: a) no machine processes two jobs
at the same time; b) the processing of a job on machine j starts exactly
when the processing of the same job on machine 57 — 1 is completed. Let
p;,j be the processing time of job 7 on machine j: the problem consists in
finding a sequence of the n jobs which minimises the completion time of
the last job processed on machine m.
Papadimitriou and Kanellakis [13] have shown that an instance of the no-
wait flow shop problems can be transformed into an equivalent instance of
ATSP with n + 1 vertices.

Eight classes of test problems were considered by generating the coeffi-
cients of the integer cost matrix (a; ;) as follows:

al) a;; uniformly random in [1,103];
a2) a;; uniformly random in [1,10%];
a3) a;; uniformly random in [1,10°];
t1) a;; uniformly randomly generated in [1,10%] and then triangularized;
t2) a;; uniformly randomly generated in [1,10%] and then triangularized;
t3) a;; uniformly randomly generated in [1,10°%] and then triangularized;

f1) no-wait flow shop problems with 10 machines and p; ; uniformly ran-
dom in [1,100];

f2) no-wait flow shop problems with 20 machines and p; ; uniformly ran-
dom in [1,100].

For each value of n and each class of problems, 50 different instances
have been solved.

Tables 1 to 11 give the following information (the times are expressed
in seconds):

11

- average, median and maximum running times for CDT;
- average running time at the root node;
- average number of M AP's completely solved;

- average and (in brackets) maximum number of explored nodes (i.e. nodes
which generated son nodes);

- average and (in brackets) maximum level of the decision tree at which
the optimal solution was found;

- average number of son nodes generated by an explored node;
- average density of the sparse cost matrix (i.e. | A | /n?);
- average (AP solution value at the root node)/z* ratio.

Tables 1 to 6 give the results obtained on a PC 486/33 for values of n
from 100 to 103 for problems of classes a1, a2 and a3, and from 100 to 500 for
problems of classes ¢1, t2 and ¢3 (larger values of n for problems of classes
t1, t2 and t3 have not been considered because the excessive computing
time required for the triangularization of the cost matrices). The value of
upper bound U B has been obtained using the patching algorithm proposed
by Karp [9].

Tables 1,2 and 3 (uniform problems) show that the ratio between the
lower bound at the root node (LBy) and the optimal solution value (z*) is
always very close to 1 and increases with the value of n. The performances
of the algorithm do not change very much when the cost ranges increase
from (1,10%) to (1,10%), however one can observe a tendence to an increment
of the difficulty of the instances with the increment of the cost ranges. This
is mainly due to the larger absolute gap between z* and LBy, which leads
to a greater number of nodes in the decision tree.

Tables 4, 5 and 6 (triangular problems) show that the running time
required for solution of the M AP's is much greater than that corresponding
to uniform problems. In fact, procedure CTCS [5], which is used for the
solution of the AP at the root node, performs worse for these instances
and the computation of the shortest augmenting paths at the nodes of
the decision tree is slower because of the higher density of the sparse cost
matrix. However, the average running time of CDT is less than that in
Tables 1, 2 and 3, because of the much smaller number of nodes generated
by the branch and bound algorithm.

12

To consider large-size problems (n > 103) we ran subroutine CDT on
a DECstation 5000/240 computer. Tables 7,8 and 9 give the results for
problems of classes al, a2 and a3, values of n from 500 to 2,000. The
algorithm has a behaviour similar to that shown in Tables 1, 2 and 3.

Tables 10 and 11 give the results for the problems of classes fl1 and f2.
The value of UB used by the reduction procedure was artificially obtained
through (6) with a = 1.005. For only three instances with 20 machines and
less then 300 jobs it was necessary to increase the value of « to 1.01.

Finally we considered some real world stacker crane problems with up
to 443 movements. The stacker crane problem arises in the reorganization
of an inventory system which consists of a series of shelves where products
are positioned and of an automatic crane which moves the products from
the operator position (I/O area) to the shelves and vice versa. During the
night the crane reorganizes the system moving products from a shelf to
another. The shelves are positioned in a vertical rack and are identified by
two coordinates. In order to perform the reorganization of the system, two
problems have to be solved: a) identify the movements of products from
a shelf to another, and b) decide the sequence of movements of the crane
in order to minimize the total distance covered by the crane. Problem
b) determines an Asymmetric Travelling Salesman Problem. We solved
real world problems with up to 443 movements, derived from a Siemens’s
factory in Augsburg. The corresponding results are given in Table 12. All
the problems were easily solved with a maximun computing time of 5.7
seconds, on a PC 466/33. In many cases the problem was solved at the
root node.

ACKNOWLEDGEMENTS

We are grateful to professors Martin Grotschel and Norbert Ascheur (ZIB,
Berlin) for the data of the stacker crane problem instances tested in Sec-
tion 3. We are indebited to two anonymous referees and mainly to Prof.
D.S. Johnson for several suggestions which have considerably improved the
paper. Work supported by M.U.R.S.T., Italy.

13

REFERENCES

1.

10.

11.

Balas, E., Christofides, N., “A Restricted Lagrangean Approach to
the Traveling Salesman Problem”, Math. Progr. 21, 1981, 19-46.

. Balas, E. , Toth, P., “Branch and Bound Methods for the Travelling

Salesman Problem”, in “The Traveling Salesman Problem” (G.
Lawler, J. K. Lenstra, A. Rinnooy Kan, D. Shmoys, eds.), J. Wiley,
1985, 361-401.

. Bellmore, M., Malone, J. C., “Pathology of Traveling Salesman Sub-

tour Elimination Algorithms”, Op. Res. 19, 1971, 278-307.

. Carpaneto, G., Toth, P., “Some new Branching and Bounding Crite-

ria for the Asymmetric Travelling Salesman Problem”, Management
Science 26, 1980, 736-743.

. Carpaneto, G., Toth, P., “Primal-Dual Algorithms for the Assignment

Problem”, Discrete Applied Mathematics 18, 1987, 137-153.

. Carpaneto G., Dell’Amico M., Toth P., “Ricerca di Percorsi Hamil-

toniani in Grafi Orientati di Grandi Dimensioni”, 13-th AMASES
conference, Verona, 1989.

Carpaneto G., Dell’Amico M., Toth P., “Algorithm CDT: a Sub-
routine for the Exact Solution of Large-Scale Asymmetric Travelling
Salesman Problems”, Tech. Report, Dipartimento di Economia
Politica, University of Modena, Italy, 1990.

. Johnson D.B., “Efficient Algorithms for Shortest Paths in Sparse Net-

works”, J.A.C.M., 24, 1977.

. Karp, R.M., “A Patching Algorithm for the Nonsymmetric Traveling

Salesman Problem” STAM J. Comput 8, 1979, 561-573.

Miller, D. L. and Pekny, J. F., “Results from a Parallel Branch and
Bound Algorithm for the Asymmetric Traveling Salesman Problem”,
Operations Research Letters, 8, 1989, 129-135.

Miller, D. L. and Pekny, J. F., “Exact Solution of Large Asymmetric
Traveling Salesman Problems”, Science, 251, 1991, 754-761.

14

12.

13.

14.

15.

16.

Padberg, M., Rinaldi, G., “A Branch-and-Cut Algorithm for the
Resolution of Large Scale Symmetric Traveling Salesman Problems”,
SIAM Review, 33, 1991, 60-100.

Papadimitriou, C.H., and Kanellakis P.C., “Flowshop Scheduling with
Limited Temporary Storage”, J. ACM, 27, 1980, 533-549.

Pekny, J. F., Miller, D. L., Stodolsky, D. “A note on exploiting the
Hamiltonian cycle problem substructure of tge Asymmetric Traveling
Salesman Problem”, Operations Research Letters, 10, 1991, 173-
176.

Pekny, J. F., Miller, D. L. “ A parallel branch and bound algorithm
for solving large asymmetric traveling salesman problems”, Mathe-
matical Programming, 55, 1992, 17-33.

Smith, T. H. C., Srinivasan, V., Thompson, G. L., “Computational
Performance of Three Subtour Elimination Algorithms for Solving
Asymmetric Traveling Salesman Problems”, Ann. Discrete Math.
1, 1977, 495-506.

15

