ALGORITHM CDT: A SUBROUTINE FOR THE EXACT SO-
LUTION OF LARGE-SCALE ASYMMETRIC TRAVELLING
SALESMAN PROBLEMS

G. Carpaneto (+), M. Dell’Amico (1), P. Toth ()

(+) Dipartimento di Economia Politica, University of Modena, Italy.
(1)

(1)
Categories and Subject Descriptors: G.2.1 [Discrete Mathematics]:

Combinatorics-combinatorial algorithms; G.2.2 [Discrete Mathemat-
ics]: Graph Theory-graph — algorithms, path and circuit problems.

Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy.
D.E.L.S., University of Bologna, Italy.

General Terms : Algorithms

Additional Key Words and Phrases: Branch and Bound, Asymmetric
Travelling Salesman Problem, Assignment Problem, Subtour Elimination,
Reduction Procedure.

Abstract

The FORTRAN code CDT, implementing the algorithm of Carpaneto,
Dell’Amico and Toth [3] for the Asymmetric Travelling Salesman Problem,
is presented. The method is based on the Assignment Problem relazation
and on a subtour elimination branching scheme.

The effectiveness of the implementation derives from reduction procedures
and parametric solution of the relaxed problems associated with the nodes
of the branch-decision tree.

1.1. INTRODUCTION

Consider a complete digraph G = (V, A) with vertex set V = {1,...,n},
arc set A = {(i,j) : i €V, j € V}, and a cost a;; associated with each
arc (i,5) € A (aj; = oo Vi € V). The Asymmetric Travelling Salesman
Problem (ATSP) is to find a circuit visiting all vertices in V' once (circuit)
and such that the sum z* of the costs of its arcs is minimum. Without
loss of generatily, we will assume that costs are non-negative integers. The
problem is known to be NP — hard. The code, implementing the lowest
first branch and bound algorithm CDT presented in Carpaneto, Dell’Amico

and Toth [3], is based on the Assignment Problem (AP) relaxation and a
subtour elimination branching scheme. At each node h of the decision tree
algorithm CDT solves a Modified Assignment Problem (M AP,), that is,
an AP with additional constraints associated with arc subsets E; and I},
where:

{Ep = (i,7) € A: arc (i,j) is excluded from the optimal solution};

{I, = (i,j) € A: arc (i,7) belongs to the optimal solution}.

If the optimal solution to M AP}, does not define a Hamiltonian circuit
and its value LBy, (giving the lower bound associated with node h) is less
than the current optimal solution value, say UB, then descending nodes
are generated from node h according to a subtour elimination branching
scheme (see Carpaneto and Toth [2]) derived from that of Bellmore and
Malone [1].

There are two kinds of nodes in the decision tree: active nodes (i.e.
nodes not yet branched) and passive nodes (i.e. branched or fathomed).
To store the information associated with the nodes, a vector V and two
matrices M F and MV are used; vector V' contains the scalar information,
the matrices the vectorial information. The former is used to describe the
decision tree structure, the vectorial information associated with node h
is used for the parametric solution of the M AP’s corresponding to nodes
descending from h.

To increase the effectiveness of the implementation, a reduction proce-
dure has been applied at the root node of the branch-decision tree so as
to remove from G the arcs which cannot belong to an optimal solution.
In this way the original digraph G can be transformed into a sparse one,
say G = (V, ﬁ), allowing sparse cost matrix procedures to be used for the
solution of the M AP’s associated with the nodes of the branch-decision
tree.

2. PROGRAM

The algorithm was coded in American National Standard FORTRAN
as a main subroutine (CDT) calling 29 subroutines and 2 functions. The
code has been tested on a CONVEX C120, on a SUN SPARC/2, on a VAX
6000/400, on a DECstation 5000/240, on a SGI Challenge and on a PC
486/33; moreover, it has been checked for portability using the PFORT
Verifier [4].

The whole package is completely self-contained and communication with

it is achieved solely through the parameter list of CDT. The package can
be invoked with the statement

CALL CDT (N, ORDX, X, MAXND, INF, ALPHA,

ZSTAR, FSTAR, LB0, LBC, NEXP, NPROBQ NASS,
ACTIVE, LOPT, SPARS, AVSON, ERR)

The input parameters are:

N —
X —

ORDX =

MAXND =

INF =

ALPHA =

ZEUR =

number of vertices (n);

working used array to store all the information needed for the
branch and bound algorithm: in input it contains the original

cost matrix, stored column by column, so as to store a; ; in the

k —th element of X, with k= (j — 1) n+1 ;

size of array X;

maximum allowed number of M AP’s considered (set to -1

if no limitation is imposed);

very large positive integer (with INF+ maxz{a;; : (i,5) € A}

less than the maximum integer value representable in the
computer);

parameter used to define an artificial upper bound U B:

if ALPHA > 0 then UB = z(AP)xALPHA

if ALPHA < 0 an upper bound is computed;

value used to define a true upper bound, if ALPHA < 0:

if ZEUR > 0 then CDT uses as upper bound the minimum between
ZEUR and the value provided by the patching heuristic;

if ZEUR < 0 then CDT uses the value given by the patching heuristic.

The value of ORDX must satisfy:

ORDX >n? +2In+2+ | A|.

The output values are:

ZEUR = upper bound value used by CDT;

ZSTAR =

FSTAR =

value of the optimal solution (z* or value of the best
solution so far);

solution vector corresponding to ZSTAR (FSTAR(:) = j

if arc (4, j) is in the optimal Hamiltonian circuit, i = 1, ..., n);

LBO = value of the AP solved at the root node;

LBC = value of the highest lower-bound found so far, when algorithm
stops; i.e. value of the lower bound associated with the last
problem extracted from the queue. This is a valid lower bound
for the original instance;

NEXP = number of explored nodes;

NPROBQ= number of problems stored in the queue;

NASS = number of completely solved MAP’s;

ACTIVE = number of active nodes in the queue, when the program stops;

LOPT = level of the optimal solution in the branch-decision tree;

SPARS = percentage sparsity of the reduced matrix;

AVSON = average number of son nodes;

ERR = error condition; it can assume the following values:

-1: an error condition occurred and an explicative message was
printed on logical unit 6
0 optimal solution found.

All the parameters are integer. After execution, all the input parameters
are unchanged, except the first n? elements of X. The program needs no
additional internal arrays, hence its global core memory requirements are
ORDX+n elements.

When the program terminates, two situations may occurr: (i) the num-
ber of solved M AP’s is less then the input parameter MAXND (or MAXND
was set to -1); (ii) the number of solved M AP’s is equal to MAXND. In
case (i) two subcases must be distinguished. If the value ZSTAR is equal to
the input value of ZEUR, then the upper bound ZEUR is optimal and the
solution in vector FSTAR does not correspond to the optimal one. Other-
whise (ZSTAR less than the input value of ZEUR), the optimal solution is
defined by vector FSTAR. In case (ii), if ZEUR is less than its input value
and ALPHA < 0, then vector FSTAR defines a heuristic solution for the
instance, otherwise FSTAR has no meaning. In any case the value LBC is
a valid lower bound for the instance.

Finally we note that the CPU time required to solve a single instance
may be very large, so periodic printings have been introduced to monitor
the correct running of the program. At the root node, when the first assign-
ment problem has been solved and an upper bound has been determined,
CDT prints the following message:

ROOT NODE: ZSTAR= xxx LB0= yyy

were xxx is the current best solution value (possibly artificial if ALPHA >
0), and yyy is the lower bound value at the root node. During the explo-
ration of the branch decision tree, CDT prints the following message, every
1,000 nodes inserted in the queue:

ZSTAR= xxx LBC= yyy NPROBQ= zzz ACTIVE= www

were xxx is the current best solution value, yyy is the value of the lower
bound associated with the last problem extracted from the queue, zzz is the
number of nodes currently inserted in the queue and www is the number
of active problems in the queue. The same printing is made when a new
(better) solution is found, or value LBC is updated.

3. EXAMPLE

The subroutine CDT can be invoked by means of the following main
program:

PROGRAM MAIN

c
C SAMPLE CALLING PROGRAM FOR CDT
C
INTEGER ERR,ORDX,ZSTAR,ZEUR,ACTIVE
INTEGER X(10000) ,FSTAR(100)
ORDX = 10000
INF = 99999999
ALPHA= -1.
MAXND= -1
ZEUR = -1
C READ N (WITH N .LE. 100) AND THE COST MATRIX
OPEN (UNIT=1,FILE="INP.DAT’,STATUS=’0LD’)
READ(1,*) N
CALL READA(N,X(1))
CLOSE(1)
C
CALL CDT(N,ORDX,X,MAXND,INF,ALPHA,ZEUR,ZSTAR,FSTAR,LBO,LBC,
1 NEXP,NPROBQ,NASS,ACTIVE,LOPT, SPARS,AVSON, ERR)
C
IF (ERR.EQ.0) GOTO 10
WRITE(6,’(’’ SOLUTION NOT OPTIMAL ’’)?)
10 WRITE(6,’ (>’ ZSTAR=’’,I8,’’ LBO =’7 18,’’ LBC =’’,I8,

1 ’’ SPARS =’’,F8.4)°) ZSTAR,LBO,LBC,SPARS

WRITE(6,’(’’ N.EXP=’’,I8,’’ N.PROB.Q=’’,I8,’’ N.ASS=’’,I8,
1 ’’ ACTIVE=’’,I8,’’ AV.SON=’’,F8.2)’)NEXP,NPROBQ,NASS,ACTIVE,
1 AVSON

WRITE(6,’(20I4)’) (FSTAR(I),I=1,N)

STOP

END

SUBROUTINE READA(N,A)
INTEGER A(N,N)
DO 10 I=1,N

10 READ(1,*) (A(I,J),J=1,N)
RETURN
END

The program reads all input data from logical unit 1 and write the
output on logical unit 6. To read the problem costs easily in matricial form,
instead of explicitly defining the entries of vector X, subroutine READIN
was introduced.

A problem with 10 vertices was considered as an example; the following
data define the instance.

10
9999 964 786 990 345 63 38 999 361 126
943 9999 961 706 800 488 482 198 743 190
224 472 9999 326 695 362 420 193 203 0
853 605 499 9999 963 781 179 370 531 289

99 386 770 634 9999 420 295 487 335 36
919 864 123 455 482 9999 156 585 350 812
618 711 810 20 160 180 9999 129 897 245
438 488 730 21 620 631 251 9999 233 156

60 524 203 944 281 167 22 880 9999 734
417 750 470 474 98 314 866 714 841 9999

The output of the program is:

ROOT NODE: ZSTAR= 1695 LBO= 1360

ZSTAR= 1695 LBC= 1452 NPROBQ= 3 ACTIVE= 1

ZSTAR= 1574 LBC= 1452 NPROBQ= 3 ACTIVE= 1

ZSTAR= 1674 LBC= 1461 NPROBQ= 3 ACTIVE= 0

ZSTAR= 16563 LBC= 1461 NPROBQ= 3 ACTIVE= 0

ZSTAR= 1553 LBO= 1360 LBC = 1461 SPARS= 51.1111

N.EXP= 3 N.PROB.Q= 3 N.ASS= 5 ACTIVE= 0 AV.S0ON= 3.00

6 10 9 2 i 3 8 4 7 5

The corresponding branch-decision tree is given in Fig. 1: the numbers
inside the circles represent the lower bounds, those near the circles give the
order in which subproblems were generated. The initial upper bound com-
puted at the root node is 1695. The crossed nodes correspond to subprob-
lems fathomed by the current upper bound. The solution of the assignment
problem associated with node 8 is a Hamiltonian Circuit and corresponds
to the optimal solution.

REFERENCES

1. Bellmore, M., Malone, J. C., ”Pathology of Traveling Salesman Sub-
tour Elimination Algorithms”, Op. Res. 19, 1971, 278-307.

2. Carpaneto, G., Toth, P., ”Some new Branching and Bounding Crite-
ria for the Asymmetric Travelling Salesman Problem”, Management
Science 26, 1980, 736-743.

3. Carpaneto, G., Dell’Amico, M., Toth, P., "Exact Solution of Large-
Scale Asymmetric Travelling Salesman Problems” Tech. Report, Di-
partimento di Economia Politica, University of Modena, Italy, 1990.

4. Ryder, B.G., Hall, A.D., ”The PFORT verifier”, Bell Laboratories
Computer Science report/2 Murray Hill, N.J., (May 1973-Jan. 1981).

OO 006

Figure 1. Branch-decision-tree of the example

