Exercise 1

Preprocess this MILP instance to tighten its formulation.

 $\min z = 24x_1 + 12x_2 + 16x_3 + 4y_1 + 2y_2 + 3y_3$

Solution

Solving the continuous relaxation of the problem one obtains $z_{LP} = 58.7$. Consider the binary variables, one at a time, and tentatively fix them at 0 (probing).

$$x_1 = 0 \Rightarrow y_1 = 0 \Rightarrow \begin{cases} (1) \ y_2 \ge 5\\ (2) \ y_3 \ge 5 \Rightarrow x_3 = 1\\ (3) \ y_2 \ge 20 \Rightarrow x_2 = 1 \end{cases} \Rightarrow Soluz. \ [0, 1, 1, 0, 20, 5], z = 83 \end{cases}$$

We can tighten constraint (1): $x_1 = 0 \Rightarrow y_1 + 3y_2 \ge 60 \Rightarrow (1') 45x_1 + y_1 + 3y_2 \ge 60$.

$$x_2 = 0 \Rightarrow y_2 = 0 \Rightarrow \begin{cases} (1) \ y_1 \ge 15 \Rightarrow x_1 = 1\\ (3) \ y_1 \ge 10 \end{cases}$$

We can tighten constraints (2) and (3): $x_2 = 0 \Rightarrow y_1 + 2y_3 \ge 15 \Rightarrow (2') \ 5x_2 + y_1 + 2y_3 \ge 15.$ $x_2 = 0 \Rightarrow 2y_1 + y_2 \ge 30 \Rightarrow (3') \ 10x_2 + 2y_1 + y_2 \ge 30.$

$$x_3 = 0 \Rightarrow y_3 = 0 \Rightarrow (2) \ y_1 \ge 10 \Rightarrow x_1 = 1$$

We cannot tighten any constraint.

Replacing constraints (1), (2) and (3) with the stronger constraints (1'), (2') and (3') one obtains a new formmulation whose linear relaxation has an optimmal solution with value z' = 79.1. The integer optimal solution has value $z^* = 79.33$.

Exercise 2

Search for logical implications and clique inequalities.

$(1) 4x_1$	$+x_{2}$	$-3x_{3}$	≤ 2
(2) $2x_1$	$+3x_{2}$	$+3x_{3}$	≤ 7
(3) x_1	$+4x_{2}$	$+2x_{3}$	≤ 5
$(4) \ 3x_1$	$+x_2$	$+5x_{3}$	≥ 2
$x \in B^3$			

Solution.

Let introduce the complemented varibales \bar{x} in order to make all coefficients non-negative and all inequalities in the same form (\leq), as indicated here below on the left. Then we derive the implications reported on the right.

(1) $4x_1$	$+x_{2}$	$+3\bar{x_3}$	≤ 5	$\Rightarrow x_1 + \bar{x_3} \le 1$
(2) $2x_1$	$+3x_{2}$	$+3x_{3}$	≤ 7	
\$ (3) x_1	$+4x_{2}$	$+2x_{3}$	≤ 5	$\Rightarrow x_2 + x_3 \le 1$
$(4) \ 3\bar{x_1}$	$+\bar{x_2}$	$+5\bar{x_3}$	≤ 7	$\Rightarrow \bar{x_1} + \bar{x_3} \le 1$
$x \in B^3$				

Now we can build the incompatibility graph and search for maximual cliques in it. Since the graph contains a

Figure 1: The incompatibility graph.

maximal clique $(x_1, \bar{x_1}, \bar{x_3})$, we obtain the clique inequality

$$x_1 + \bar{x_1} + \bar{x_3} \le 1$$

from which we obtain $\bar{x_3} = 0$, i.e. $x_3 = 1$ and hence $x_2 = 0$. After fixing these two variables, all four constraints become redundant.