Exercise 1

Preprocess this MILP instance to tighten its formulation.

$$
\begin{aligned}
& \min z=24 x_{1}+12 x_{2}+16 x_{3}+4 y_{1}+2 y_{2}+3 y_{3} \\
& \left\{\begin{array}{lll}
y_{1}+3 y_{2} & \geq 15 \\
y_{1} & +2 y_{3} & \geq 10 \\
2 y_{1}+y_{2} & \geq 20 \\
y_{1} & & \leq 15 x_{1} \\
y_{2} & & \leq 20 x_{2} \\
y_{3} & & \\
y \in R_{3}^{3} & & \\
x \in B^{3} & &
\end{array}\right.
\end{aligned}
$$

Solution

Solving the continuous relaxation of the problem one obtains $z_{L P}=58.7$.
Consider the binary variables, one at a time, and tentatively fix them at 0 (probing).

$$
x_{1}=0 \Rightarrow y_{1}=0 \Rightarrow\left\{\begin{array}{l}
(1) y_{2} \geq 5 \\
(2) y_{3} \geq 5 \Rightarrow x_{3}=1 \\
(3) y_{2} \geq 20 \Rightarrow x_{2}=1
\end{array} \quad \Rightarrow \text { Soluz. }[0,1,1,0,20,5], z=83\right.
$$

We can tighten constraint (1): $x_{1}=0 \Rightarrow y_{1}+3 y_{2} \geq 60 \Rightarrow\left(1^{\prime}\right) 45 x_{1}+y_{1}+3 y_{2} \geq 60$.

$$
x_{2}=0 \Rightarrow y_{2}=0 \Rightarrow\left\{\begin{array}{l}
(1) y_{1} \geq 15 \Rightarrow x_{1}=1 \\
(3) y_{1} \geq 10
\end{array}\right.
$$

We can tighten constraints (2) and (3):
$x_{2}=0 \Rightarrow y_{1}+2 y_{3} \geq 15 \Rightarrow\left(2^{\prime}\right) 5 x_{2}+y_{1}+2 y_{3} \geq 15$.
$x_{2}=0 \Rightarrow 2 y_{1}+y_{2} \geq 30 \Rightarrow\left(3^{\prime}\right) 10 x_{2}+2 y_{1}+y_{2} \geq 30$.

$$
x_{3}=0 \Rightarrow y_{3}=0 \Rightarrow(2) y_{1} \geq 10 \Rightarrow x_{1}=1
$$

We cannot tighten any constraint.
Replacing constraints (1), (2) and (3) with the stronger constraints (1^{\prime}), (2^{\prime}) and (3^{\prime}) one obtaines a new formmulation whose linear relaxation has an optimmal solution with value $z^{\prime}=79.1$.
The integer optimal solution has value $z^{*}=79.33$.

Exercise 2

Search for logical implications and clique inequalities.
$\left\{\begin{array}{llll}\text { (1) } 4 x_{1} & +x_{2} & -3 x_{3} & \leq 2 \\ \text { (2) } 2 x_{1} & +3 x_{2} & +3 x_{3} & \leq 7 \\ \text { (3) } x_{1} & +4 x_{2} & +2 x_{3} & \leq 5 \\ \text { (4) } 3 x_{1} & +x_{2} & +5 x_{3} & \geq 2\end{array}\right.$

Solution.

Let introduce the complemented varibales \bar{x} in order to make all coefficients non-negative and all inequalities in the same form (\leq), as indicated here below on the left. Thhen we derive the implications reported on the right.
$\left\{\begin{array}{lllll}\text { (1) } 4 x_{1} & +x_{2} & +3 \overline{x_{3}} & \leq 5 & \Rightarrow x_{1}+\overline{x_{3}} \leq 1 \\ \text { (2) } 2 x_{1} & +3 x_{2} & +3 x_{3} & \leq 7 & \\ \text { (3) } x_{1} & +4 x_{2} & +2 x_{3} & \leq 5 & \Rightarrow x_{2}+x_{3} \leq 1 \\ \text { (4) } 3 \overline{x_{1}} & +\overline{x_{2}} & +5 \overline{x_{3}} & \leq 7 & \Rightarrow \overline{x_{1}}+\overline{x_{3}} \leq 1\end{array}\right.$

Now we can build the incompatibility graph and search for maximual cliques in it. Since the graph contains a

Figure 1: The incompatibility graph.
maximal clique $\left(x_{1}, \overline{x_{1}}, \overline{x_{3}}\right)$, we obtain the clique inequality

$$
x_{1}+\overline{x_{1}}+\overline{x_{3}} \leq 1
$$

from which we obtain $\overline{x_{3}}=0$, i.e. $x_{3}=1$ and hence $x_{2}=0$. After fixing these two variables, all four constraints become redundant.

