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Column generation for solving linear programs with a huge number of variables alternates between solv-
ing a master problem and a pricing subproblem to add variables to the master problem as needed. The
method is known to often suffer from degeneracy in the master problem. Inspired by recent advances
in coping with degeneracy in the primal simplex method, we propose a row-reduced column generation
method that may take advantage of degenerate solutions. The idea is to reduce the number of constraints
to the number of strictly positive basic variables in the current master problem solution. The advantage of
this row-reduction is a smaller working basis, and thus a faster re-optimization of the master problem.
This comes at the expense of a more involved pricing subproblem, itself eventually solved by column
generation, that needs to generate weighted subsets of variables that are said compatible with the
row-reduction, if possible. Such a subset of variables gives rise to a strict improvement in the objective
function value if the weighted combination of the reduced costs is negative. We thus state, as a
by-product, a necessary and sufficient optimality condition for linear programming.

This methodological paper generalizes the improved primal simplex and dynamic constraints aggregation
methods. On highly degenerate linear programs, recent computational experiments with these two
algorithms show that the row-reduction of a problem might have a large impact on the solution time.
We conclude with a few algorithmic and implementation issues.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Column generation, invented to solve large-scale linear pro-
grams (LPs), is particularly successful in the context of branch-
and-price (Barnhart, Johnson, Nemhauser, Savelsbergh, & Vance,
1998; Lübbecke & Desrosiers, 2005) for solving well-structured
integer programs. Column generation is used to solve the LP relax-
ations at each node of a search tree, and often produces strong dual
bounds. It alternates between solving a restricted master problem
(an LP) and one or several subproblems (usually integer programs)
in order to dynamically add new variables to the model. Like the
primal simplex method, column generation suffers from degener-
acy. This defect is particularly visible when solving LP relaxations
of combinatorial optimization problems, a main application area
of branch-and-price.

In this methodological paper, we present a row-reduced column
generation (RrCG) method which turns degeneracy into a potential
advantage. Our method differs from standard column generation
only in iterations where degeneracy occurs in the restricted master
problem (RMP). We dynamically partition the RMP constraints
based on the numerical values of the current basic variables. The
idea is to keep only those constraints in the RMP that correspond
to strictly positive basic variables. This leads to a row-reduced
restricted master problem which does not only discard most vari-
ables from consideration in column generation, but also reduces
the number of constraints, and in particular the size of the current
working basis. In linear algebra terms, we work with a projection
into the subspace spanned by the column-vectors of the non-
degenerate variables. This is similar to the idea of a deficient basis
in the simplex method (Pan, 1998). This row reduction comes at
the expense of a computationally more involved pricing subprob-
lem which needs itself to be solved by column generation.

Degeneracy in column generation has been dealt with using
perturbation of the right-hand side as in the standard primal
simplex method. In particular, certain dual variable stabilization
approaches explicitly use perturbation, see Ben Amor, Desrosiers,
and Frangioni (2009) for a stabilized column generation framework
and the many references therein. Recently, a new line of research
emerged for coping with primal degeneracy in linear program-
ming, namely the improved primal simplex method (IPS) (Elhalla-
oui, Metrane, Desaulniers, & Soumis, 2010; Raymond, Soumis, &
Orban, 2010). Our work generalizes IPS for solving degenerate
linear programs and the dynamic constraints aggregation method
(Elhallaoui, Desaulniers, Metrane, & Soumis, 2008; Elhallaoui,
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Villeneuve, Soumis, & Desaulniers, 2005; Elhallaoui, Metrane,
Soumis, & Desaulniers, 2010) for solving LP relaxations of set par-
titioning problems (by column generation) stemming from vehicle
routing and crew scheduling applications. The referenced papers
suggest that, on highly degenerate linear programs, a row-reduc-
tion of a problem shows great promise in reducing overall solution
times.

The paper is organized as follows. Section 2 recalls the column
generation method with the definitions of the master problem MP,
its variable-restricted version RMP and its pricing subproblem SP.
Section 3 presents the RrCG approach. It essentially defines the
row and column partitions of the master problem based on a cur-
rent degenerate solution, introduces the row-reduced restricted
master problem RrRMP and its associated pricing subproblem rSP,
and finally brings in a specialized column generator cSP for single
columns compatible with the row-reduced master problem. Sec-
tion 3.4 discusses the case of inequality constraints followed by
an algorithm. Section 3.6 provides a necessary and sufficient
optimality condition for linear programs. Finally, Section 4 dis-
cusses some properties followed by implementation issues. Our
conclusions complete the paper in Section 5.
2. Column generation

Let us briefly recall the mechanism of standard column genera-
tion, see Lübbecke and Desrosiers (2005) for a general introduc-
tion. We would like to solve the following linear program, called
the master problem (MP), with a prohibitively large number of
variables k 2 Rn

þ

zH

MP :¼ min c|k
s:t: Ak ¼ b ½p�

k P 0;
ð1Þ

where A 2 Rm � Rn; c 2 Rn, and b 2 Rm. The corresponding dual
variables p 2 Rm are listed in brackets. We assume that k includes
m non-negative artificial variables, hence A is of full row rank,
and MP is feasible if b P 0. In applications, every coefficient column
a of A encodes a combinatorial object x 2 X like a path, permutation,
set, or multi-set. To stress this fact, we write a ¼ aðxÞ and c ¼ cðxÞ
for its cost coefficient. Column generation works with a restricted
master problem (RMP) which involves a small subset of variables
only. At each iteration, RMP is solved to optimality first. Then, like
in the primal simplex algorithm, we look for a non-basic variable
to price out and enter the current basis. That is, we either find a col-
umn aðxÞ of cost cðxÞ with a negative reduced cost �cðxÞ or need to
prove that no such variable exists. This is accomplished by solving
the pricing subproblem (SP)

�cH

SP :¼min
x2X

cðxÞ � p|aðxÞf g: ð2Þ

If �cH

SP P 0, no negative reduced cost columns exist and the cur-
rent solution k of RMP (embedded into Rn

þ) optimally solves MP (1)
as well. Otherwise, a minimizer of SP (2) gives rise to a variable to
be added to RMP, and we iterate.

Functions cðxÞ and aðxÞmay be linear functions, as in a Dantzig-
Wolfe reformulation of a linear program (Dantzig & Wolfe, 1960),
but cðxÞ is typically non-linear in many practical applications such
as in rich vehicle routing and crew scheduling (Desaulniers et al.,
1998). Functions aðxÞ are also non-linear when Chvátal-Gomory
cuts are derived from the master problem variables, see Desaul-
niers, Desrosiers, and Spoorendonk (2011). Non-linearities may
increase the difficulty in solving SP, but it always ends up in a
scalar cost cj and a vector aj of scalar coefficients for each variable
kj in MP, j 2 f1; . . . ;ng.
2.1. Notation

Vectors are written in bold face. We denote by Ik the k� k iden-
tity matrix and by 0 (resp. 1) a vector/matrix with all zero (resp.
one) entries of appropriate contextual dimensions. For subsets
I # 1; . . . ;mf g of row-indices and subsets J # 1; . . . ;nf g of column-
indices we denote by AIJ the sub-matrix of A containing the rows
and columns indexed by I and J, respectively. We further use stan-
dard linear programming notation like AJkJ , the subset of columns
of A which are indexed by J multiplied by the corresponding
sub-vector of variables kJ . There is one notable exception: The set
N will not denote the non-basis (but usually a superset). Even
though one never actually computes the inverse of a basis matrix,
our exposition will sometimes rely on‘‘tableau data,’’ when it is
conceptually more convenient.

3. Row-reduced column generation

RMP is a column-reduced MP and its variables are generated as
needed by solving SP. The row-reduced column generation comes
into play when the current solution of RMP is degenerate with
p < m positive variables. In what follows, we define a row-reduced
RMP, denoted RrRMP, which decreases the number of rows to only
p. The case with equality constraints is treated first as formulated
in (1), and a generalization to the inequality-constrained case is
presented in Section 3.4.

3.1. Row and column partitions

Let k be a feasible solution to MP, with the index set
F � f1; . . . ;ng of variables at strictly positive value, that is, kF > 0.
These variables are free to increase or decrease relatively to their
current values. All other possibly present variables assume a null
value, that is, kN ¼ 0 for N :¼ f1; . . . ;ng n F. We assume that k is
degenerate in the sense that the number of positive variables is
less than the number of rows of MP, i.e., jFj ¼ p < m. The columns
of AF are required to be linearly independent, which is no restric-
tion when k is computed with a simplex algorithm. This assump-
tion allows us to construct a basis matrix AB for MP representing
the solution k in the following way. Identify a subset
P � f1; . . . ;mg of p linearly independent rows of AF and ‘‘fill up’’
with m� p unit columns to provide for artificial basic variables
in the rows indexed by Z :¼ f1; . . . ;mg n P. More precisely, this
yields the following form

AB ¼
APF 0
AZF Im�p

� �
: ð3Þ

One way to accomplish this form is to initialize the RMP with
columns AF and m artificial variables and apply a phase I of the pri-
mal simplex algorithm. The above construction induces row and
column partitions, and MP (and the corresponding vector of dual
variables p) reads as

zH

MP :¼ min c|FkF þ c|NkN

s:t: APFkF þ APNkN ¼ bP ½pP �
AZFkF þ AZNkN ¼ bZ ½pZ �
kF ; kN P 0:

ð4Þ

The inverse of the above basis matrix (3) has a particularly easy
form,

A�1
B ¼

A�1
PF 0

�AZFA�1
PF Im�p

" #
: ð5Þ

If we left-multiply (4) by A�1
B , we obtain the equivalent ‘‘tableau

data’’ formulation
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zH

MP :¼ min c|FkF þ c|NkN

s:t: kF þ APNkN ¼ �bP

AZNkN ¼ 0
kF ; kN P 0;

where APN ¼ A�1
PF APN and AZN ¼ AZN � AZFA�1

PF APN . We can see that our
choice of basis reveals that our row partition reflects the degenerate
solution in the tableau form, where P ¼ fij�bi > 0g and Z ¼ fij�bi ¼ 0g.
Indeed, ðkF ; kNÞ ¼ ð�bP;0Þ is a degenerate basic solution to MP where
kF ¼ A�1

PF bP is computed using the smaller working basis A�1
PF , a p� p

matrix. Finally, observe that there is no need to left-multiply the
system of constraints in row-set P by A�1

PF . Hence, MP can be ex-
pressed as follows:

zH

MP :¼ min c|FkF þ c|NkN

s:t: APFkF þ APNkN ¼ bP ½wP�
AZNkN ¼ 0 ½wZ �

kF ; kN P 0;

ð6Þ

where the new dual vector w is given by

½w|P;w
|

Z � ¼ ½p
|

P ;p
|

Z �
Ip 0

AZFA�1
PF Im�p

" #
¼ ½p|P þ p|ZAZFA�1

PF ;p
|

Z �: ð7Þ

Pricing subproblem SP now equivalently writes as

�cH

SP :¼ min
x2X

cðxÞ � w
|

PaPðxÞ � w
|

Z
�aZðxÞ

� �
: ð8Þ

We emphasize that the basis we constructed for MP is not un-
ique. The form we propose has convenient properties, but even
there it is our choice which rows appear in P, see Section 4.1.

3.2. The row-reduced master and the pricing subproblem

To exploit the degeneracy of the solution exhibited in (6), we
row-reduce the RMP, denoted by RrRMP. To this end, we discard
the rows in set Z:

zH

RrRMP :¼ min c|FkF þ c|NkN

s:t: APFkF þ APNkN ¼ bP½wP �
kF ; kN P 0:

ð9Þ

Solution ðkF ; kNÞ is optimal for MP (6) if no negative reduced cost
columns exist, that is, if �cH

SP P 0, or equivalently, if �cN P 0. From (6)
or (9), it holds that w

|

P ¼ c|F A�1
PF . However, the value of dual vector wZ

is not known. Consequently, we cannot solve the pricing subprob-
lem SP as expressed in (8), and we need to come up with an
alternative.

Compute the partial reduced cost vector ~c|N :¼ c|N � w
|

PAPN

¼ c|N � c|F A�1
PF APN and write the current reduced cost vector �cN in

(6) in terms of the unknown vector wZ of dual variables:
�c|N ¼ ~c|N � w

|

ZAZN . To verify the non-negativity of �cN , one can find
the minimum value of its components by solving
maxfljl 6 �cj;8j 2 Ng, i.e., by solving the following pricing sub-
problem rSP over l and the unknown vector wZ

�cH

rSP :¼ max l
s:t: 1lþ A|ZNwZ 6 ~cN ½kN �;

ð10Þ

where kN P 0 acts as the dual variable vector. In other words, given
only the non-degenerate variables kF > 0 of cost cF and the associ-
ated columns in AF from which we derive the row-partition, we
compute the dual vector wP and check whether any vector wZ exists
such that l < 0 (to generate a column with negative reduced cost to
be added to problem RrRMP) or to otherwise prove the optimality of
kF for RrRMP and hence for MP (see Theorem 1 for this necessary
and sufficient optimality condition). The dual of (10) defines the
pricing problem rSP in terms of kN , the current vector of null
variables:

�cH

rSP :¼ min ~c|NkN

s:t: 1|kN ¼ 1 ½l�
AZNkN ¼ 0 ½wZ �
kN P 0:

ð11Þ

We have assumed (1) to be feasible which means that it either
has a finite optimal value or is unbounded. In both scenarios, the
pricing problem (11) and its dual are always feasible and bounded.
Indeed, in a context of column generation, it is always possible to
generate a basic variable of reduced cost 0. With respect to the un-
bounded case, the detection of this eventuality is done during the
step size stage according to the ratio-test mechanism as stated in
the following section.

The reader who is more accustomed to IPS will remember that
the basic variables are not available for pricing. That being said,
one could modify the convexity constraint with a less-than-or-
equal-to sign. The repercussion in (10) is the added upper bound
of l 6 0. For all intent and purposes, this is equivalent to having
an artificial column of null content priced at 0 that could be se-
lected in the pricing problem when the current solution is
optimal.

3.3. Solving the pricing step

An optimal solution kH

N to (11) may contain a single variable
kH

j ¼ 1; j 2 N, for which �aZj ¼ 0, or more generally, a convex
combination of several positive variables such that AZNkH

N ¼ 0.
In the pricing step, we consider two subproblems: rSP as de-
fined by (11) for the general case and a specialized one denoted
cSP and used first to generate an optimal solution comprising a
single variable, if any. Subproblem cSP exploits the following
property:

Definition 1. Given the solution vector kF > 0 of positive variables,

vector a ¼ aP
aZ

� �
is called compatible with row-set P if and only if

�aZ :¼ aZ � AZFA�1
PF aP ¼ 0.

Vector b is compatible since �bZ ¼ 0 and so are the column-vec-
tors of AF . When appropriate, we also say that a variable associated
with a compatible column is compatible. The artificial basic vari-
ables we selected are incompatible. More generally, degenerate ba-
sic variables are incompatible. The interest in compatibility comes
from the fact that a compatible column aj with negative reduced
cost �cj yields a non-degenerate pivot. Indeed, the step size given
by the ratio-test is computed only on the row-set P, that is,

qj ¼mini2P
�bi
�aij
j�aij > 0

n o
. Because �bi > 0; 8i 2 P, then qj > 0 and

the objective of MP strictly improves by qj�cj < 0, unless
�aij 6 0;8i 2 P, in which case MP is unbounded.

On the one hand, if we restrict our attention to only generating
compatible columns (which is a natural idea in our context), mat-
ters can sometimes simplify considerably as there is no need to
know wZ . Given the dual vector w

|

P ¼ c|F A�1
PF retrieved from the solu-

tion of RrRMP (9), we define a specialized subproblem cSP which is
the pricing subproblem SP (8) augmented with a set of linear
constraints imposing compatibility with the row-reduced master
problem for solution-column aðxÞ, that is,

�cH

cSP :¼min
x2X

cðxÞ � c|F A�1
PF aPðxÞjaZðxÞ � AZF A�1

PF aPðxÞ ¼ 0
n o

: ð12Þ

Adding the set of constraints aZðxÞ � AZF A�1
PF aPðxÞ ¼ 0 may

destroy the structure of the subproblem and makes it more diffi-
cult to solve in some cases. Anyhow, if a non-basic compatible
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column aj; j 2 N, with �cj ¼ �cH

cSP < 0 is generated from the solution
of (12), one updates the current solution as:

kj ¼ qj

kk ¼ 0 8k 2 N n fjg
kF ¼ �bP � qj

�aPj

zRrRMP ¼ cF
�bP þ qj�c

H

cSP:

ð13Þ

The number of positive variables in the new solution is at most
p, that is, it can be more degenerate.

On the other hand, we can solve rSP (11) to look for a convex
combination of columns to improve the objective value of MP. Sub-
problem rSP is a linear program solved by column generation over

X. In its pricing step, we look for a column 1
�aZðxÞ

� �
with a reduced

cost �cðxÞ ¼ �lþ ~cðxÞ � w
|

Z
�aZðxÞ of negative value, where

~cðxÞ :¼ cðxÞ � w
|

PaPðxÞ and �aZðxÞ :¼ aZðxÞ � AZFA�1
PF aPðxÞ. Given w

|

P ¼
c|FA�1

PF obtained from the solution of RrRMP (9) together with l
and wZ retrieved from the current solution of (11), the pricing
subproblem for generating variables as needed for solving rSP is
given by

�cH :¼ �lþmin
x2X

cðxÞ � c|F A�1
PF aPðxÞ � w

|

Z
�aZðxÞ

n o
¼ �lþmin

x2X
cðxÞ � ðc|FA�1

PF � w
|

ZAZFA�1
PF ÞaPðxÞ � w

|

ZaZðxÞ
n o

:
ð14Þ

Apart from the constant term �l, (14) is the usual subproblem SP
(2) with dual vector

ðp|P;p
|

ZÞ ¼ ðc
|

F A�1
PF � w

|

ZAZFA�1
PF ;w

|

ZÞ:

Subproblem rSP (11) combines variables in N such that AZNkH

N ¼ 0.
Hence, vector ANkH

N (of reduced cost value �cH

rSP) is compatible with
row-set P. Given kH

N , the updated values are computed according
to RrRMP (9) as

kN ¼ qkH

N

kF ¼ �bP � qAPNkH

N

zRrRMP ¼ cF
�bP þ q�cH

rSP:

ð15Þ

The number of positive variables is at most
pþ ðm� pþ 1Þ � 1 ¼ m and the new solution could be less as well
as more degenerate.

Finally, several compatible columns can be retrieved from the
pricing problem cSP and added simultaneously to (9). Moreover,
the positive variables of kH

N solution of rSP can be entered one by
one in RMP (1), in any order, see Elhallaoui, Metrane, Desaul-
niers, et al. (2010): the last variable entered ensures a non-
degenerate pivot because the convex combination ANkH

N is
compatible.

3.4. Inequality constraints

Consider the following linear master problem MP with
inequalities:

zH

MP :¼ min c|k s:t: Ak P b; k P 0: ð16Þ

Introducing a vector of surplus variables d 2 Rm
þ , one obtains MP

in standard form:

zH

MP :¼ min c|k s:t: Ak� d ¼ b; k; d P 0: ð17Þ

The case with less-than-or-equal-to constraints Ak 6 b can be
treated in a similar way by considering the transformation
�Ak P �b. When the current basic solution to (16) with vector
of positive variables kF > 0 is such that AFkF – b, the basis also con-
tains some vector of surplus variables dS > 0, for S � 1; . . . ;mf g. Let
jSj ¼ s and denote by Z :¼ 1; . . . ;mf g n ðF [ SÞ the set of remaining
rows. The basis can be written in terms of kF > 0, the slack vari-
ables dS > 0, and again artificial variables for the m� p� s remain-
ing constraints. Basis AB and its inverse write as

Upon left-multiplication by the inverse, the transformed master
problem becomes:

zH

MP :¼ min c|FkF þ c|NkN

s:t: kF þ APNkN � A�1
PF dP ¼ �bP

dS þ ASNkN � ASF A�1
PF dP ¼ �bS

AZNkN � AZF A�1
PF dP �dZ ¼ 0

kF ; dS; kN; dP ; dZ P 0:
ð18Þ

From (18), we can derive RrRMP, cSP, and rSP. The row-reduced
master problem with pþ s constraints is obtained by discarding
row-set Z from the formulation while keeping the original data
matrices and inequality constraints:

zH

RrRMP :¼ min c|FkF þ c|NkN

s:t: APFkF þ APNkN P bP ½wP�
ASFkF þ ASNkN P bS ½wS�
kF P 0; kN P 0;

ð19Þ

where wP P 0 and wS P 0. Current (known) dual values are
w
|

P ¼ c|FA�1
PF and w

|

S ¼ 0. Therefore, subproblem cSP for generating
compatible variables is given by (12) and it only depends on the col-
umn-vectors AF of the positive variables kF > 0. Subproblem rSP,
again written in terms of the current null variable vectors kN; dP ,
and dZ , becomes:

zH

rSP :¼ min ~c|NkN þ c|F A�1
PF dP

s:t: 1|kN þ 1|dP þ 1|dZ ¼ 1 ½l�
AZNkN � AZFA�1

PF dP � dZ ¼ 0 ½wZ �
kN; dP ; dZ P 0:

ð20Þ

It is solved by column generation except that the dP and dZ vari-
ables need not be generated. Therefore, (14) can be used to price
out the valuable columns of kN . Its solution is a convex combina-
tion of the variables in kN; dP and dZ such that
AZNkH

N � AZFA�1
PF dH

P � dH

Z ¼ 0.

3.5. An RrCG algorithm

We summarize our discussion with a pseudo-code of our
row-reduced column generation algorithm for degenerate master
problems. As long as the solution is non-degenerate, we have the
classical alternation between RMP and SP (until line 9). When a
degenerate solution is identified in line 10 (p < m), the row-
reduced RrRMP benefits from this (lines 11 to 19).

After solving RMP (line 4) or RrRMP (line 13), the optimality test
for MP is via the solution of a pricing subproblem, either the clas-
sical SP (line 8) if the current solution is non-degenerate or rSP
which is solved by column generation (line 17). In both situations,
new columns are added to RMP if �cH

SP < 0 or �cH

rSP < 0, otherwise MP
is optimal.

If the current RMP solution is degenerate in line 10, row-index
sets P and Z are defined/updated (line 11), and the RrRMP is built
and solved (line 13). In that case, priority can be given to the spe-
cialized pricing subproblem cSP (line 14) and, if �cH

cSP < 0, compati-
ble columns are added to RrRMP (line 15). Otherwise, the pricing
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subproblem rSP needs to be solved by column generation (line 17).
If �cH

rSP < 0 in line 18, we add subsets of incompatible columns to
RMP and iterate (again from line 4). The algorithm stops when
RMP and hence MP are optimal (line 19).

Algorithm 1.
3.6. A characterization of LP optimality

Column generation generalizes the primal simplex algorithm. In
the same spirit, the improved primal simplex method (IPS) used for
solving degenerate linear programs (Elhallaoui, Metrane, Desaul-
niers, et al., 2010; Raymond et al., 2010) can be seen as a special
case of the row-reduced column generation RrCG. The main differ-
ence is that rSP (11) itself needs to be solved by column generation,
whereas in IPS all columns are explicitly given in advance. More-
over, given basis AB, all variables can be characterized a priori as
either compatible or incompatible. Hence, in IPS, the row-reduced
master problem is defined on the compatible variables and a
complementary pricing subproblem is solved over the incompatible
variables only. Although not explicitly stated in previous IPS
papers, the following result is a direct consequence of the pricing
subproblem structure.

Theorem 1. A feasible solution ðkF > 0; kN ¼ 0Þ, jFj 6 m, is optimal
for the linear program (1) if and only if there exists some dual vector
wZ such that �cH

rSP P 0, rSP being defined by (11).
Proof. For necessity, recall that MP (1) is equivalent to MP (6).
Firstly, kF ¼ A�1

PF bP and kN ¼ 0 is primal feasible for MP (6). Sec-
ondly, kF being basic, �c|F ¼ 0, i.e., w

|

P ¼ cFA�1
PF . If there exists a dual

vector wZ such that �c|N ¼ c|N � c|F A�1
PF APN � w

|

ZAZN P 0, the reduced
costs of all variables are non-negative and ðc|FA�1

PF ;w
|

ZÞ is dual feasi-
ble for MP (6). Thirdly, since kN ¼ 0 and �bZ ¼ 0, primal objective
function c|FkF is equal to the dual objective function w

|

PbP . Therefore
½kF ; kN� is optimal.

To show sufficiency, let ½kF ; kN� be an optimal solution and
assume �cH

rSP < 0. With the row-partition induced by basis AB, vector
ANkH

N ¼ APNkH

N AZNkH

N

� �
. Because vector AZNkH

N ¼ 0 in (11), ANkH

N is
compatible. If kH

N contains a single variable kH

j ¼ 1; j 2 N, then
�aZ

j ¼ 0, vector aj is compatible, and �cj ¼ ~cj ¼ �cH

rSP < 0. The p-
dimensional column aPj, and the associated variable kj in MP
enters the basis of RrRMP, a non-degenerate pivot occurs (unless
�aPj 6 0 in which case MP is unbounded), and the objective function
improves by qj�c

H

rSP < 0.

More generally, if kH

N contains several positive variables, the
p-dimensional vector APNkH

N can enter the basis of RrRMP as a

single column. Let ð�aiÞi2P :¼ APNkH

N . Because AZNkH

N ¼ 0, its reduced

cost is computed as �c|NkH

N ¼ ~c|NkH

N ¼ �cH

rSP < 0. Unless all components
of vector ð�aiÞi2P are non-positive, it strictly improves the objective
function value by q�cH

rSP < 0 when added to RrRMP, where

q ¼mini2P
�bi
�ai
j�ai > 0

n o
. This contradicts the optimality of ðkF ; kNÞ

and completes the proof. h

4. Some properties and implementation issues

4.1. Selection of a working basis APF

Given the current solution ðkF ; kNÞ to RMP, the p� p working ba-
sis APF is a matrix containing p linearly independent rows of AF , not
uniquely defined if p < m. Matrix APF does not only characterize the
row-partition of the constraints of RrRMP, rSP and cSP, but also, for
j 2 N, the partial reduced costs coefficients ~cj ¼ cj � c|FA�1

PF aPj, and
column components of �aj, that is, �aPj ¼ A�1

PF aPj and
�aZj ¼ aZj � A�1

PF aPj. However, we show by a linear algebra argument
that, for any set of p linearly independent rows of AF , the pricing
subproblem holds the same information based on AF and thus pro-
vides the same solution set. That is, the latter is independent of the
row-partition induced by the selected working basis APF . This
comes from the fact that only compatible columns belong to the
vector space spanned by AF .

Proposition 1. Given the solution vector kF > 0 of positive variables,
vector a is compatible with the row-set P if and only if it belongs to the
vector space spanned by AF.
Proof. Assume vector a ¼ AF y, that is, it can be written as a linear

combination of the columns of AF , or equivalently, APF

AZF

� �
y ¼ aP

aZ

� �
.

Since APF is invertible, one obtains y ¼ A�1
PF aP from the first set of

constraints. Substituting in the second set, we have AZFA�1
PF aP ¼ aZ

which means that a is compatible by Definition 1. To show the con-
verse, let a be compatible with with the row-set P, that is,
�aZ :¼ aZ � AZFA�1

PF aP ¼ 0, where �aP :¼ A�1
PF aP . Hence, aZ ¼ AZF �aP and

aP ¼ APF �aP , or equivalently, a ¼ AF �aP . Hence a belongs to the vector
space spanned by AF . h

This has a nice interpretation in set partitioning models that are
common in vehicle routing, crew scheduling, and many other
applications. Given an integer solution, AF forms a set of p groups
of rows. Hence, compatible columns are those combining these
groups (and APF is the identity matrix Ip). For a fractional solution,
the p independent rows of APF can be chosen as follows: keep one
row from each group of identical rows of APF . Again this forms a set
of p groups of rows, and the same compatibility interpretation
applies. This is what is being used in the dynamic constraints
aggregation method (Elhallaoui et al., 2005; Elhallaoui et al.,
2008; Elhallaoui, Metrane, Soumis, et al., 2010; Benchimol,
Desaulniers, & Desrosiers, 2012). Furthermore, the convex combi-
nation of incompatible variables in (11) simply expresses the
fundamental exchange mechanism of set partitioning solutions,
that is, removing elements from some groups to insert them back
in other groups.

Another interpretation can be given in the context of the mini-
mum cost flow problem with non-negative flow variables, see
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Ahuja, Magnanti, and Orlin (1993). Any feasible flow can be repre-
sented (in the residual network) as a collection of positive arcs (the
non-degenerate arcs forming a forest) and all other arcs at zero
(the degenerate ones). The column-vectors of the positive arcs
form AF . A degenerate arc is compatible if and only if it can be writ-
ten in terms of the unique subset of positive arcs forming a cycle
with it. Fig. 1 represents the residual network in which the flow
on the non-degenerate (positive) arcs is free to go in both direc-
tions while the degenerate arcs are at zero. Arc (8,9) can be written
in terms of the free arcs (9,10), (11,10) and (11,8), hence the corre-
sponding variable x8;9 is compatible. An incompatible arc must link
two trees of the forest. The combination of several incompatible
arcs together with a selection of free arcs can form a cycle. In
Fig. 1 are two incompatible arcs. However, combined with free arcs
(9,10), (11,10), (5,1) and (1,6), they form a cycle, hence the sum
x6;9 þ x5;11 of these two incompatible variables is compatible as
well as their convex combination with an equal weight of one-half
on each. Now observe the row partition derived from that network
flow example. In the small tree composed of free arcs (1,5) and
(1,6), two independent flow conservation constraints need to be
selected to be part of set P, hence any one amongst nodes 1, 5 or
6 appears in set Z. This is the same mechanism for the larger tree
composed of the five arcs (2,11), (2,7), (11,10), (11,8), and (9,10):
any one amongst nodes 2, 7, 11, 10, 8 or 9 is selected to be part
of set Z while the remaining four flow conservation constraints
are in the set of independent rows of P. This leads us to the
following two propositions regarding the choice of the working
basis.

Consider two different working bases APF and AQF , where Q pro-
vides an alternative set of p linearly independent rows of AF . The
reduced costs of the positive basic variables are zero, hence inde-
pendent of the selected working basis. However, their column
coefficients in RrRMP (9) are different since they are given by the
column coefficients of the selected working basis. For cSP, Proposi-
tion 2 shows that the reduced costs of the compatible variables are
indeed identical in the two subproblem versions, namely cSPP and
cSPQ and their coefficient components are equivalent. Therefore
cSP, the specialized pricing subproblem for generating compatible
variables, is independent of the selected working basis. The proof is
presented in Appendix A.

Proposition 2. Given two working bases APF and AQF of AF , the
corresponding pricing subproblems cSPP and cSPQ are equivalent
programs.
Fig. 1. Compatible and incompatible arcs in a minimum cost flow problem.
Although the reduced cost coefficients and column components
of incompatible variables in rSP (11) clearly depend on the selected
working basis, say either APF or AQF , Proposition 3 shows that the
solution set of the corresponding pricing subproblems rSPP and
rSPQ is the same as well as the values of their optimal objective
functions. Hence they are equivalent programs. Again the proof is
postponed to Appendix A.

Proposition 3. Given two working bases APF and AQF of AF , the
corresponding pricing subproblems rSPP and rSPQ are equivalent
programs.

Regarding the interpretations in set partitioning models and
minimum cost flow problems, we have the following. In the first
case, for both integer or fractional solutions, each group is
composed of identical rows in AF , hence a single one per group is
selected to appear in row-set P. The choice is therefore irrelevant.
In the second case, each tree t of the forest contains nt nodes and
nt � 1 free arcs. One (root) node per tree has to be removed and
its flow conservation constraint appears in row-set Z. The choice
of a root node per tree of the forest, currently nodes 1 and 2 in
Fig. 1, does not change the composition of any cycle nor its cost
or reduced cost.

4.2. Flexibility in an implementation

A consequence of the necessary and sufficient optimality condi-
tion of Theorem 1 is that the role of RrRMP could be relegated to
only updating the current feasible solution, see (15). Indeed, there
is no need to keep the generated columns, except those comprised
in the current solution. Pricing problem rSP is sufficient to prove
optimality of the solution or to provide a convex combination of
columns for a strict improvement of the objective function. How-
ever in practice, several subsets of columns are selected at every
iteration, either from cSP or from rSP, and sent to RrRMP or to
RMP for an improvement of the current solution, by solving a linear
program. This is possible because the compatibility notion is some-
what flexible. For example, one can include or not in the set of
degenerate variables a variable that is at an implicit upper bound.
In set partitioning models, this is the case for variables at value
one.

Definition 2. Given the solution vector kF > 0 of non-degenerate
variables, vector a is compatible with row-set Q # P if and only if
�aZ ¼ 0 for Z :¼ 1; . . . ;mf g n Q .

This row-compatibility induces a two-step pivot procedure to
enforce a strict improvement of the current solution. Firstly, a se-
lected row-set Q # P for RrRMP (still of row-size p 6 m) constrains
the set of possible exiting variables from the current basis, the ra-
tio-test being computed only for those jQ j :¼ q 6 p constraints.
Secondly, a specialized pricing subproblem cSP selects an entering
variable kj; j 2 N, such that �cj < 0 and �aZj ¼ 0, this zero vector being
defined on Z :¼ 1; . . . ;mf g n Q according to the row-compatibility
in use. This supports various implementation strategies. For exam-
ple, one could temporarily restrain the search for entering
variables to those for which Q is a strict subset of P and, for all
i 2 Q ; �bi are relatively large. This can be considered as a partial
pricing strategy and should accelerate the solution of RrRMP since
only significant step sizes are expected.

Alternatively, when the entering variable is compatible with the
solution kF , the pivot is non-degenerate but the new basic solution
may become degenerate, say kQ > 0; kNnQ ¼ 0, with Q # P. Then
one can update or not the current row-partition of RrRMP, namely
RrRMPP. If it is updated, it becomes RrRMPQ with only q rows and
Z :¼ 1; . . . ;mf g n Q . If not, it should be pointed out that this also
results in an exact algorithm as it still solves the transformed MP
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formulation in (6). In that case, the current compatibility rule with
row-set P is simply maintained. No overhead computations are
needed for an update of RrRMPP and the entering variables are still
selected such that �aZj ¼ 0, where Z :¼ 1; . . . ;mf g n P is a strictly
smaller set of rows than what would be required in an updated
pricing subproblem. In that case, degenerate pivots may occur
because of the degeneracy of some RrRMPP solutions.
5. Summary and conclusions

Classical column generation works with a restricted master
problem (RMP), that is, a subset of a model’s variables that are
dynamically added via a pricing subproblem SP. Like the simplex
method, column generation is known to suffer from degeneracy.
Inspired by recent successes in coping with degeneracy in the pri-
mal simplex method, we propose a row-reduced column generation
method (RrCG). RrCG exploits degeneracy as the restricted master
problem only has as many rows as there are positive basic
variables.

Columns/variables are characterized as compatible or incom-
patible with respect to RrRMP. Compatible columns allow for a
strict decrease of the objective function when entered into the ba-
sis, that is, a non-degenerate pivot. Two types of subproblems are
proposed to generate variables: a specialized subproblem cSP for
compatible variables, and rSP to price out any type of variables.
The latter also needs to be solved by column generation. Pricing
subproblem cSP is the original subproblem SP augmented with a
set of linear constraints imposing compatibility requirements. It
selects compatible columns as long as they are useful for non-
degenerate pivots in RrRMP. When the reduced costs of all compat-
ible columns are zero (or larger than a specified threshold), the
pricing subproblem rSP is solved. It selects a convex combination
of columns such that, again, the objective value strictly improves
when they all enter into the current basis. In both cases, the
row-size of RrRMP can be dynamically modified. The structure of
the pricing problem rSP allows to derive a necessary and sufficient
optimality condition for linear programs.

Decomposition in column generation for integer programs is
based on the modeling structure of a compact formulation. It
exploits the pricing subproblem for the selection of objects x 2 X.
Row-partition in RrCG takes advantage of degenerate solutions,
reduces the row-size of the master problem and its associated
working basis, and thus, the computational effort for re-optimiza-
tion. Combining column generation and dynamic row-partition
during the solution process allows for exploiting both the model-
ing structure of its formulation and the algebraic structure of its
solutions. Two special cases of RrCG are the improved primal
simplex method and the dynamic constraints aggregation method
for solving by column generation LP relaxations of set partitioning
problems. On highly degenerate instances, recent computational
experiments with these algorithms have shown a substantial
impact on the solution time. This already opened the door to
further research within that field, notably an integral simplex
algorithm for the set partitioning problem (Zaghrouti, Soumis, &
Elhallaoui, 2011) and a specialized version for the capacitated
network flow problem which turns out to be strongly polynomial
(Desrosiers, Jacques, Gauthier, Jean Bertrand, & Lübbecke, 2013).

Of course, only experimentation can show whether the poten-
tial speedup when re-optimizing the master problem is not
overcompensated by a slowed down solution of the pricing step.
Specialized subproblem cSP may be more difficult to solve than
rSP or the original SP, in particular when the latter is solved by a
customized algorithm. The additional constraints enforcing
compatibility in cSP may modify or even destroy the subproblem
structure. On the positive side, the subproblems do not automati-
cally inherit degeneracy from the master problem, since at least
part of the overrepresentation of the current basic solution is
removed from the pricing subproblem as well.

We expect that the new method is most helpful in cases where
re-optimization of the master problem is very difficult, as it is the
case for many large-scale vehicle routing and crew scheduling
problems. As for any simplex or column generation algorithm,
future work is needed on RrCG, mainly on implementation
strategies. Amongst these are the moment for an update of the
row-partition of RrRMP, efficient solvers for cSP and rSP, which
pricing subproblem to call, whether to add many incompatible
columns or their (single column) convex combination as returned
from rSP, and much more on relaxed compatibility.
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Appendix A. Proofs

In this Appendix, we provide the proof of Proposition 3 followed
by that of Proposition 2. Let us first express rSP (11) in terms of the
variables kN , and as a function of the working basis APF and the
original cost and data coefficients:

�cH

rSP :¼ min ðc| � c|F A�1
PF APÞkN

s:t: 1|kN ¼ 1
ðAZ � AZFA�1

PF APÞkN ¼ 0
kN P 0:

Consider another working basis defined on row-set Q and
denoted AQF . It is again of dimension p� p and kF ¼ A�1

QF bQ ¼ �bQ .
Duplicate rows in set Q such that MP becomes

zH

MP :¼ min c|FkF þ c|NkN

s:t: APFkF þ APNkN ¼ bP

AZFkF þ AZNkN ¼ bZ

AQFkF þ AQNkN ¼ bQ

kF ; kN P 0:

Given the vector of positive variables kF > 0, consider the following
two bases, the first being defined according to the working basis APF

while the second is given according to the working basis AQF:

The corresponding inverses are given as follows:

Pricing subproblem rSP can now be written according to the
selected basis, namely rSPP and rSPQ:
�cH

rSPP
:¼ min ðc| � c|F A�1

PF APNÞkN

s:t: 1|kN ¼ 1
ðAZN � AZF A�1

PF APNÞkN ¼ 0

ðAQN � AQF A�1
PF APNÞkN ¼ 0

kN P 0

ð21Þ
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and

�cH

rSPQ
:¼ min ðc| � c|FA�1

QF AQNÞkN

s:t: 1|kN ¼ 1
ðAZN � AZFA�1

QF AQNÞkN ¼ 0

ðAPN � APFA�1
QF AQNÞkN ¼ 0

kN P 0:

ð22Þ
Proposition 3. Given two working bases APF and AQF of AF , the
corresponding pricing subproblems rSPP and rSPQ are equivalent
programs.
Proof. We show that the solution set of rSPP and rSPQ is the same
and the value of their objective functions is equal for any optimal
convex combination kH

N . Left-multiplying the third set of con-
straints of (21) by �APFA�1

QF , one obtains the third set of constraints
of (22):

�APFA�1
QF ðAQN � AQFA�1

PF APNÞkN ¼ ðAPN � APFA�1
QF AQNÞkN ¼ 0:

From the above equation, we have the identity APNkN ¼ APFA�1
QF AQNkN .

Substituting for APNkN in the objective function and in the second
constraint set of (21), one completes the linear transformation of
rSPP into rSPQ:

ðc| � c|FA�1
PF APNÞkN ¼ c|k� c|F A�1

PF APFA�1
QF AQNkN ¼ ðc| � c|F A�1

QF AQNÞkN

and

ðAZN � AZFA�1
PF APNÞkN ¼ AZNkN � AZFA�1

PF APFA�1
QF AQNkN

¼ ðAZN � AZFA�1
QF AQNÞkN: �

We next show that the reduced costs of the compatible vari-
ables are indeed identical in the two versions of cSP, namely cSPP

and cSPQ and their coefficient components are equivalent. There-
fore cSP, the specialized pricing subproblem for generating com-
patible variables, is independent of the selected working basis.
We first provide these two versions of cSP, adapted from (12):

�cH

cSPP
:¼ min

x2X
cðxÞ � c|FA�1

PF aPðxÞ

s:t: aZðxÞ � AZFA�1
PF aPðxÞ ¼ 0

aQ ðxÞ � AQF A�1
PF aPðxÞ ¼ 0

ð23Þ

and

�cH

cSPQ
:¼ min

x2X
cðxÞ � c|FA�1

QF aQ ðxÞ

s:t: aZðxÞ � AZFA�1
QF aQ ðxÞ ¼ 0

aPðxÞ � APFA�1
PF aQ ðxÞ ¼ 0:

ð24Þ
Proposition 2. Given two working bases APF and AQF of AF , the
corresponding pricing subproblems cSPP and cSPQ are equivalent
programs.
Proof. The proof is similar to that of Proposition 3 except that vec-
tor kN is not involved. Multiplying the last set of constraints of (23)

by �APFA�1
QF , one obtains the corresponding constraint set of (24).

Since aPðxÞ ¼ APFA�1
PF aQ ðxÞ, it can be substituted in the objective

function and the first set of constraints of (23). This shows that
cSPP and cSPQ are equivalent programs. h
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