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Abstract

Column generation has proven to be efficient in solving the linear programming relaxation of large scale instances
of the multiple-depot vehicle scheduling problem (MDVSP). However difficulties arise when the instances are highly
degenerate. Recent research has been devoted to accelerate column generation while remaining within the linear
programming framework. This paper presents an efficient approach to solve the linear relaxation of the MDVSP. It
combines column generation, preprocessing variable fixing, and stabilization. The outcome shows the great potential
of such an approach for degenerate instances.
� 2005 Published by Elsevier Ltd.
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1. Introduction

The multiple-depot vehicle scheduling problem (MDVSP) consists in assigning a set of time-tabled
trips to a set of vehicles that are provided by several depots, such as to minimize a given objective
function. Column generation has proven to be efficient in solving the linear programming (LP) relaxation
of large scale instances of the MDVSP but difficulties arise with this approach when the instances are
highly degenerate. Recent research has been devoted to improve the behavior of the solution process
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through algorithms that stabilize and accelerate column generation while remaining within the LP
framework.

The present paper deals with an approach to solve the LP relaxation of highly degenerate MDVSP
based on an algorithm that combines column generation, preprocessing variable fixing, and stabilization.
The proximal algorithm described in [1] is used to solve the LP relaxation of instances of long horizon
MDVSPs where the number of trips and depots are fixed while the time length of a route, identified as the
horizon, is extended to multiples of the basic period. These are problems with massive degeneracy that
can barely be solved by the standard column generation approach. Hence, we apply stabilized column
generation and show how large is the potential of such an approach for degenerate instances.

After a literature review on the general MDVSP, we stress the particular aspects of the long horizon
MDVSP through an analysis of results provided by solving the LP relaxation of a set of test problems by
the standard column generation method. Next, we propose a network reduction approach that provides, in
addition to a smaller set of arcs, a lower bound on the (integer) solution of the MDVSP, a primal integer
solution which allows to compute an upper bound, and a dual feasible solution. The dual solution is used
as the initial stability center for the stabilized column generation. Finally, we present the main ideas of
the stabilized column generation with some experimental results that show the extent of the stabilizing
and accelerating effects of the proposed approach.

2. The long horizon MDVSP

2.1. Definition

The MDVSP is an important combinatorial optimization problem that arises in the area of time con-
strained routing and scheduling. In this problem, we are given a set of n trips, T1, T2, . . . , Tn, each trip
Tj (j =1, . . . , n) starting at time sj and ending at time ej , along with a set of m depots, D1, D2, . . . , Dm,
in the kth of which vk vehicles are stationed (k = 1, . . . , m). Let tij denote the travel time between the
ending point of trip Ti and the starting point of trip Tj . An ordered pair of trips (Ti, Tj ) is said to be
compatible if it satisfies the relation ei + tij �sj . The MDVSP can then be described by the multigraph
G = (V , A) where the vertex set V is the union of the set of trips and the set of depots, while the arc
set A contains m copies of each compatible arc and all the arcs of the form (Dk, Ti) and (Ti, Dk) for
k = 1, . . . , m and i = 1, . . . , n. Let cij be the cost incurred if a vehicle performs the trip Ti immediately
before the trip Tj . Similarly, let cn+k,j (resp. cj,n+k) denote the cost incurred if Tj is the first (resp. the
last) trip undertaken by a vehicle housed at depot Dk; these costs include a fixed cost large enough to
optimize the number of required vehicles. If R is the arc set denoting a route originating at the depot Dk ,
the cost of R is cn+k,f + ∑

(Ti ,Tj )∈Rci,j + c�,n+k, where Tf and T� are, respectively, the first and the
last trips in R. Therefore, the problem consists of finding a feasible assignment of minimum cost, where
the cost of an assignment is the sum of the costs of the routes in the assignment, the number of vehicles
leaving from the depot Dk is at most vk (for all k), each trip is assigned to a single vehicle, and each
vehicle used in the solution starts and ends its route at the same depot.

The horizon of a MDVSP is the maximal period of time allowed to accomplish a route. Let us assume
that the basic horizon is one day. The long horizon MDVSP is addressed when the horizon is extended
to multiple days, while keeping the number of trips and depots of the one-day MDVSP unchanged.
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2.2. Formulation

The MDVSP has been investigated for more than two decades (see [2]) and we refer the reader to
Desrosiers et al. [3] for a survey on the MDVSP and related scheduling problems. Bertossi et al. [4]
have proved that the MDVSP is NP-hard for m�2. Exact algorithms for solving the MDVSP have been
proposed by Carpaneto et al. [5], Ribeiro and Soumis [6], Bianco et al. [7], Forbes et al. [8], Löbel [9],
and more recently Hadjar et al. [10]. Algorithms that use a column generation scheme to solve the linear
relaxation of the MDVSP are based on set partitioning formulations (see [6,10]).

Let � be the set of feasible routes. With cp denoting the cost of a route p (p ∈ �) define the binary
constants aip and bkp such as: aip = 1 if and only if route p covers trip Ti and bkp = 1 if and only if route
p starts and ends at depot Dk . Using binary variables �p to indicate whether a route p (p ∈ �) is to be
used to cover a set of trips, the MDVSP is an integer linear program that can be formulated as follows:

(MDVSP) ZM = min
∑
p∈�

cp�p, (1)

∑
p∈�

aip�p = 1, i = 1, 2, . . . , n (2)

∑
p∈�

bkp�p �vk, k = 1, 2, . . . , m (3)

�p ∈ {0, 1}, ∀p ∈ � (4)

where (1) is the objective, that is minimizing the total cost of the selected routes, (2) is the set of constraints
that require each trip is covered exactly once, (3) denotes the availability of vehicles in every depot k, and
(4) are the binary conditions. The LP relaxation of the above formulation is called the master problem
(MP). The corresponding dual problem, denoted MD, is formulated as follows:

(MD) max
n∑

i=1

�i −
m∑

k=1

vk�k , (5)

n∑
i=1

aip�i −
m∑

k=1

bkp�k �cp ∀p ∈ �, (6)

�k �0 k = 1, 2, . . . , m. (7)

As the number of routes in � is huge, the corresponding variables or columns in MP are generated
dynamically in practice. The columns are generated by solving a classical shortest path problem on the
acyclic compatibility network G = (V , A) to compute negative reduced cost variables, if any. The dual
multipliers are computed by solving a restricted MP that considers only a small subset �′ of columns at
once (�′ ⊂ �).

2.3. Results of the standard column generation approach

The standard column generation approach is implemented in the software system GENCOL 4.3 (see
[11]) to solve the LP relaxation of the long horizon MDVSP. The maximum size of the restricted MP is
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Table 1
Average results of the standard column generation

Horizon Instances Arcs CPU (s) v∗ n/v∗

1 day 10 277602.7 1770 90.6 5.52
2 days 10 323463.0 9730 49.3 10.14
3 days 5 340108.8 23430 35.8 13.97
4 days 5 348769.2 36653 29.2 17.12
5 days 5 353535.6 51583 26.6 18.80
6 days 2 359674.5 62359 23.5 21.28
7 days 2 362566.5 121346 20.0 25.00

set to 5000 columns. At every column generation iteration, 50 to 100 columns are selected and added to
the restricted MP. Whenever there are more than 5000 columns, the worst ones are removed on the basis
of their reduced costs. The minimum number of columns kept at every iteration is 2500. The restricted
MP is solved with the primal simplex method.

Test problems are randomly generated to simulate real-life public transport system. The basic generator
was designed by Carpaneto et al. [5] and used by other researchers (see [6–8]). The generator is modified
in such a way that the horizon could be extended to several days. Since the study focuses only on the
degeneracy aspect of the MDVSP, we set the number of trips to n = 500 and the number of depots to
m = 3 whatever is the horizon. With horizons of 1 to 7 days, we generated ten MDVSP instances of
type A (see [5]) for each horizon.

Tests with the standard column generation approach were carried out on an Enterprise 1000 Ultra
workstation (400 MHz). The average results are summarized in Table 1, where Arcs denotes the number
of arcs in the network, CPU the computing time (in seconds) and v∗ the optimal number of vehicles
required. The last column contains the column density (n/v∗), that is, the average number of trips covered
per route.

Given the computing time trend, the number of instances was limited to five for problems of 3–7-day
horizons. The instances of 1–5-day horizon were entirely solved to LP-optimality and only two instances
of the 6 and 7-day horizons could be solved within the allocated cpu time (36 h).

Table 1 shows that the average number of arcs increases as the horizon extends. Such a trend is expected
since the trips are more spread and, as a result, more pairs of trips are compatible. However, the slope
seems flattening over a 3-day horizon with a number of arcs neighbouring m × n2/2. Meanwhile, the
average cpu time per horizon is growing exponentially from horizon 1–7 days. As revealed by the density
of service (see Fig. 1), such a behavior was expected because of the enlargement that affects the routes.
The longer is the horizon, the larger is the number of trips per route, leading to less required vehicles v∗,
as given in Table 1. Hence, the problem is more degenerate. Such a situation is easily understood through
the particular case of a single depot (m = 1) which is a pure network flow problem. The MP is basically
composed of n + 1 rows, meaning that the basis of the simplex tableau is necessarily a (n + 1) × (n + 1)

matrix. Since only v∗ columns are needed to cover all trips, there are n+1−v∗ basic variables �p (p ∈ �)
with zero values, i.e., the problem is degenerate. Reducing v∗ increases n + 1 − v∗ and, consequently,
causes more degeneracy.

Some problems in the literature show the same behavior, such as the urban bus driver scheduling
problem where the number of trip segments per duty (working day) exceeds more often 30. Other examples



A. Oukil et al. / Computers & Operations Research 34 (2007) 817–834 821

0

10

20

30

40

5 15 25

Column Density (n/v*)

C
P

U
 T

im
e 

(h
rs

.)

Fig. 1. Impact of column density on standard column generation CPU.

occur in vehicle routing problems for which the scheduling horizon is a week or more, e.g., the aircraft
routing problem.

3. Preprocessing

Although the number of arcs in G is O(mn2), any optimal integer solution of the MDVSP contains
only n + v∗ arcs. Therefore, our preprocessing aims to achieve as much reduction as possible of G. We
first solve a relaxation of the MDVSP, that is a single depot vehicle scheduling problem (SDVSP), to
compute a lower bound and the optimal number of vehicles v∗. The primal solution of the SDVSP is also
used to derive an integer solution to the MDVSP, hence an upper bound on its integer optimal value. The
dual solution of the SDVSP is used later to compute an initial stability center for a stabilized column
generation algorithm.

3.1. Network reduction

Consider the following relaxation of the MDVSP. We aggregate all depots Dk(k = 1, . . . , m) within a
single virtual depot D. With 0 denoting the index of depot D, we compute the costs of the outer arcs (0, Tj )

and the inner arcs (Tj , 0) as c0,j =mink=1,...,mcn+k,j and cj,0 =mink=1,...,mcj,n+k for j =1, . . . , n. With
�+(i) (resp. �−(i)) defining the set of successors (resp. predecessors) of i (i = 1, . . . , n), the resulting
SDVSP, a pure network problem, is formulated as

(SDVSP) ZS = min
∑

(i,j)∈A

cij xij (8)



822 A. Oukil et al. / Computers & Operations Research 34 (2007) 817–834

∑
j∈�+(i)

xij = 1, i = 1, 2, . . . , n (9)

∑
j∈�−(i)

xji −
∑

j∈�+(i)

xij = 0, i = 0, 1, . . . , n (10)

n∑
j=1

x0j �
m∑

k=1

vk (11)

xij �0, ∀(i, j) ∈ A. (12)

In the above formulation, (8) represents the objective function, (9) requires each trip to be covered exactly
once, (10) is the set of flow conservation constraints, (11) denotes the availability of the total number of
vehicles in depot D, and (12) are the non-negativity conditions.

The objective value ZS of the SDVSP is a lower bound on the optimal value ZM of the MDVSP. We
have set the fixed costs of the depots inner and outer arcs high enough (a total of 10 000 in our experiments)
to allow the minimum cost flow problem determine the optimal number of vehicles v∗ required for the
whole journey (see [5]).

Given that the primal optimal solution of the SDVSP provides v∗ paths, we solve a transportation
problem of size v∗ × m to assign each path once to the appropriate depot. The assignment cost of a path
R to a depot Dk is given by cn+k,f + ∑

(Ti ,Tj )∈Rci,j + c�,n+k (k = 1, 2, . . . , m) where Tf and T� are,
respectively, the first and the last trips in the path. Since the transportation problem optimal objective ZT

provides an upper bound on the integer optimal value of the MDVSP, it can be stated that ZS �ZM �ZT .
Let c̄ij denote the reduced cost of the arc (i, j) with respect to the SDVSP solution. As in Hadjar et al.
[10], any binary variable xij , (i, j) ∈ A, which reduced cost is larger than the optimality gap can be
removed from the formulation, i.e., if c̄ij > ZT − ZS . Let A1 be the reduced set of arcs.

The network reduction algorithm is applied on 7 pairs of test problems, two problems from each
horizon, identified respectively as d.1 and d.2, where d is the number of days in the horizon. As shown
in Table 2, the network reduction |A1|/|A| is more relevant for problems of the 3-day horizon and over,
with a ratio below 25% for one instance.

To assess the impact of such an arc reduction level on the standard column generation procedure, we
solved the LP relaxation of the 14 reduced problems. In Table 2, CPU ini and CPU red refer to the
cpu time before and after arc reduction, respectively, while CPU ratio is the ratio given in percent. Avg
denotes the average value on each column of the table. Even if there is a slight improvement of some
cpu times, most problems remain very difficult. If the upper bound’s value is decreased, more network
reduction could be achieved. The optimality gap ZT −ZS looks not so large but there is still a possibility
to improve the upper bound ZT .

3.2. Extension of the network reduction approach

A set partitioning problem, formulated as in (1)–(4), can be solved to provide an upper bound ZP such
as ZP �ZT . With the v∗ routes, solution of the SDVSP, the artificial depot is replaced by each of the
m real depots. Hence the initial set �′ contains m × v∗ columns. To add new feasible columns into �′,
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Table 2
Results of the network reduction

Pb. ZS ZT − ZS |A| |A1|/|A| CPU ini CPU red CPU ratio
(%) (s) (s) (%)

1.1 961026 6504 281454 65.5 2498 2078 83.2
1.2 1081809 12278 279606 99.5 877 925 105.5
2.1 619126 5950 324042 84.1 11172 10736 96.1
2.2 615529 5298 326934 87.3 7575 7340 96.9
3.1 474598 1350 344187 39.5 22772 19083 83.8
3.2 580704 4820 343107 58.1 26402 22706 86.0
4.1 436274 2827 351708 39.1 48144 46315 96.2
4.2 464337 1417 352173 40.4 27829 24629 88.5
5.1 458439 1555 356997 30.4 55931 54980 98.3
5.2 472332 2450 355908 28.0 36782 33950 92.3
6.1 401864 1272 360069 23.3 77855 65787 84.5
6.2 454116 3133 359280 29.6 46863 39927 85.2
7.1 440135 1381 362481 33.4 117030 97720 83.5
7.2 441142 1116 362652 35.4 125661 110833 88.2

Avg 564387.9 3667.9 340042.7 49.5 43385.1 38357.8 90.6

the SDVSP (8)–(12) is solved on the reduced network G1 =(V , A1). The v∗
1 columns that are not identical

to the v∗ previous ones (v∗
1 �v∗), are added to solve a small MDVSP with (v∗ + v∗

1) × m columns. Thus
an upper bound ZP is obtained, and more network reduction is possible. Such a process can be run as
long as new columns can be found to enlarge �′. Alternatively the stopping criterion could be based on
the number of reduction iterations (phases), on a running time limit for the reduction process, or on a
level of acceptable improvement of the upper bound ZP . We opted for the first criterion in the present
application.

The extended network reduction approach is tested with the above set of 14 instances and we obtained
the results of Table 3, where Ar is the resulting reduced set of arcs after r reduction Phases. The network
reduction |Ar |/|A| is significant, mainly for 3-day horizon problems and over, with figures of less than
4% of the network initial arc number, as the case for the 7-day horizon instances.

The solving process with the standard column generation approach is run on the LP relaxation of the
MDVSP using the deeper reduced network. In Table 3, CPU prep denotes the preprocessing time (in
seconds) while CPU ratio is computed as (CPU red + CPU prep)/CPU ini. Once more, no significant
improvement of the cpu time is achieved even if the average cpu time required by the standard column
generation approach is about 8 h (27 470 s) rather than 12 h (43 385 s). Hence, a deeper network reduction
alone remains without any substantial influence on the cpu time. Primal degeneracy, among other factors,
is surely responsible for such inconvenience beside instability in the behavior of the values of the dual
variables. The next section discusses a methodology to deal with such an issue through a stabilized column
generation approach.

4. A stabilized column generation approach

There are two key concepts to define a stabilization approach for the solution of the primal-dual pair of
linear problems MP and MD: the stability center and the penalty function. The stability center is a dual
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Table 3
Results of the multiple phase reduction process

Pb. ZP − ZS |Ar |/|A| Phases CPU ini CPU prep CPU red CPU ratio
(%) r (s) (s) (%)

1.1 5716 65.2 2 2498 5 2005 80.8
1.2 9538 73.7 11 877 124 856 113.1
2.1 2782 59.7 39 11172 1108 11314 111.4
2.2 2026 53.7 10 7575 149 7517 101.3
3.1 272 9.8 91 22772 4423 12853 75.9
3.2 2828 57.8 7 26402 52 28320 107.5
4.1 684 14.6 41 48144 582 40616 85.6
4.2 493 17.0 61 27829 2001 19270 76.5
5.1 1240 27.5 5 55931 15 50270 90.0
5.2 1327 24.8 11 36782 162 29949 81.9
6.1 290 6.8 60 77855 1937 54069 72.1
6.2 907 16.8 25 46863 300 41982 90.2
7.1 163 3.6 60 117030 1835 43638 38.9
7.2 99 2.7 60 125661 6651 41926 38.7

Avg 2026.1 31.0 34.5 43385.1 1381.7 27470.4 83.1

vector that is adequately chosen while the penalty function is the term that is added to the dual objective
to penalize any move far from this center. Such penalization aims to control and eventually guide the
progress of the dual variables during column generation solution process in a way that better quality
columns are generated. The stability center is updated with the current dual point if the dual Lagrangian
lower bound is sufficiently better. An extensive theoretical work is carried out on the ground of these
ideas since the seventies and several stabilized algorithms are developed (see [12]).

The proposed approach is a proximal type algorithm (see [13]) that combines penalty and trust region
concepts. A linear penalty function is used to constrain the dual variables to a box that contains the current
dual stability center before the stabilized problems are solved by column generation. The trust region
concept is introduced in literature through the Boxstep method (see [14,15]). Schramm and Zowe [16]
show that, by adding some features of the trust region philosophy to the bundle concept, a more stable
behavior of the cutting plane algorithm is achieved for convex and nonconvex functions. Neame [17]
proposes a unified framework for stabilization approaches for unconstrained maximization of piecewise
linear concave functions.Astabilization scheme which remains within the linear programming framework
is defined by du Merle et al. [18]. The authors use a 3-piecewise linear penalty function to stabilize
the column generation procedure. In the following paragraphs, we describe an approach presented by
Ben Amor and Desrosiers [1] that is based on a 5-piecewise linear penalty function.

4.1. Formulation of the stabilized primal and dual problems

Given a linear (primal) program P and its dual D, the approach consists in solving P by using a
series of linear programming approximations denoted by SP� (� = 1, 2, ...) also called stabilized pri-
mal problems. The index � refers to the current major iteration which corresponds to the application of
the column generation approach to solving the current stabilized problem. Let SD� be the dual version
of SP�. Every major iteration � is followed with an update of the penalty function coefficients which
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Fig. 2. 5-piecewise linear penalty function.

are identified as stabilization parameters. Convenient updating strategies are used to guarantee the con-
vergence of the series of stabilized pairs of problems (SP�, SD�) towards the optimum of the primal
and dual problems P and D. Further details on the theoretical aspects of the approach can be found in
Ben Amor et al. [19].

At any major iteration �, the proposed proximal point algorithm uses a non penalized trust region that
contains the current stability center �̂� and a concave penalty function g�. In order to keep solving linear
programs, we use piecewise linear penalty functions. As in Ben Amor and Desrosiers [1], Fig. 2 illustrates
an approximation of a quadratic penalty function where no penalty is applied in the trust region defined
by [�−, �+]. Function g�

i (�) consists of the component �̂�
i of the stability center �̂� with the stabilization

parameters ��−���− < ��+���+ and ��−, ε�−, ε�+, ��+ > 0.

In our application, we consider the pair of primal and dual problems MP and MD. We stabilize only the
trip partitioning constraints, that is set (2) in the formulation (1)–(4), since the constraints on the vehicle
availability are not binding in our test problems and are in a small number (m = 3). According to the
penalty function illustrated in Fig. 2, at any major iteration �, the stabilized dual problem, identified by
SMD�, can be formulated as follows:

(SMD�) max
n∑

i=1

(
��
i − ��−,iv

−
i − ε�−,iu

−
i − ε�+,iu

+
i − ��+,iv

+
i

)
−

m∑
k=1

vk�k

n∑
i=1

aip��
i −

m∑
k=1

bkp�k �cp, ∀p ∈ �

��−,i − u−
i ���

i ���+,i + u+
i , i = 1, . . . , n

��−,i − v−
i ���

i ���+,i + v+
i , i = 1, . . . , n

u−, v−, �, u+, v+�0.
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Table 4
Quality of dual estimates

Pb. ZS (ZLP − ZS)/ZLP v∗ (ZLP − ZS)/(ZLP − 10000v∗)
(%) (%)

1.1 961026 0.0625 87 0.6559
1.2 1081809 0.1792 99 2.0720
2.1 619126 0.037 50 0.1922
2.2 615529 0.0316 50 0.1679
3.1 474598 0.0448 34 0.1576
3.2 580704 0.0432 40 0.1386
4.1 436274 0.0454 28 0.1265
4.2 464337 0.0135 30 0.0381
5.1 458439 0.0322 25 0.0707
5.2 472332 0.0229 29 0.0592
6.1 401864 0.0443 22 0.0978
6.2 454116 0.0154 25 0.0343
7.1 440135 0.0034 20 0.0062
7.2 441142 0.0063 20 0.0116

The corresponding stabilized primal problem, identified by SMP�, can be formulated as follows:

(SMP�) min
∑
p∈�

cp�p +
n∑

i=1

(
−��−,iz

−
i − ��−,iy

−
i + ��+,iy

+
i + ��+,iz

+
i

)
∑
p∈�

aip�p − z−
i − y−

i + y+
i + z+

i = 1, i = 1, . . . , n

∑
p∈�

bkp�p �vk, k = 1, . . . , m

��0, 0�z−��−, 0�y−�ε−, 0�y+�ε+, 0�z+��+.

In the above primal problem, y− and y+ are vectors of surplus and slack variables, respectively, with
upper bound vectors ε− and ε+. The cost coefficient of y+ in the objective function is the upper bound
vector �+ of the trust region while the coefficient of y− is the negative of the lower bound vector, i.e.,
−�−. Indeed, the bounded surplus and slack variables may be seen as a perturbation of the covering
constraints of MP. This is a well known strategy to face degeneracy of linear programs. A further step in
the proposed stabilization approach consists in plugging the trust region bounds as cost coefficients for
these surplus and slack variables. In a similar manner, z− and z+ are bounded surplus and slack variables
for which the cost coefficients are based on the outer interval [�−, �+].
4.2. Initialization of the stability center

As displayed in Table 4, the gap between the solution of the LP relaxation ZLP and the lower bound
ZS takes values between 0.0034% and 0.1792%. These figures suggest that ZLP gets closer to ZS as the
MDVSPs horizon extends. The same trend is noticed with the last column’s gaps, computed on the basis
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of the adjusted values of ZLP which exclude the large fixed cost required by using a vehicle. Therefore,
the SDVSPs dual solution could be considered as a good estimate for MD and, subsequently, a good
initialization of the stability center. Referring to the SDVSP formulation (8)–(12), let 	̂i and 
̂i be the
optimal dual variables associated with constraints (9) and (10), respectively, for i = 1, . . . , n. Hence, the
initial dual estimation of the MD multipliers is computed as �̂Si = 	̂i + 
̂i , i = 1, . . . , n.

Given that the SDVSPs dual solution is an auxilliary result of the network reduction algorithm, it is
important to recall that there is a different dual solution to every reduction level. The stabilized approach
is implemented with the first, the second and the last SDVSPs dual solutions identified as �̂S , �̂P 2 and �̂Pr

respectively. Since any convex combination of these solutions remains feasible to MD, we also considered
the average solutions �̂A = (�̂S + �̂P 2)/2, �̂B = (�̂S + �̂Pr)/2 and �̂C = (�̂S + �̂P 2 + �̂Pr)/3.

4.3. Initialization of the stabilization parameters

The choice of the initial values of the stabilization parameters is a relevant step towards more efficiency
of the stabilized algorithm. As we assume that all components of the vectors of parameters take the same
initial value, �+, �−, �+, �−, �+, �−, ε+ and ε− denote, in this section, the vectors’ components rather
than the vector itself, unless otherwise stated. The same assumption applies to �̂.

Trust region: The trust region is a defined set around the stability center where no penalty is applied,
based on the values of �+ and �−. As the interval is often centered on �̂, �+ and �− could be chosen such
that � = �+ − �̂ = �̂ − �−. Practically, the only way to choose a good interval is through a series of trials
on relatively easy problems, in addition to simple computing shrewdnesses involving the number of trips
as well as the gaps between the available optima. Several values have been tested and, in spite of the
problems disparity, all the stabilized processes have been efficient with small values of interval width.
Since the gap between the SDVSPs optimum and the MDVSPs LP relaxation optimum is small for the
most difficult problems, we set the half-interval width to � = 0.001.

Outer region: The set [�−, �−[∪]�+, �+] defines the outer region. It refers to the left and right inter-
vals outside the trust region, where the vectors of penalties ε− and ε+ are applied to prevent useless
displacements far away from the current dual solution. These intervals are defined with �− and �+ such
that � = �+ − �+ = �−�− = 0.1.

Penalties: High penalties restrict the displacements of dual variables outside the trust region both in
frequency and in magnitude, while low penalties allow high magnitude displacements. Using very small
ε− and ε+ barely penalizes values outside the trust region interval; hence, it may be seen as enlarging the
trust interval width. Moreover, having ε+ + �+�1 (the right-hand side of the covering constraints of the
MP) provides an initial basic feasible solution and prevents the use of artificial variables in the beginning
of the solution process. Given that the penalties can also be interpreted as perturbations of the covering
constraints, we set ε− = −ε+ = 0.1 (a small value) and �− = −�+ = 1.0.

4.4. Updating strategies

To update the stabilization parameters, several strategies can be experimented. The next stability center
�̂�+1 is always the optimal solution �� of SD�. Hence, the updating strategy focuses on the stabilization
parameters. We experiment the hybrid strategy described in Ben Amor and Desrosiers [1] and a dynamic
strategy. The hybrid strategy keeps the (inner) trust region interval width fixed to the initial value 2� and
the slope parameters �− and �+ fixed to 1.0. At every major iteration, slope parameters ε− and ε+ are
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Table 5
Average results of the stabilized column generation

Updating Simplex Stabilized column generation cpu time (s)
strategy MP solution

�̂S �̂P 2 �̂A �̂Pr �̂B �̂C

Hybrid Primal 1635.9 1597.5 1333.4 556.9 351.8 618.1
Dual 1393.9 1497.9 1277.6 808.6 375.4 442.4

Dynamic Primal 627.8 1057.5 415.1 554.5 348.0 620.8
Dual 428.4 611.9 387.0 808.5 371.9 441.5

reduced by a factor of 10. The outer region interval widths are updated whenever the next stability center
falls on the boundary or outside [��−, ��+]. If any component ��

i ���+,i (respectively ��
i ���−,i), the right

(respectively the left) interval width of the outer region is enlarged by a factor of 10 for all components.
The dynamic strategy modifies some parameters depending on the position of the current dual value

with respect to the trust region and the outer intervals. The trust region and the penalties are either reduced
or enlarged. Let ��+,i = ��+,i − �̂�

i and ��−,i = �̂�
i − ��−,i at major iteration �. This strategy acts as follows:

• If the ith component ��
i of the current dual solution lies inside the trust region, the box

[
��−,i , ��+,i

]
width is reduced with a higher penality ε in the outer intervals:

if ��
i ∈]��−,i , ��+,i[then

{
��+1

+,i = ��+,i/2 and ��+1
−,i = ��−,i/2,

ε�+1
+,i = ε�+,i × 2 and ε�+1

−,i = ε�−,i × 2.

• If ��
i is at the border or outside the trust region, the latter is enlarged while the penalty is reduced:

if ��
i ���+,i , then ��+1

+,i = ��+,i × 2 and ε�+1
+,i = ε�+,i/2,

if ��
i ���−,i , then ��+1

−,i = ��−,i × 2 and ε�+1
−,i = ε�−,i/2.

With both strategies, the updated widths of �±,i and �±,i are set to a maximum of 1.0 and 10.0 and a
minimum of 0.1 and 1.0 respectively. Both values of ε±,i are set to a maximum of 1.0 and a minimum of
10−4. �±,i are kept fixed to 1.0.

5. Computational results

The stabilized algorithm is tested with the most reduced versions of the 14 MDVSPs’ networks seen
in the previous sections. Recall that we solve the LP relaxation of the MDVSP. Two techniques are tested
to solve the restricted MP: the primal simplex and the dual simplex methods. As initial stability centers,
we use �̂S , �̂P 2, �̂Pr , �̂A, �̂B and �̂C with both the hybrid and the dynamic updating strategies. All tests
are carried out on an Enterprise 1000 Ultra workstation (400 MHz).

Table 5 presents the average values on the cpu times required to solve the 14 instances, while
Tables 6–9 report detailed results on the various strategies. Table 10 shows broader results for the
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Table 6
Results with the hybrid strategy and the primal simplex

Pb. Std col. gen. Stabilized column generation cpu time (s) Best
cpu time (s) 

�̂S �̂P 2 �̂A �̂Pr �̂B �̂C

1.1 2013 150 224 220 635 345 403 13
1.2 868 418 199 192 1220 1307 966 5
2.1 11340 528 904 270 841 692 692 42
2.2 7522 835 856 787 779 538 486 15
3.1 12866 449 1682 1916 705 217 4040 59
3.2 28329 1339 243 1338 555 413 304 117
4.1 40634 1120 324 1025 507 176 72 564
4.2 19285 2946 2949 2786 241 173 142 136
5.1 50338 2500 2001 2654 494 200 109 462
5.2 29977 1803 5303 5157 399 170 1091 176
6.1 54187 777 696 214 493 225 117 463
6.2 41989 1638 1761 1569 330 263 124 339
7.1 43652 5794 4160 390 80 77 35 1247
7.2 41971 2605 1063 150 517 129 72 583

Table 7
Results with the dynamic strategy and the primal simplex

Pb. Std col. gen. Stabilized column generation cpu time (s) Best
cpu time (s) 

�̂S �̂P 2 �̂A �̂Pr �̂B �̂C

1.1 2013 192 158 147 608 348 404 14
1.2 868 422 471 477 1223 1267 969 2
2.1 11340 587 373 365 848 694 690 31
2.2 7522 239 299 288 773 542 488 31
3.1 12866 671 2033 1471 716 212 4065 61
3.2 28329 317 307 199 559 396 308 142
4.1 40634 489 527 239 484 168 72 564
4.2 19285 232 257 181 238 182 144 134
5.1 50338 346 334 170 499 198 110 458
5.2 29977 437 1944 1310 400 170 1097 176
6.1 54187 923 1740 440 498 225 115 471
6.2 41989 239 185 187 333 263 123 341
7.1 43652 418 5159 180 82 77 34 1284
7.2 41971 3277 1018 158 502 130 72 583

configuration using the dynamic strategy and the dual simplex with �̂B as initial stability center.
Finally, Figs. 3 and 4 display the convergence behavior of both the standard and the stabilized column
generation approaches.
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Table 8
Results with the hybrid strategy and the dual simplex

Pb. Std col. gen. Stabilized column generation cpu time (s) Best
cpu time (s) 

�̂S �̂P 2 �̂A �̂Pr �̂B �̂C

1.1 2013 148 233 241 553 367 465 14
1.2 868 396 218 198 1371 1165 1016 4
2.1 11340 518 1135 261 843 696 751 43
2.2 7522 1050 1045 1024 868 564 478 16
3.1 12866 516 1313 1142 639 340 854 38
3.2 28329 1967 292 1858 695 400 353 97
4.1 40634 1928 384 1706 595 154 84 484
4.2 19285 2152 1742 1733 396 288 209 92
5.1 50338 2839 4383 2650 775 230 163 309
5.2 29977 2997 2961 4756 535 209 1340 143
6.1 54187 863 833 247 1010 322 181 299
6.2 41989 1643 1764 1571 572 220 152 276
7.1 43652 1912 3850 377 1308 112 41 1065
7.2 41971 585 817 122 1161 189 107 392

Table 9
Results with the dynamic strategy and the dual simplex

Pb. Std col. gen. Stabilized column generation cpu time (s) Best
cpu time (s) 

�̂S �̂P 2 �̂A �̂Pr �̂B �̂C

1.1 2013 179 148 141 545 361 460 14
1.2 868 483 351 389 1376 1157 1008 2
2.1 11340 554 422 294 846 692 742 39
2.2 7522 285 327 287 867 559 475 26
3.1 12866 992 1630 1579 638 330 836 39
3.2 28329 299 317 182 669 403 372 156
4.1 40634 313 506 216 589 159 87 467
4.2 19285 244 264 220 391 274 218 88
5.1 50338 397 294 172 766 223 169 298
5.2 29977 360 1293 1232 536 209 1334 143
6.1 54187 835 825 264 1022 321 177 306
6.2 41989 248 207 168 577 216 153 274
7.1 43652 262 1222 155 1322 112 42 1039
7.2 41971 547 761 119 1175 191 108 389

5.1. The accelerating effect of the stabilized algorithm

All results show that the stabilized column generation approach clearly outperforms the standard
version. In fact, it is seen in Section 3.2 that the average cpu time of the standard version is approximately
8 h (27 470 s). Meanwhile, in the worst case, the stabilization speeds up the solving process 17 times,
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Table 10
Detailed results with the dynamic strategy and the dual simplex

Pb. MP cpu CG cpu Total cpu Gen Col Col Gen Major
(s) (s) (s) Nbr Itr Nbr Itr Nbr

Standard column generation approach
1.1 1735 270 2005 15286 410 1
1.2 677 179 856 13954 238 1
2.1 10668 647 11314 25304 902 1
2.2 7039 479 7517 28042 777 1
3.1 12813 40 12853 33498 1127 1
3.2 27227 1092 28320 37043 1497 1
4.1 40470 146 40616 58522 2423 1
4.2 19175 96 19270 38673 1419 1
5.1 49797 473 50270 59061 2569 1
5.2 29700 248 29949 53459 2108 1
6.1 53982 87 54069 66680 2939 1
6.2 41801 182 41982 65416 2527 1
7.1 43584 55 43638 68284 3174 1
7.2 41890 36 41926 60471 3234 1

Standard column generation approach
1.1 55 298 353 2169 503 225
1.2 98 1035 1133 2893 1492 911
2.1 84 594 678 2912 917 451
2.2 145 404 549 3862 717 247
3.1 302 22 324 8291 1000 208
3.2 109 289 398 4348 445 80
4.1 135 20 155 4461 563 108
4.2 230 38 268 5372 807 249
5.1 167 53 220 4278 361 56
5.2 142 61 203 4414 659 155
6.1 309 10 319 6757 608 48
6.2 169 40 209 4675 879 267
7.1 109 2 111 3517 260 12
7.2 187 2 189 3481 305 38

with a corresponding figure of only 27 min (1636 s) average cpu time, as shown in Table 5. It can also be
observed from the same table that �̂B performs, in average, better than the other stability centers. In this
case, the speed-up factor is approximately 75 times faster. The values in the last three columns assert that
both updating strategies contribute equally to the solving process with �̂Pr , �̂B or �̂C as stability center
depending on the technique used to solve the restricted MP. This is to stress that the high quality of the
dual estimates plays an important role in the impressive factors we obtained.

The analysis of the effect of the initial dual solution on the quality of the stabilized process leaves no
doubt that the convex combinations �̂A, �̂B and �̂C are very good approximations of the optimal solution.
Nonetheless, on the basis of the results in Tables 6–9, the best cpu times are more often achieved with
�̂C , which could partly be explained by the fact that �̂C is a convex combination of three rather than
two SDVSP dual solutions. Let the accelerating factor  denotes the ratio between the total cpu time of
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Fig. 3. Tail effect of the standard column generation.

the standard column generation over the total cpu time of the stabilized column generation, both on the
most reduced networks. In Tables 6–9, the Best is the value computed with the cpu times provided by
the best initial stability center. The values in bold are the best corresponding cpu times. Whatever is the
updating strategy or the restricted MP solving technique, the stabilized column generation solves all test
problems within less than 100 min cpu time (5794 s). The accelerating factor  reaches its highest levels
with problems of the 3-day horizon and over, i.e., the ones that the standard approach could barely solve.
While  does not exceed 42 with the problems 1.1 – 2.2, its value with problems of the 7-day horizon
shows that stabilized column generation is 1280 times faster than the standard version. The stabilized
approach manages to solve in 35 s the problem 7.1 that requires more than 32 h by the standard version.

For a better illustration of the outcome of the stabilized column generation approach, detailed results
are presented in Table 10 for the configuration using the dynamic strategy and the dual simplex with
�̂B as the initial stability center. The columns contain the following information, given in that order: the
time spent solving the restricted MP (in seconds), the time spent generating columns (in seconds), the
total computing time (in seconds), the number of columns generated, the number of column generation
iterations, and the number of major iterations required to the whole solving process of the LP relaxation
of the long horizon MDVSP. The first observation is that there is a unique major iteration to solve MP by
the standard column generation approach. On the other hand, the number of major iterations required by
the stabilized approach varies between 12 and 911. The average number of column generation iterations
per major iteration (or stabilized problems solved) is clearly very small (from 1.6 to 21.7 iterations). The
most relevant impact of the proposed method appears on the MP cpu times (from 7 to 400 times faster)
which influence the total cpu times. Indeed the dual estimates that we provide to the MP are good enough
to restrict the dual space.

Finally, Figs. 3 and 4 illustrate the behavior of the standard and the proposed stabilized column gen-
eration approaches, respectively, on the instance 7.1. Fig. 3 shows a typical tail effect of the standard
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Fig. 4. Convergence behavior of the stabilized column generation.

column generation with more than 3000 iterations. In Fig. 4, the objective function value is already close
to the optimum even with the first approximation of MP by a stabilized problem. This value is slightly
below the optimum and 11 additional major iterations are required to reach optimality over a total of 260
column generation iterations only.

5.2. Concluding remarks

Through this paper, a cyclic logic is easily derived; the longer is the horizon, the more degenerate is
the linear relaxation of the MDVSP tackled with the standard column generation approach but, at the
same time, the closer it is to its SDVSP approximation. The closer is the SDVSP to its corresponding
MDVSP, the better is its dual information. With a good dual information, degeneracy is overcome thanks
to the stabilized column generation approach. The results we presented illustrate the great potential of
such an approach in solving large scale problems. Prior to the application of the stabilizing approach, we
investigated a network reducing approach that allows not only to compute an initial stability center but
also to find a good approximation of the long horizon MDVSP integer solution. Even if such a contribution
is specific to the MDVSP, the ideas can be extended to other combinatorial problems such as the bus
driver scheduling and the airline crew pairing problems.
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