
Branch & Memorize Exact Algorithms for Sequencing problems:
Efficient embedding of Memorization into Search Trees

Lei Shanga, Vincent T’Kindta,∗, Federico Della Croceb,c

aUniversity of Tours,
LIFAT (EA 6300), ERL CNRS ROOT 7002, Tours, France

bDIGEP - Politecnico di Torino, Torino, Italy
cCNR, IEIIT, Torino, Italy

Abstract

Memorization, as an algorithm design technique, enables to speed up algorithms at the price of
increased space usage. In this work, we focus on search tree algorithms applied to sequencing
problems. In these algorithms, on lower branching levels, isomorphic sub-problems may appear
exponentially many times and the use of memorization is twofold: on the one hand it avoids
repetitive solutions, as they correspond to identical sub-problems; on the other hand, it allows to
check for dominance conditions among permutations of the same subset of elements. The idea
of memorization appeared for a long time, however, to the best of the authors’ knowledge, it
was only seldom applied in the number of branching algorithms proposed in the literature. In
this paper, we propose a unifying framework for implementing memorization in exact branching
algorithms dedicated to sequencing problems. Our proposal leads to the paradigm of Branch &

Memorize and its implementation to three classical single machine problems is validated by an
extensive computational experimentation that shows that the mentioned paradigm consistently
improves existing exact branching algorithms. These results emphasize the idea of more system-
atically embedding memorization in branching algorithms.

Keywords: scheduling, exact algorithms, memorization, branch and memorize, sequencing

1. Introduction

Memorization is a broad idea which has existed for a long time and can be casually described
as “Memorize and learn from what has been done so far, to improve future decisions”. The
application of memorization to algorithms has the goal of speeding their processing, often at
the price of an increased space usage. In this general sense, various algorithms in the literature
that “intelligently” make use of computer memory can be classified as procedures with mem-
orization embedded, although their implementations could be quite different depending on the
problem structure and the information to be stored. For instance, Tabu Search (Glover, 1989,
1990) is a metaheuristic that memorizes recently visited solutions to avoid returning to these

∗Corresponding author
Email addresses: shang@univ-tours.fr (Lei Shang), tkindt@univ-tours.fr (Vincent T’Kindt),

federico.dellacroce@polito.it (Federico Della Croce)
Preprint submitted to Elsevier September 29, 2020

© 2020 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0305054820302884
Manuscript_04f8b03258fa925e0d4104f4a24dbd88

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0305054820302884

solutions again during the search: the so-called Tabu list is, then, the memory used for storage.
SAT solvers deduce and then memorize conflict clauses during the tree search to perform non-
chronological backtracking (Conflict Driven Clause Learning) (Zhang et al., 2001; Biere et al.,
2009). Similar ideas also appear in Artificial Intelligence as Intelligent Backtracking or Intelli-
gent Back-jumping, etc. Chvatal (1997) exploits the conflicting clauses memorization in addition
with the memorization of already explored solutions to build its resolution search method. Res-
olution search has also been considered by Hanafi and Glover (2002) and Posta et al. (2011).
Dynamic programming algorithms typically involve memorization by storing all states necessary
to compute by enumeration optimal solutions. This behavior enables to avoid solving multiple
times identical sub-problems, often at the price of an exponential memory requirement. It is
well-known that dynamic programming algorithms can be seen as particular search tree algo-
rithms in which the search tree is explored level by level following the so-called breadth first
search strategy. Search tree algorithms, like branch-and-bound algorithms, are based on the idea
of enumerating all possibilities via a search tree that is created by a branching rule. For each
decision variable, the algorithm branches on all possible values, each time creating a new sub-
problem (a node in the search tree) of a reduced size. The algorithm continues recursively and
returns the globally optimal solution. The critical question is how to prune the search tree such
that the exploration of unpromising nodes is avoided. Dominance conditions and bounding pro-
cedures are commonly used to prune nodes, as in the case of branch-and-bound algorithms (e.g.,
see Morrison et al. (2016)). Similarly, memorization can also be viewed as another procedure
that can help in pruning the search tree, including but not limited to identical sub-problems elim-
ination as in dynamic programming. In this paper we focus on search tree algorithms applied to
sequencing problems and on how to implement memorization so as to avoid solving either iden-
tical sub-problems or “dominated” sub-problems, with respect to the search of optimal solutions.

Memorization has already been considered with the intent of providing theoretical guarantees
on the execution of exact exponential search tree algorithms (see, for instance, Fomin and Kratsch
(2010)). The objective is to develop exact algorithms that provide a best possible worst-case run-
ning time guarantee. When such algorithms explore the search tree, identical sub-problems may
appear exponentially many times, and the idea of memorization is then to avoid solving them
many times by storing, like in dynamic programming algorithms, the solutions of the already
solved sub-problems. For example, this principle was applied to the solution of the Maximum
Independent Set problem by Robson (1986). By exploiting graph theoretic properties, Robson
proposed an algorithm with a worst-case time complexity in O(1.2109n). This algorithm re-
mained the exact exponential algorithm with the smallest worst-case time complexity until the
O(1.1996n) algorithm of Xiao and Nagamochi (2017) was introduced. Recently, Xiao and Tan
(2017) applied memorization to derive an algorithm for the Maximum Induced Matching prob-
lem running in O(1.3752n) time and exponential space, while Garraffa et al. (2018) proposed a
variation of this principle to the single machine total tardiness problem by introducing a node
merging mechanism to avoid solving multiple times identical sub-problems in a search tree. The
latter approach led to an exact algorithm that required polynomial space and whose time com-
plexity converged to O∗(2n) with n the number of jobs to be scheduled.
In the literature, we can found works proposing some memorization techniques inside experi-
mentally efficient exact search tree algorithms. Our literature review mainly focuses on works
dealing with sequencing problems. By embedding a simple memorization technique into their
search-tree algorithm, Szwarc et al. (2001) solve the single machine total tardiness problem on
instances with up to 500 jobs while the previous state-of-the art exact methods with no memo-

2

rization techniques were limited to 100-150 jobs. Another work on standard memorization tech-
niques applied to sequencing problems was presented in T’kindt et al. (2004), where the impact
of such techniques on the effectiveness of search strategies is analyzed. Following this work, Kao
et al. (2009), Sewell and Jacobson (2012), Morrison et al. (2014), Li et al. (2018), Li et al. (2020a)
and Li et al. (2020b) introduced a branch, bound and remember algoritm for solving scheduling
problems and assembly line balancing problems. This algorithm embeds the same memorization
technique proposed byT’kindt et al. (2004) and experimental results show a strong improvement
of the algorithm due to that technique. Baptiste et al. (2004) and Jouglet et al. (2004) tackled
the solution of a single machine scheduling problem by means of branch-and-bound algorithms
in which a no-good recording technique is used to prune dominated nodes in the search tree. It
consists in applying, to each partial solution associated to a node, a fast local search to try to
build another node which could “dominate” the current one. If such another node is found, the
current one is then pruned. Even if no information is stored in memory, this technique relates
to a form of memorization which we will call later on “predictive node memorization”. Another
interesting study was proposed by Sourd and Kedad-Sidhoum (2008) who considered the solu-
tion of a single machine scheduling problem and extended the no-good recording technique by
proposing to keep in memory the solutions generated by some local search. This approach is
what we will call “predictive node memorization”. They noticed that this technique helped in
reducing the computational time of the branching algorithm except for the largest instances for
which their were faced with penalizing memory limitations.

All the above quoted works show the effectiveness of various more or less elaborated forms
of memorization, under different terminologies: branch, bound and remember, no-good record-
ing, resolution search or even dynamic programming dominance. When considering the large
amount of publications dealing with branching algorithms, few are finally using memorization
to prune the search tree. To the best of our knowledge, no general framework for applying mem-
orization exists in the literature, even if some form of memorization was studied. This paper
pursues multiple goals: (1) to extend the findings of T’kindt et al. (2004) by proposing a unified
framework for sequencing problems integrating memorization into search tree algorithms (the
Branch & Memorize paradigm), (2) to discuss properties, links and limitations of various forms
of memorization, (3) to highlight the impacts of memorization on classic search strategies, (4) to
provide extensive experiments on the application of this paradigm to three classical single ma-
chine sequencing problems, showing the effectiveness of branch and memorize algorithms.
In Table 1 are presented various state-of-the-art branching algorithms embedding a technique
of memorization and their link with the relevant memorization scheme and related subsection
proposed in this paper.

This paper promotes the idea of systematically incorporating memorization into branching
algorithms not just for single machine sequencing problems but for any sequencing problem
whose solution could be expressed by a permutation of a set of elements.

In the remainder, we first describe the Branch & Memorize paradigm (section 2), followed
by some discussion on its implementation (section 3). Then, we apply it to three single machine
scheduling problems (sections 4 and 5). Finally, we conclude our work in section 6.

2. The Branch &Memorize paradigm

Consider aNP-hard minimization sequencing problem in which the goal is to find an optimal
permutation of a vector V of n items (V = {1, ..., n}). We assume that a solution can be represented

3

Table 1: State-of-the-art methods and their link to memorization

SM PaNM PrNM
(sect. 2.2.1) (sect. 2.2.2) (sect. 2.2.3)

Resolution search
Chvatal (1997) x
Hanafi and Glover (2002) x
Posta et al. (2011) x

Branch, bound and remember
Sewell and Jacobson (2012) x
Morrison et al. (2014) x
Li et al. (2018) x
Li et al. (2020a) x
Li et al. (2020b) x

No-good recording
Baptiste et al. (2004) x
Jouglet et al. (2004) x
Sourd and Kedad-Sidhoum (2008) x

Miscellaneous
Szwarc et al. (2001) x
T’kindt et al. (2004) x

SM: Solution memorization
PaNM: Passive node memorization

PrNM: Predictive node memorization.

4

by a permutation, i.e. a sequence, of the vector items and a related branching algorithm that
builds nodes of the search tree corresponding to sub-problems where the position of several
items in the permutation has been fixed. For instance, in single machine sequencing, the items
permutation corresponds to the jobs sequence. We adopt an intuitive way of representing the
content of a node, by using lower case letters for fixed items and capital letters for items subsets
to be fixed. For example, a node σS = 123{4, ..., n} represents a sub-problem in which items
{1, 2, 3} have already been assigned according to the order (1, 2, 3), to the first three positions
of the permutation, while the items to be sequenced afterward are {4, ..., n}. Formally, any node
of a search tree can be defined by σ1S 1σ2S 2...σkS k, with the σ j

′s being partial sequences of
items and the S j

′s being sub-problems that remain to be solved. Notice that, formally speaking,
σ1 and S k can be empty. At any iteration, a search tree algorithm is defined by a list of nodes
previously created but not yet developed, called active nodes. Some nodes called explored nodes,
have already been branched on leading to the creation of children nodes. The branching rule
is the rule which defines how to create children nodes while the search strategy refers to the
rule indicating how to select the next active node to branch on. Following classic strategies
in branching algorithms, a bounding mechanism as well as dominance conditions (also called
pruning rules) can be used to eliminate nodes that are not leading to an optimal solution. By
extension, we say that node A dominates node B, if the best complete solution in the subtree
rooted by A is not worse (in the sense of the objective function) than the one in the subtree
rooted by B. We refer to Morrison et al. (2016) for a recent overview of some exact branching
algorithms.
In the remainder, we also use the notion of decomposable problems as introduced in T’kindt et al.
(2004).

Definition 1. Let {1, ..., i}{i + 1, ..., n} be a problem to be solved. It is decomposable if and only
if an optimal solution of the sub-problem {1, ..., i} does not depend on an optimal permutation of
{i + 1, ..., n}, and vice versa.

The Branch & Memorize paradigm, which is detailed in the context of sequencing problems,
gathers all techniques which take advantage of the tree exploration to memorize information
on the visited nodes in order to prune further this tree without missing optimal solutions of the
problem. We propose here various implementations of this paradigm for sequencing problems.
While presenting these versions of memorization in search tree algorithms, we also discuss some
of their properties or limitations. Finally, we summarize these information by providing some
guidelines on which version to choose, depending on the problem under consideration and its
known properties. We first recall some basic notions related to search tree algorithms before
introducing different implementations of the Branch & Memorize paradigm.

2.1. Branching schemes and search strategies

In this section we briefly review two important mechanisms of search tree based algorithms:
the branching rule and the search strategy. They are discussed in the context of sequencing
problems.

The branching rule, taking an active node, usually consists in assigning an item to a specific
position in the permutation. So, a branching scheme defines, at a node, how to choose this item
and the positions it can occupy. We consider three classic branching schemes: forward branch-
ing, backward branching and decomposition branching. Forward branching (resp. backward

5

branching) assigns the item being branched on to the first (resp. last) free position. This item
is usually selected according to a rule that depends on the problem. Notice that, with forward
branching (resp. backward branching), the sub-problem associated to a node is defined by σS
(resp. Sσ). Decomposition branching is less commonly seen on sequencing problems since it
is strongly dependent on the identification of structural properties of the problem. When applied
at a given node, the item that is being branched on is called a decomposition item. When a de-
composition item is assigned to a position, two sub-problems are generated, implied by the free
positions before and after the decomposition item. This scenario can be seen in some Divide-and-
Conquer like algorithms, for instance the algorithm of Gurevich and Shelah (1987) solving the
Hamiltonian Path problem. Certainly one may determine the items that should be sequenced be-
fore and after this position by enumerating all 2-partitions of items. However, there are problems
for which the two sub-problems can be uniquely determined in polynomial time by making use
of some specific problem properties. As we will see, this situation occurs in machine sequencing
on the 1||

∑
T j problem which will be discussed later on.

The search strategy is a mechanism which is used to select, at each iteration of the algo-
rithm, the next active node to branch on. The classic search strategies are depth-first, best-first
and breadth-first. The depth-first strategy consists in selecting the active node with the highest
number of items assigned to a position: break ties by selecting the one with the smallest value of
the lower bound. The breadth-first strategy consists in selecting the active node with the smallest
number of items assigned to a position (no matter how ties are broken). At last, the best-first
strategy consists in selecting the active node with the smallest value of the lower bound. Notice
that both best-first and breadth-first imply a super-polynomial space complexity, which may af-
fect the performance of the search tree based algorithm. Consequently, in practice, the depth-first
is the most commonly adopted search strategy.

2.2. Memorization schemes

The theoretical memorization scheme that is presented by Robson (1986) stores an optimal
solution of each sub-problem of a predetermined limited size and reuses that solution whenever
such sub-problem appears again during the tree search. Other memorization schemes can be
invented according to the information to memorize. Below, we discuss three different memoriza-
tion schemes that are helpful for efficiently solving some sequencing problems. They constitute
different implementations of the Branch & Memorize paradigm.

For the sake of simplicity, we explain the memorization schemes in the case of forward
branching. We leave to the reader their application to other branching rules.

2.2.1. Solution memorization
Basically, solution memorization consists in storing in memory, for any node A, the best

solution contained in the sub-tree rooted at A. Consider the situation illustrated in Figure 1,
where active nodes are colored in black. Node B is the current node to branch on, while σ, σ′

and σ′′ are different permutations of the same items. In other words, nodes A, B and C may
contain the same sub-problem, implied by S . In that case, if A has already been solved and an
optimal sequence of S has been memorized, then it may be used directly to solve nodes B and
C and it may be no longer necessary to branch on these nodes. This is valid, for instance, if the
problem is decomposable.

6

A : σ′S

C : σ′′S

B : σS

Explored nodes Future nodes

D E F

Figure 1: Solution Memorization

The idea being simple, some practical aspects have to be considered. In some situations,
it may be not obvious to obtain an optimal solution from the sub-tree rooted at node A. For
instance, the leaf node corresponding to an optimal solution of the node A, i.e. an optimal
sequencing of items in S , might be cut due to some specific dominance conditions used in the
search tree algorithm. We call them context-dependent dominance conditions since they are
dependent on the fixed partial sequence. In Figure 1, assume that node D should have led to
the best solution reachable from node A but was pruned by a dominance condition. Applying
solution memorization may then lead to the memorization of another solution β to S that is not
the best one with respect to S . Later, when re-using this solution to avoid solving B or C, an
optimal solution of the problem may be missed if this one is in the sub-tree, for instance, rooted
at node B, i.e. if it is the concatenation of σ and a permutation of S .

We can certainly disable context-dependent dominance conditions while applying solution
memorization. However, this may slow down the algorithm, even if solution memorization is
effective. An alternative, in this case, is to extend the memorization from “optimal solutions”
to “lower bounds”. Whenever an optimal solution of a node A cannot be obtained, we can still
memorize the best lower bound obtained during the exploration of the sub-tree of A. This in-
formation might be useful when nodes B and C are encountered and it may help to cut these
nodes by the bounding procedure. Moreover, the lower bound computation at node B and C,
which may be time-consuming, is saved. This situation occured, for instance, when considering
problem 1|d̃ j|

∑
j w jC j (section 4.2).

7

Note that the memorization of lower bounds is compatible with the memorization of optimal
solutions. We refer to the described memorization technique, including the memorization of
optimal solutions and the memorization of lower bounds, as solution memorization, since both
of them are related to the memorization of the “best known solution” of the problem that is
associated with a node. With respect to the literature, the work by Szwarc et al. (2001) can be
seen as a preliminary implementation of solution memorization as indicated in Table 1.

2.2.2. Passive node memorization
Passive node memorization consists in storing information on the active node σS selected

for being branched on. Typically, partial sequence σ is memorized with possibly additional
information. Unlike solution memorization, in which the memorized sequences can be used
to “solve” the problem at a node, passive node memorization is only used to “prune” nodes.
Consider a search tree that is being explored following the breadth-first search strategy (Figure
2). Again, active nodes are colored in black and B is the current node. Assume that an explored
node A exists, with σ′ being a different permutation of the same items used in σ. If the partial
sequence σ′ has been memorized, then one of two situations occurs. If σ′ dominates σ then node
B can be pruned since it cannot lead to a better solution than A. If σ′ does not dominate σ then
σ can be memorized to possibly prune a future node such as node C. Notice that, a current node
to be branched on, is compared with both explored nodes and active nodes (those, waiting to be
branched on).

A : σ′S C : σ′′SB : σS

Explored nodes

Future nodes

Figure 2: Passive node memorization

The notion of dominance between sequences is problem dependent and strongly influences
the effectiveness of the memorization mechanism in pruning nodes. Therefore, for a given se-
quencing problem, to which passive memorization is applied, we assume the existence of a func-
tion check(σ,σ′) which returns 1 if σ′ dominates σ. Obviously, this function corresponds to
a mathematical condition that has been proved: it can be a sufficient condition or even a nec-
essary and sufficient condition that states the dominance of a partial sequence σ′ over another

8

partial sequence σ. Examples are given in section 4. With respect to the literature, the works by
T’kindt et al. (2004), Sewell and Jacobson (2012) and Morrison et al. (2014) describe prelimi-
nary implementations of passive node memorization as indicated in Table 1. Same consideration
holds for the works by Li et al. (2018), Li et al. (2020a) and Li et al. (2020b). Notice that, with
respect to dynamic programming, when check(σ,σ′) = 1, the state corresponding to σ is not dis-
carded, unlike passive node memorization. The larger the number of such states, the larger the
computational time saving with respect to the overlapping sub-problems elimination of dynamic
programming.

2.2.3. Predictive node memorization
Predictive node memorization relies on the same concept present in passive node memoriza-

tion, but with further operations. As illustrated in Figure 3, at a given node B = σS , we first
check, as in passive node memorization, if the current node can be pruned by a sequence σ′

previously memorized, e.g. at node A. If not, instead of directly memorizing σ, we search for
an improving sequence π. Notice that, the improving sequence necessarily belongs to a part of
the search tree that has not yet been explored when dealing with the node σS . There may be
many ways to compute π. For instance, we may perform some local search on σ by searching for
a neighboring sequence π that dominates σ as in the so-called no-good recording technique of
Baptiste et al. (2004). Alternatively, we may focus on a short sub-sequence of σ and solve it to
optimality (in a brute-force way, for instance). The latter idea was used by Jouglet et al. (2004)
under the name Dominance Rules Relying on Scheduled Jobs. However, notice that they do not
memorize the dominant solution found. Sourd and Kedad-Sidhoum (2008) have gone beyond the
work of Jouglet et al. by storing the generated solutions. All these works describe preliminary
implementations of predictive node memorization as indicated in Table 1. Notice that, we may
also make use of another exact algorithm to optimize a part of σ to get π, as long as this algorithm
is fast. This idea is strongly related to the theoretical mechanism called merging (Garraffa et al.,
2018) which is designed to provide good worst-case time complexities for exact exponential al-
gorithms. If such a sequence π can be constructed, then the current node σS is cut and sequence
π is memorized. Note that node πS has not yet been encountered in the search tree when dealing
with node σS (for example, consider π = σ′′ inf Figure 3). Thus, it is important when applying
predictive node memorization to remember that πS still needs to be branched on. Moreover, the
extra cost of generating π should be limited to avoid excessive CPU time consumption.

3. Decision guidelines

In this section, we provide some guidelines on how to choose the appropriate memorization
scheme according to the branching rule and the search strategy. The main results are summarized
in the decision tree of Figure 4. Consider the following Definition 2 and Property 1 that are valid
for forward, backward and decomposition branching schemes.

Definition 2. (Concordance Property) Let LB(A) be the lower bound value computed at node A.
Let be two nodes A and B defined by A = σ1S 1σ2S 2...σkS k and B = π1S ′1π2S ′2...πk′S ′k′ , with σ1
and π1 involving the same set of items in case of forward or decomposition branching schemes.
In case of backarwd branching scheme, σk and πk′ must involve the same set of items.
A search tree based algorithm satisfies the concordance property if and only if, for any node A
and B as defined above, LB(A) < LB(B) ⇔ check(π1, σ1) = 1 (or check(πk, σk′) = 1 in case of
backward branching), i.e. node A dominates node B if and only if LB(A) < LB(B).

9

A : σ′S C : σ′′S

B : σS

Explored nodes

Future nodes

πS

Figure 3: Predictive node memorization

Figure 4: Decision tree for choosing the memorization scheme

Property 1. For the memorization schemes, we can state the following general results that are
independent from the branching scheme:

1. Solution memorization can only be applied together with depth-first search strategy since
an optimal solution in the sub-tree rooted at any node must be found first to be memorized.

2. For passive and predictive node memorizations, when the concordance property is verified
and best-first search strategy is applied, the current node only needs to be compared with
the explored nodes, instead of all nodes.

3. For passive node memorization, when breadth-first search strategy is applied, the current
node only needs to be compared with the active nodes, instead of all nodes. In that case,
predictive node memorization does not prune more nodes than passive node memorization.

Proof. Result 1 is straightforward and follows from the definition of solution memorization.
Result 2 is a consequence of the best-first search strategy that always considers branching on the
node with the lowest lower bound value : the concordance property implies that no active node
can dominate it.
Result 3 follows from the fact that an active node A is selected for branching when all the nodes at
the same level have been created: hence, all other active nodes that are dominated by A, according
to a check function, are discarded. If, in turn, A is dominated by another node, then it is pruned.
Moreover, predictive node memorization cannot outperform passive node memorization since
passive node memorization keeps the best node at each level.

In the following, we discuss the choice of a memorization scheme depending on the branch-
ing rule and the search strategy. We use node memorization to refer to both passive node memo-
rization and predictive node memorization.

10

3.1. Forward/backward branching
Without loss of generality, only forward branching is considered. According to the choice of

the search strategy, and based on Property 1, Guideline 1 provides some advices on the choice of
a memorization scheme.

Guideline 1. Depending on the search strategy, we have:

1. With depth-first search strategy, if the problem is decomposable and solution memorization
can memorize optimal solutions (instead of lower bounds), then solution memorization
should be chosen as it is more effective both than passive node memorization and predictive
node memorization.

2. With best-first search strategy, node memorization should be applied only to explored
nodes if the concordance property (Definition 2) is satisfied.

3. With breadth-first search strategy, passive node memorization should be chosen and ap-
plied to active nodes.

Remark 1. In case 1, any node pruning that can be achieved by passive node memorization and
predictive node memorization can also be obtained by solution memorization, but not conversely.
We say that solution memorization is more effective than the two other memorization schemes.
As an example, consider nodes A = σS and B = πS , where σ and π are two permutations of
the same items set and A is visited before B. None of these nodes can be pruned by node memo-
rization, if B dominates A. However, solution memorization will avoid exploring node B. If the
problem is not decomposable, or context-dependent dominance conditions exist in the algorithm,
then solution memorization memorizes lower bounds and it is not obvious to determine which
memorization scheme is the best. However, in practice, passive node memorization may be pre-
ferred to solution memorization. Notably, if the problem is not decomposable, then it may be
necessary to solve the sub-problem that consists of items set S at both nodes A and B. However,
with passive node memorization, node B may be pruned whenever π is dominated by σ. Cases 2
and 3 are direct consequences of Property 1.

3.2. Decomposition branching
With decomposition branching, at each level of the search tree a decomposition item can be

put in any free position by the branching rule. Guideline 2 provides some advices on the choice
of a memorization scheme.

Guideline 2. With depth-first search strategy, none of the three memorization schemes is neces-
sarily most effective than the others.

We can imagine situations in which solution memorization or passive node memorization
or predictive node memorization is the most effective. Consider nodes A = σS 1 j1S 2 and B =

πS 1 j2S 3 with A being explored before B. In both nodes, the current sub-problem concerns
sequencing the items subset S 1 after σ or π. Suppose σ and π contain different items but induce
the same initial conditions for the following items (as an example in single machine sequencing,
σ and π have the same completion time). This means that the sub-problems defined by S 1 are
identical in A and B. Then, an optimal sequence for S 1 that is found when solving A can be
reused on B by solution memorization. In contrast, passive node memorization cannot handle
this case since σ and π contain different items and, hence, are not comparable. Predictive node
memorization may or may not prune B, depending on whether a dominant prefix can be generated
or not.

11

We may also imagine the case where A = σS 1 j1S 2 and B = πS 3 j2S 4. Suppose σ and π are
different permutations of the same items set. If check(π, σ) = 1, then node B can be pruned by
passive node memorization or predictive node memorization. In contrast, this is not the case for
solution memorization because sub-problems S 1 and S 3 do not consist of the same jobs.

In practice, even though every memorization scheme can be the best choice in some cases,
the memory limitation does not allow all of them to be applied and our experience suggests that
it is preferable to apply solution memorization. This is due to the special structure of nodes
σ1S 1...σkS k, which makes the prefixed items more spread out (they are separated by S i), and
prevents the application of successful passive node memorization and predictive node memoriza-
tion. Moreover, the case with nodes σ1Sσ2 and π1S π2, where σ1 and π1 contain different items,
may occur often for large size instances.

To the knowledge of the authors, decomposition branching being already not common for
sequencing problems, its combination with best-first or breadth-first search strategy is even more
rare. Therefore, we omit the discussion on these two cases. Interested readers may refer to Shang
et al. (2018).

3.3. Implementation consideration

In order to effectively implement the memorization mechanism, it is required to take care
about the memory cleaning strategy when the memory is full. Due to computer memory limi-
tations, not all nodes or solutions can be stored during the processing of the search tree algorithm
implementing memorization. Then, deciding which entry (node/solution) to keep in memory
influences the effectiveness of the memorization in pruning nodes. We have experimentally
tested several memory cleaning strategies like First In First Out (FIFO), Biggest Entry First
Out (BEFO), etc. Finally, the most efficient one that we found is Least Used First Out (LUFO).
As the name indicates, LUFO counts for each stored entry in the memory, the number of times
that it has been queried. Each time the memory is full, all entries with minimum counter are
discarded. This strategy is effective in practice since most of the memorized entries are never
used, while others are typically used many times.

4. Application to the 1|r j|
∑

C j and 1|d̃ j|
∑

w jC j problems

In this section we focus on the application of the Branch & Memorize paradigm to branch-
and-bound algorithms solving two single machine scheduling problems involving the minimiza-
tion of the total (weighted for the second problem) completion time. All these algorithms im-
plement a forward or backward branching rule and the three classic search strategies previously
discussed are considered.

In this section, for each of these two problems, we apply memorization according to the
provided guidelines and discuss the obtained results. For each problem, we compare several
branching algorithms, which are named according to their features: Depth-, Best- and Breadth-
refer to branch-and-bound algorithms with the corresponding search strategies and without mem-
orization. Depth X, Best X and Breadth X refer to the implementations with the correspond-
ing search strategies and memorization of type X, where X = S means solution memorization,
X = Pa means passive node memorization and X = Pr means predictive node memorization.
For predictive node memorization, we use the “dominance condition relying on scheduled jobs”
(see Jouglet et al. (2004)) as the heuristic to search for dominant solutions. We name it k − perm
search, since at a given node σS , it enumerates all the permutations of the first or last k jobs in σ

12

to search for a dominant sequence. Besides, k-perm search is not performed when the breadth-
first search strategy is used, since the memorization applied on active nodes already covers the
effect of k-perm. Preliminary tests suggest that k = 5 should be chosen in our implementations
to obtain the most efficient predictive node memorization scheme. Notice that predictive node
memorization based algorithms could be further improved by adopting another local search strat-
egy. But this is not dealt with in this paper.

All tests have been performed on an HP Z400 work station with 3.07GHz CPU and 8GB
RAM. In the tables, Tavg and Tmax denote the average and maximum solution time in seconds.
Navg and Nmax are respectively the average and maximum number of nodes created by the
branch-and-bound algorithms. The test results on instances of a given size are marked as OOT
(out of time) if any instance of that size is not solved after 5 hours. Analogously, with the ap-
plication of memorization, memory problems may occur and the limit on RAM usage may be
reached, which is reported as OOM (out of memory). Notice that even when memory cleaning
strategies are applied, OOM may still occur due to the fragmentation of the memory after multi-
ple cleanings. Also note that LUFO is chosen as the cleaning strategy according to preliminary
experimentation.

4.1. Application to the 1|r j|
∑

C j problem

The 1|r j|
∑

C j problem requires n jobs to be scheduled on a single machine. Each job j is
defined by a processing time p j and a release date r j before which the job cannot be processed.
The machine can only process one job at a time and a schedule is a sequence of jobs in their
order of processing. In a given schedule, each job j completes at time C j and the aim is to find
the sequence that minimizes

∑
C j. This problem is NP-hard in the strong sense and it has been

widely studied in the literature with both exact and heuristic algorithms. The state-of-the-art
exact algorithm was proposed by Tanaka and Fujikuma (2012). This algorithm, called Sipsi,
uses a graph representation during the solution and the size of the graph depends on the value
of the maximum processing time, denoted by pmax. Hence, when pmax is large, the algorithm
is restricted by its memory usage. This algorithm proceeds by applying dynamic programming
over that graph representation.

The memorization techniques introduced in this paper are applied to the baseline branch-and-
bound introduced by Chu (1992) which was the most effective exact algorithm for a long time.
This algorithm uses the forward branching rule, the best-first search strategy as well as a k-perm
search. The latter is disconnected in the experiments done since it relates to predictive node
memorization. The conducted experiments compare the impact of the different memorization
techniques and show comparisons with Sipsi algorithm.

In node memorization techniques, the check() function used to compare nodes is that of
T’kindt et al. (2004):

check(π, σ) =

1, i f opt(σ|0) ≤ opt(π|0) and opt(σ|0) + |S | ∗ Emin(σ) ≤ opt(π|0) + |S | ∗ Emin(π)
0, otherwise

(1)
where S is the set of jobs that remain to be scheduled after sequences σ and π, and Emin(σ) =

max(C(σ),minr∈S ri), with C(σ) denoting the completion time of σ. The item stored into mem-
ory is a tuple 〈σ,C(σ), opt(σ|0)〉 and Emin(σ) can be computed when needed.

13

4.1.1. Experimental results
The problem is not decomposable due to the presence of release dates. Therefore, with the

choice of forward branching, node memorization should be preferrably chosen, according to the
decision tree in Figure 4. The lower bound used in the algorithm is based on the SRPT (Shortest
Remaining Processing Time) rule. Together with the check() function that is defined in Equation
1, it is not clear whether the concordance property is satisfied. Hence, when passive node memo-
rization is applied with the best-first strategy, all nodes need to be considered in the comparisons,
while when it is applied with the breadth-first strategy, only active nodes need to be considered.

The input was generated following the approach described by Chu (1992), i.e., the process-
ing times are generated uniformly from [1, 100] and the release dates are generated uniformly
from [0, 50.5 · n · r], with r belonging to {0.2, 0.4, 0.6, 0.8, 1.0, 1.25, 1.50, 1.75, 2.0, 3.0}. Thirty
instances were generated for each value of r, thereby leading to 300 instances for each size n
from 70 to 350. The results are presented in Table 2. For all three search strategies, passive
node memorization enables much larger instances to be solved, in comparison to the versions
without Memorization. This is sufficient to prove the power of memorization in solving this
problem. Notice that when applying predictive node memorization we obtain better results than
the baseline algorithm of Chu (1992) which integrates no memorization but only a k-perm search.

Depth Pa and Depth Pr solve instances with up to 130 jobs. The impact of k-perm search
on this problem is very limited: predictive node memorization leads to almost the same result as
passive node memorization. As expected, node memorization provide better results than solution
memorization. It is also worth mentioning that the database cleaning strategy LUFO enables
faster solution of large instances. For example, we found that an instance with 140 jobs is solved
in 1.6 hours by Depth Pa with LUFO, while 14 hours are required to solve it with FIFO as
cleaning strategy. However, due to the hardness of another instance with 140 jobs, the algorithm
Depth Pa ran out of time.

The Sipsi algorithm is also tested on the same dataset and results are provided in Table 3. It is
very efficient and is able to solve instances with up to 300 jobs. To evaluate the influence of the
processing times values, we have considered instances where the processing times are generated
uniformly from [1, 1000]. Sipsi and Depth Pr algorithms are compared and the obtained results
are reported in Table 4. It follows that both algorithms are only capable of solving instances
with up to 130 jobs in size, Depth Pr being faster. This shows that unlike Sipsi, Depth Pr is not
sensitive to the range of processing time of jobs.

The proposed approach can be extended in a similar way to the F2||
∑

C j problem, where it
can be applied, for instance, to the algorithm of Della Croce et al. (2002). The power of memo-
rization still holds. However, the improvement in the size of solved instances is less significant
and the resulting algorithm is less efficient than the current state of the art algorithm of Detienne
et al. (2016). For this reason, we do not present results here, but we refer to Shang et al. (2018)
for details.

14

Table 2: Results of the branch-and-bound algorithms on the 1|r j |
∑

C j problem

n 70 80 90 100 110 120 130 140
Without Memorization

Depth-

Navg 141247.8 1778751.2 OOT
Nmax 17491232 276190737
Tavg 1.8 22.4
Tmax 217 3238

Best- OOT
Breadth- OOT

Solution Memorization

Depth S

Navg 113438.69 1330100.19 OOT
Nmax 14321924 216164660
Tavg 2.19 24.81
Tmax 323.00 3748.50

Node Memorization

Depth Pa

Navg 2583.4 5756.2 18639.9 26827.4 48502.9 174545.5 192409.4 OOT
Nmax 147229 314707 2253897 644151 1281097 16575522 7742714
Tavg 0.0 0.0 0.3 0.7 1.3 7.1 9.1
Tmax 2 7 64 27 41 754 295

Depth Pr

Navg 1771.1 4455.1 12625.7 19621.7 30380.4 117865.6 128277.5 OOT
Nmax 82765 267416 1455743 588429 1096520 11126694 5132228
Tavg 0.0 0.0 0.3 0.5 0.9 4.7 6.6
Tmax 1 7 46 28 39 488 252

Best Pa

Navg 1230.5 3299.4 5235.1 9494.8 13658.5 38574.5 43986.9 OOT
Nmax 36826 256534 292929 216293 228848 2675337 1449900
Tavg 0.0 0.2 0.2 0.4 0.6 15.3 11.8
Tmax 0 46 38 27 25 3595 1630

Best Pr

Navg 1229.6 3298.2 5229.0 9490.7 13545.7 38560.1 43989.8 OOT
Nmax 36826 256529 292927 216037 228832 2674776 1449872

. Tavg 0.0 0.2 0.2 0.4 0.7 15.4 11.9
Tmax 1 47 39 28 25 3579 1636

Breadth Pa

Navg 1947.7 6745.0 9893.8 21308.5 27383.1 OOT
Nmax 90494 709607 733980 575430 1209481
Tavg 0.0 4.6 3.4 5.3 5.7
Tmax 9 1319 897 483 935

Table 3: Results of the algorithm Sipsi on the 1|r j |
∑

C j problem

n 130 140 150 200 250 300 350

Sipsi
Tavg 25.98 35.42 56.72 227.20 642.77 1307.56 OOM
Tmax 231.69 351.13 1172.89 3993.28 5731.45 10683.34

Table 4: Results of algorithms on new instances with large processing times (Pmax = 1000)

n 70 80 90 100 110 120 130 140

Depth Pr Tavg 0.07 0.23 0.48 2.21 6.62 23.11 49.26 OOT
Tmax 2.87 10.34 18.94 113.69 843.75 3438.79 4408.37

Sipsi
Tavg 27.93 48.76 75.26 119.95 159.15 251.41 328.50 OOM
Tmax 133.23 283.94 418.68 1616.69 1163.64 3271.22 2463.89

4.2. Application to the 1|d̃ j|
∑

w jC j problem

The 1|d̃ j|
∑

w jC j problem requires n jobs to be scheduled on a single machine. Each job j is
defined by a processing time p j, a weight w j and a deadline d̃ j that must be met. The machine

15

can process one job at a time and, again, a schedule is defined by a sequence of jobs. The
objective is to minimize the total weighted completion time

∑
w jC j. This problem is NP-hard in

the strong sense and has been solved by branch-and-bound algorithms (Posner, 1985; Potts and
Van Wassenhove, 1983), with the performance of the algorithm of Posner being slightly superior.
We adopt a combination of both branch-and-bound algorithms, by incorporating the lower bound
and the dominance condition of Posner (1985) into the algorithm of Potts and Van Wassenhove
(1983). The algorithm of Tanaka et al. (2009), called Sips, is known as the most efficient one for
solving this problem and it follows the same approach of the Sipsi algorithm.

We adopt backward branching as branching scheme as done in Posner (1985); Potts and
Van Wassenhove (1983). The check() function is defined as follows, where S is the set of jobs to
be scheduled before σ and π.

check(π, σ) =

1, i f opt(σ|
∑

i∈S pi) ≤ opt(π|
∑

i∈S pi)
0, otherwise

(2)

The items stored in the database are 〈σ, opt(σ|
∑

i∈S pi)〉.

4.2.1. Experimental results
This problem is decomposable. According to the decision tree in Figure 4, with the depth-

first search strategy, solution memorization should be considered, even though its superiority over
node memorization depends on the presence of context-dependent dominance conditions in the
algorithm. In this section we compare four branch-and-bound algorithms: node memorization
with the three search strategies and solution memorization based on depth-first search.

The concordance property is satisfied and so the passive node memorization considers only
explored nodes when the search strategy is best-first, and only active nodes with breadth-first
search. For solution memorization, the items stored into memory are 〈π, opt(π|0)〉. For node
memorization, the check() function and the stored items are as described in the previous section.

Regarding solution memorization, context-dependent dominance conditions are enabled in
the algorithm (Theorem 2 in Potts and Van Wassenhove (1983)). Their removal has been ex-
perimentally proved to lead to an inefficient algorithm. Therefore, lower bounds are memorized
during solution memorization, as described in section 2.2.1.

Following the test plan described by Potts and Van Wassenhove (1983), for each job j, the
processing time p j is an integer that is generated uniformly from [1, 100] and its weight w j is
generated uniformly from [1, 10]. The total processing time P =

∑n
j=1 p j is then computed and

for each job j, an integer deadline d j is generated from the uniform distribution [P(L−R/2), P(L+

R/2)], with L increasing from 0.6 to 1.0 in steps of 0.1 and R increasing from 0.2 to 1.6 in steps
of 0.2. To avoid generating infeasible instances, an (L,R) pair is only used when L + R/2 > 1.
Hence, only 30 (L,R) pairs are used, for each of which 10 feasible instances are generated,
thereby yielding a total of 300 instances for each value of n from 40 to 140.

The results are presented in Table 5. For depth-first search, without memorization, the most
effective branch-and-bound algorithm is “out of time” on instances with 50 jobs, while solution
memorization and passive node memorization enable to solve instances with up to 90 and 100
jobs, respectively. With the activation of k-perm search, Depth Pr can solve 20 more jobs than
Depth Pa. For best-first search, the same phenomenon can be observed, that is, Best Pr is more
efficient than Best Pa, which is much better than Best-. Best Pr can also solve instances with
up to 130 jobs, and is faster than Depth Pr. On breadth-first, without memorization, Breadth-
cannot even solve all instances with 40 jobs, while with passive node memorization instances of

16

130 jobs are all solved in an average solution time of 65.5 seconds. Consequently, embedding
memorization inside the baseline branch-and-bound algorithm enables to solve instances more
than three times larger.

Table 5: Results of the branch-and-bound algorithms on the 1|d̃ j |
∑

w jC j problem

40 50 60 70 80 90 100 110 120 130 140 150
Without Memorization

Depth-

Navg 104915.3 OOT
Nmax 14536979
Tavg 0.9
Tmax 74.0

Best- OOT
Breadth- OOM

Solution Memorization

Depth S

Navg 763.4 2509.5 7919.1 27503.2 135724.0 189719.1 OOT
Nmax 17699 60462 228940 1660593 9841123 14388210
Tavg 0.4 0.5 0.9 2.5 22.1 38.7
Tmax 1.0 2.0 14.1 275.0 2876.1 7603.2

Node Memorization

Depth Pa

Navg 577.4 1973.6 5850.6 21644.8 107804.7 146216.4 430330.1 OOT
Nmax 11963 83075 137580 1004546 12052793 4321070 13234264
Tavg 0.4 0.4 0.5 0.9 7.4 5.9 21.2
Tmax 1.0 1.0 2.3 39.0 1488.2 312.0 1055.7

Depth Pr

Navg 342.4 902.9 2512.6 7233.0 20196.3 35458.0 99387.1 274871.1 551713.3 OOT
Nmax 3865 17447 50003 187425 665376 768802 1781123 14713483 11236833
Tavg 0.4 0.4 0.4 0.6 1.0 1.3 4.1 14.3 34.3
Tmax 0.4 1.0 1.3 5.0 30.0 21.0 64.3 901.0 1255.0

Best Pa

Navg 350.9 885.9 2125.7 6866.0 20700.7 28155.0 71459.7 OOT
Nmax 3912 20889 43000 440623 1348082 1252600 1668977
Tavg 0.4 0.4 0.4 0.6 2.0 2.0 6.4
Tmax 0.405 1.0 1.1 30.0 241.0 130.0 391.2

Best Pr

Navg 313.7 730.6 1680.8 4494.6 11060.6 16305.9 39053.7 132949.2 220989.7 390481.2 OOT
Nmax 3865 11762 28253 120259 319068 299540 607871 10659343 7578570 7630213
Tavg 0.4 0.4 0.4 0.5 0.8 1.0 2.5 35.0 20.5 83.6
Tmax 0.4 1.0 1.0 4.0 23.0 19.9 58.2 5008.0 1137.0 6806.5

Breadth Pa

Navg 364.2 922.9 2074.1 6375.8 16474.2 24731.0 59474.3 105989.8 225013.9 464121.4 OOT
Nmax 4701 16952 36960 437697 881817 868876 1561063 5975094 7577492 23966269
Tavg 0.0 0.0 0.0 0.2 0.4 0.9 2.2 9.1 16.8 65.5
Tmax 0.015 0.1 0.7 9.0 31.1 31.0 67.2 1353.0 1135.0 8232.3

The results of Sips are presented in Table 6. It appears that it can efficiently solve instances
with up to 140 jobs, which slightly improves upon the branch-and-bound algorithms with mem-
orization. In order to test the sensitivity of these algorithms on the range of input data values,
we generated a new dataset with processing time generated uniformly from [1, 1000] and job
weights from [1, 100]. This leads to the results in Table 7. Both algorithms Breadth Pa and Sips
solve smaller instances than before, with Breadth Pa being limited to 110 jobs and Sips being
limited to 100 jobs.

Table 6: Results of the algorithm Sips on the 1|d̃ j |
∑

w jC j problem

40 50 60 70 80 90 100 110 120 130 140 150

Sips
Tavg 0.070 0.160 0.320 0.550 1.057 1.829 2.450 5.672 5.675 9.107 12.013 OOM
Tmax 0.468 1.030 2.278 3.916 19.609 61.683 20.062 410.361 68.094 246.138 175.969

17

Table 7: Results of algorithms on new instances with larger processing times and weights (pmax = 1000,wmax = 100)

n 90 100 110 120

Depth Pr Tavg 12.00 OOT
Tmax 603.35

Best Pr Tavg 14.59 OOT
Tmax 1513.02

Breadth Pa Tavg 8.869 115.62 121.93 OOM
Tmax 464.71 16562.41 5244.38

Sips
Tavg 19.14 33.00 OOM
Tmax 225.11 292.58

5. Application to the 1||
∑

T j problem

5.1. Preliminaries
In this section we focus on a scheduling problem and a branching algorithm that involves

a decomposition branching scheme. Even if this kind of branching scheme is not frequent in
scheduling, there still exists works considering decomposition branching. Examples are for
the 1|r j, q j|Lmax problem (Carlier, 1982) and the 1|d j = d <

∑
j p j|
∑

j α jE j + β jT j problem
(Hoogeveen and van de Velde, 1991).
Let us focus on the 1||

∑
T j problem that requires to schedule a set of n jobs N = {1, 2, . . . , n} on

a single machine. Each job j is defined by a processing time p j and a due date d j. The machine
can only process one job at a time and a schedule is a sequence of the jobs. The aim is to find
a sequence that minimizes

∑
T j with T j = max{C j − d j, 0} the tardiness of job j in any given

schedule. This problem is known to be NP-hard in the ordinary sense (Du and Leung, 1990) and
it has been extensively studied in the literature.

The current state-of-the-art exact method is a search-tree algorithm, denoted by SGDC2001,
that solves to optimality instances with up to 500 jobs in size (Szwarc et al., 2001). The latest
theoretical developments for the problem can be found in the survey by Koulamas (2010). The
main properties of the problem can be found in Szwarc et al. (2001), and some of them are given
below. Without loss of generality, let (1, 2, . . . , n) be the sequence of jobs sorted by the LPT rule
(Longest Processing Time first) and let ([1], [2], . . . , [n]) be the sequence given by the EDD rule
(Earliest Due Date first). We first introduce two important decomposition properties.

Decomposition 1. Lawler (1977) (Lawler’s decomposition) Assume job 1 in the LPT sequence
corresponds to job [k] in the EDD sequence. Then, job 1 can be set only in positions h ≥ k and
the jobs preceding and following job 1 are uniquely determined as B1(h) = {[1], [2], . . . , [k −
1], [k + 1], . . . , [h]} and A1(h) = {[h + 1], . . . , [n]}.

Decomposition 2. Szwarc et al. (1999) Assume job k in the LPT sequence corresponds to
job [1] in the EDD sequence. Then, job k can be set only in positions h ≤ (n − k + 1) and the
jobs preceding job k are uniquely determined as Bk(h), where Bk(h) ⊆ {k + 1, k + 2, . . . , n} and
∀i ∈ Bk(h), j ∈ {n, n − 1, . . . , k + 1}r Bk(h), di ≤ d j

The two above decomposition rules can be applied simultaneously to derive a decomposition
branching scheme called Double Decomposition (Szwarc et al., 2001). From that branching
scheme it follows that nodes of the search tree are of the form σ1S 1σ2S 2...σiS i...σkS k. The

18

Double Decomposition is always applied on S 1 and it works as follows: first find the longest job
` and the earliest due date job e in S 1. Then, apply Decomposition 1 (resp. Decomposition 2)
to get the lists L` (resp. Le) of positions, on which ` (resp. e) can be branched on. SGDC2001
algorithm employs the depth-first search strategy.

When branching from a node, another particular decomposition may occur as described in
Property 2. Assume that a given subset of jobs S is decomposed into two disjoint subsets B and
A, with B ∪ A = S and all jobs in B are scheduled before those in A in an optimal schedule
of S : (B, A) is then called an optimal block sequence and Property 2 states when does such
decomposition occur. In that case Decomposition 1 and Decomposition 2 are not applied, but
rather two children nodes are created, each corresponding to one block of jobs (A or B), following
Property 2 (also called the split property).

Let E j and L j be the earliest and latest completion times of job j. That is, if B j (resp. A j)
is the currently known jobs that precedes (resp. follows) job j, then E j = p(B j) + p j, and
L j = p(N r A j).

Property 2. Szwarc et al. (1999) (Split)
(B, A) is an optimal block sequence if maxi∈B Li ≤ min j∈A E j.

The value of E j and L j of each job j can be obtained by applying Emmons’ conditions
(Emmons, 1969) following the O(n2) procedure provided by Szwarc et al. (1999).

An initial version of solution memorization has been already implemented in SGDC2001,
even though it was called Intelligent Backtracking by the authors. Remarkably, lower bounds are
not used in this algorithm due to the “Algorithmic Paradox” (Paradox 1) found by Szwarc et al.
(2001). This one shows that the effectiveness of memorization largely surpasses the contribution
of the lower bounding procedure in the algorithm.

Paradox 1. “...deleting a lower bound drastically improves the performance of the algorithm...”

Paradox 1 is simply because many identical sub-problems occur during the exploration of
the search tree. The computation time required by lower bounding procedures to prune these
identical problems is much higher than simply solving that sub-problem once, memorizing the
solution and reusing it whenever the sub-problem appears again. In addition, pruning nodes by
the lower bound may negatively affect memorization since the nodes that are pruned cannot be
memorized.

The SGDC2001 algorithm uses a depth-first strategy and for each node to branch on, the
following procedure is applied:

1. Search the solution of the current problem, defined by a set of jobs and a starting time of
the schedule, in “memory”, and return the solution if found; otherwise go to 2.

2. Use Property 2 to split the problem into new sub-problems, which are solved recursively
starting from step 1. If no split can be done, go to step 3.

3. Combine Decompositions 1 and 2 to branch on the longest job and the smallest-due-date
job to every candidate position. For each branching case, solve sub-problems recursively,
then store in memory the best solution among all branching cases and return it.

Note that, due to Paradox 1, all lower bounding procedures are removed, which makes the
algorithm a simple branching algorithm. Notice that solution memorization can be implemented
in SGDC2001 as suggested in section 3.3. In SGDC2001, when the database of stored solutions
was full, no cleaning strategy was used and no more partial solutions could be stored.

19

5.2. Experimental results

We take the reference algorithm SGDC2001 as the baseline search-tree algorithm in which
the memorization techniques introduced in this paper are embedded. The decomposition branch-
ing has been proved to be very powerful, and there is no evidence that other branching schemes
such as forward branching or backward branching can lead to a better algorithm (see Szwarc
et al. (2001)). The problem is decomposable according to Definition 1. The main discussion
relies on the relevance of considering node memorization instead of solution memorization. As
already mentioned in section 3.2, it is not obvious to implement node memorization, for a decom-
position branching scheme, which could outperform the solution memorization. Here, a node is
structured as σ1S 1...σkS k with the σi

′s being the partial sequences to memorize in node mem-
orization. Assume we have two nodes σ1S 1...σkS k and π1S ′1...π`S

′
`, it is not obvious that we

will find σi and π j, i ∈ {1, .., k}, j ∈ {1, .., `}, such that σi and π j are of same jobs set and have
the same starting time. Moreover, it seems complicated to design an efficient check() function
deciding which of these two nodes is dominating the other. We found no way to implement node
memorization that could lead to better results than those obtained with solution memorization.
Consequently, only solution memorization is considered and, as sketched in sections 3.2, there is
no interest in considering best-first or breadth-first search strategies.

Henceforth, the choices made by Szwarc et al. (2001) with respect to memorization are re-
tained. In the remainder, we investigate the limitations of the memorization technique as im-
plemented by Szwarc et al. (2001) and propose improvements that significantly augment the
efficiency of the algorithm.

Our algorithm is based on SGDC2001, with two main changes. Since the memory usage
was declared as a bottleneck of SGDC2001, we first retested SGDC2001 on our machine: an HP
Z400 work station with 3.07GHz CPU and 8GB RAM. 200 instances are generated randomly for
each problem size using the same generation scheme as per Potts and Van Wassenhove (1982).
Processing times are generated uniformly from [1, 100] and due dates di are generated uniformly
from [piu, piv] where u = 1 − T − R/2 and v = 1 − T + R/2. Each due date is set to zero
whenever its generated value is negative. Twenty combinations (R,T) are considered where
R ∈ {0.2, 0.4, 0.6, 0.8, 1}, and T ∈ {0.2, 0.4, 0.6, 0.8}. Ten instances are generated for each combi-
nation (R,T). The time limit for the solution of each instance is set to 7.5 hours. It is larger than
the one used for the previous two problems in order to provide full information on the impact of
memorization within the tested algorithms. An algorithm is considered as OOT (Out of Time) if
it reaches this time limit. Additionally, when memorization is applied without a database clean-
ing strategy, the memory may be saturated leading the algorithm to be declared OOM (Out of
Memory).

The results are reported in Table 8. Our implementation of SGDC2001 solves instances with
up to 1000 jobs in size, knowing that the original program, as tested in 2001 was limited to
instances with up to 500 jobs due to the memory size limit. Their tests were done on a Sun
Ultra-Enterprise Station with a reduced CPU frequency (<450MHz). It is anyway interesting to
see that with just the computer hardware evolution, memorization enables to solve instances with
500 jobs more. SGDC2001 is out of time for instances with 1100 jobs, and the memory size no
longer seems to be the bottleneck. The first improvement we propose continues on the vein of
Paradox 1.

Paradox 2. Removing the Split procedure (Property 2) from SGDC2001 drastically accelerates
the solution.

20

The effect of Paradox 2 is pretty strong. The resulting algorithm NoSplit solves instances
with an average solution time about twice faster than SGDC2001, and it also manages to solve
instances with 1100 jobs. In fact, Split is performed based on precedence relations between jobs,
induced by the computation of the E j

′s and L j
′s. The computation of these precedence relations

is time consuming in practice. Moreover, as already claimed, many identical problems appear in
the search tree and the Split procedure in SGDC2001 is run at each time. When Split is removed,
identical problems are solved in a way needing more time when first met, but then never solved
twice thanks to solution memorization. However, the disadvantage is also clear: more solutions
are added to the database and hence the database is filled faster than when Split is enabled. This
is why NoSplit encounters memory problems on instances with 1200 jobs. Removing Split was
not considered by Szwarc et al. (2001) because Split is a very strong component of the algorithm
and the memory available at that time also discouraged this tentative.

The second improvement we provide to SGDC2001 relates to the database cleaning strategy
which has been changed to LUFO strategy. The corresponding algorithm is referred to as NoS-
plit LUFO in Table 8. All 200 instances with 1200 jobs are solved, with an average solution time
of about half an hour, while SGDC2001 is limited to instances with 1000 jobs.

Table 8: Results of branch-and-bound algorithms for the 1||
∑

T j problem

n 200 300 400 500 600 700 800 900 1000 1100 1200 1300

Depth-

Navg 306205.8 OOT
Nmax 11020671
Tavg 1.4
Tmax 77

SGDC2001

Navg 12244.7 50662.9 130325.4 312115.8 521479.8 917491.0 1472547.3 2213671.2 3149954.5 OOT
Nmax 135242 799870 1313084 3371277 5462573 8522132 13866537 20453973 27246555
Tavg 0.1 2.0 8.3 33.7 81.1 209.5 463.4 855.3 1586.2
Tmax 3 50 117 491 1140 2579 5858 10003 18097

NoSplit

Navg 11307.2 47835.0 122962.4 295104.1 493047.5 870015.8 1406250.0 2110070.2 3009635.4 4102758.9 OOM
Nmax 132497 776561 1335920 3239773 5348951 8302464 13410893 20227299 26691043 38293210
Tavg 0.1 1.0 4.5 18.0 42.7 107.5 230.3 417.7 778.2 1258.6
Tmax 2 28 64 265 613 1374 2886 4911 9151 16855

NoSplit LUFO

Navg 11307.2 47835.0 122962.4 295104.1 493047.5 870015.8 1406250.0 2110070.2 3009635.4 4102758.9 5314954.0 OOT
Nmax 132497 776561 1335920 3239773 5348951 8302464 13410893 20227299 26691043 38293210 54926916
Tavg 0.1 1.0 4.5 18.0 42.7 107.5 230.3 417.7 778.2 1258.6 1991.7
Tmax 2 28 64 265 613 1374 2886 4911 9151 16855 26115

The presented experiments show that correctly tuning the memorization mechanism may lead
to considerable improvement to its efficiency. However, the striking point of these experiments
relates to the comparison between the version of SGDC2001 without memorization (algorithm
Depth-) and NoSplit LUFO. Table 8 highlights the major contribution of a Branch & Memorize
approach: Depth- being limited to instances with up to 200 jobs while NoSplit LUFO is capable
of solving all instances with 1200 jobs. To the best of authors’ knowledge, NoSplit LUFO is the
currently most efficient exact algorithm for the 1||

∑
T j problem.

6. Conclusions

In this paper, we focused on the application of memorization techniques within search tree
algorithms for the efficient solution of sequencing problems. Several memorization schemes are
defined and some advices are provided for choosing the best memorization approach according
to the branching scheme and the search strategy applied. The proposed Branch & Memorize
approach has been tested on three single machine sequencing problems. Even though its perfor-
mance depends on the problem, in all cases, it outperforms the related exact algorithms without

21

memorization. We provide below a summary of the conclusions obtained, under a CPU limit of
5h for problems 1|r j|

∑
C jand 1|d̃ j|

∑
w jC j and of 7.5h for problem 1||

∑
T j:

• Problem 1|r j|
∑

C j: best configuration is depth-first with predictive node memorization.
Largest instances solved: 130 jobs against 80 jobs without memorization.

• Problem 1|d̃ j|
∑

w jC j: best configuration is best-firstwith predictive node memorization.
Largest instances solved: 130 jobs against 40 jobs without memorization.

• Problem 1||
∑

T j: best configuration is depth-firstwith solution memorization. Largest in-
stances solved: 1200 jobs against 200 jobs without memorization.

Fundamentally, what we call the Branch & Memorize paradigm relies on a simple but poten-
tially very efficient idea: memorizing what has already been done to avoid solving identical or
dominated sub-problems in the rest of the solution process. The contribution of this paradigm
strongly relies on the branching scheme which can induce more or less redundancy in the explo-
ration of the solution space. It is noteworthy that the three sequencing problems dealt with in
this paper mainly serve as applications illustrating how memorization can be done in an efficient
way. However, it is also clear that it can be applied to other hard combinatorial optimization
problems, making this contribution interesting beyond scheduling theory. To our opinion, mem-
orization techniques should be embedded into any branching algorithm, so creating a new class
of branching algorithms called Branch & Memorize algorithms. They may have a theoretical in-
terest since, under the hypothesis of infinite memory, memorization can be mathematically used
to reduce the worst-case time complexity with respect to search tree algorithms. In addition, they
also have an interest from an experimental viewpoint, as illustrated in this paper.

As a future research line, we plan to evaluate Branch & Memorize algorithms on other com-
binatorial optimization problems. It may also be promising to see how the machine learning field
could help in efficiently managing the database of stored partial solutions. A more intelligent
database managing strategy may be conceived, which decides which solutions to store or which
solutions to remove from the database, through a learning process.

Acknowledgement

We thank Shunji Tanaka for providing us the code of his algorithms. This work has been par-
tially supported by ”Ministero dell’Istruzione, dell’Università e della Ricerca” Award ”TESUN-
83486178370409 finanziamento dipartimenti di eccellenza CAP. 1694 TIT. 232 ART. 6”.

References

Baptiste, P., Jouglet, A., Carlier, J., 2004. A branch-and-bound procedure to minimize total tardiness on one machine
with arbitrary release dates. European Journal of Operational Research 158, 595–608.

Biere, A., Heule, M., van Maaren, H., Walsh, T., 2009. Conflict-driven clause learning sat solvers. Handbook of Satisfi-
ability, Frontiers in Artificial Intelligence and Applications, 131–153.

Carlier, J., 1982. The one-machine sequencing problem. European Journal of Operational Research 11 (1), 42–47.
Chu, C., 1992. A branch-and-bound algorithm to minimize total flow time with unequal release dates. Naval Research

Logistics (NRL) 39 (6), 859–875.
Chvatal, V., 1997. Resolution search. Discrete Applied Mathematics 73, 81–99.
Du, J., Leung, J. Y.-T., 1990. Minimizing total tardiness on one machine is np-hard. Mathematics of operations research

15 (3), 483–495.
22

Emmons, H., 1969. One-machine sequencing to minimize certain functions of job tardiness. Operations Research 17 (4),
701–715.

Fomin, F. V., Kratsch, D., 2010. Exact exponential algorithms. Springer Science & Business Media.
Garraffa, M., Shang, L., Della Croce, F., T’Kindt, V., 2018. An exact exponential branch-and-merge algorithm for the

single machine total tardiness problem. Theoretical Computer Science 745, 133–149.
Glover, F., 1989. Tabu search—part i. ORSA Journal on computing 1 (3), 190–206.
Glover, F., 1990. Tabu search—part ii. ORSA Journal on computing 2 (1), 4–32.
Gurevich, Y., Shelah, S., 1987. Expected computation time for hamiltonian path problem. SIAM Journal on Computing

16 (3), 486–502.
Hanafi, S., Glover, F., 2002. Resolution search and dynamic branch-and-bound. Journal of Combinatorial Optimization

6, 401–423.
Hoogeveen, H., van de Velde, S., 1991. Scheduling around a small common due date. European Journal of Operational

Research 55, 237–242.
Jouglet, A., Baptiste, P., Carlier, J., 2004. Branch-and-bound algorithms for totalweighted tardiness. In: Handbook of

scheduling: Algorithms, models, and performance analysis. Chapman and Hall/CRC, Ch. 13.
Kao, G. K., Sewell, E. C., Jacobson, S. H., 2009. A branch, bound, and remember algorithm for the 1|ri |

∑
ti scheduling

problem. Journal of Scheduling 12, 163–175.
Koulamas, C., 2010. The single-machine total tardiness scheduling problem: review and extensions. European Journal

of Operational Research 202 (1), 1–7.
Lawler, E. L., 1977. A “pseudopolynomial” algorithm for sequencing jobs to minimize total tardiness. Annals of discrete

Mathematics 1, 331–342.
Li, Z., Cil, Z., Mete, S., Kucukkoc, I., 2020a. A fast branch, bound and remember algorithm for disassembly line

balancing problem. International Journal of Production Research 58 (11), 3220–3234.
Li, Z., Kucukkoc, I., Tang, Q., 2020b. A comparative study of exact methods for the simple assembly line balancing

problem. Soft Computing 24, 11459–11475.
Li, Z., Kucukkoc, I., Zhang, Z., 2018. Branch, bound and remember algorithm for u-shaped assembly line balancing

problem. Computers & Industrial Engineering 124, 24–35.
Morrison, D., Jacobson, S., Sauppe, J., Sewell, E., 2016. Branch-and-bound algorithms: A survey of recent advances in

searching, branching, and pruning. Discrete Optimization 19, 79–102.
Morrison, D. R., Sewell, E. C., Jacobson, S. H., 2014. An application of the branch, bound, and remember algorithm to

a new simple assembly line balancing dataset. European Journal of Operational Research 236, 403–409.
Posner, M. E., 1985. Minimizing weighted completion times with deadlines. Operations Research 33 (3), 562–574.
Posta, M., Ferland, J., Michelon, P., 2011. Generalized resolution search. Discrete Optimization 8, 215–228.
Potts, C. N., Van Wassenhove, L., 1982. A decomposition algorithm for the single machine total tardiness problem.

Operations Research Letters 1 (5), 177–181.
Potts, C. N., Van Wassenhove, L. N., 1983. An algorithm for single machine sequencing with deadlines to minimize total

weighted completion time. European Journal of Operational Research 12 (4), 379–387.
Robson, J. M., 1986. Algorithms for maximum independent sets. Journal of Algorithms 7 (3), 425–440.
Sewell, E. C., Jacobson, S. H., 2012. A branch, bound, and remember algorithm for the simple assembly line balancing

problem. INFORMS Journal on Computing 24 (3), 433–442.
Shang, L., T’Kindt, V., Della Croce, F., Jun. 2018. The Memorization Paradigm: Branch & Memorize Algorithms for

the Efficient Solution of Sequencing Problems. Research report, University of Tours.
URL https://hal.archives-ouvertes.fr/hal-01599835

Sourd, F., Kedad-Sidhoum, S., 2008. A faster branch-and-bound algorithm for the earliness-tardiness scheduling prob-
lem. Journal of Scheduling 11, 49–58.

Szwarc, W., Della Croce, F., Grosso, A., 1999. Solution of the single machine total tardiness problem. Journal of Schedul-
ing 2 (2), 55–71.

Szwarc, W., Grosso, A., Croce, F. D., 2001. Algorithmic paradoxes of the single-machine total tardiness problem. Journal
of Scheduling 4 (2), 93–104.

Tanaka, S., Fujikuma, S., 2012. A dynamic-programming-based exact algorithm for general single-machine scheduling
with machine idle time. Journal of Scheduling 15 (3), 347–361.

Tanaka, S., Fujikuma, S., Araki, M., 2009. An exact algorithm for single-machine scheduling without machine idle time.
Journal of Scheduling 12 (6), 575–593.

T’kindt, V., Della Croce, F., Esswein, C., 2004. Revisiting branch and bound search strategies for machine scheduling
problems. Journal of Scheduling 7 (6), 429–440.

Xiao, M., Nagamochi, H., 2017. Exact algorithms for maximum independent set. Information and Computation 255(1),
126–146.

Xiao, M., Tan, H., 2017. Exact algorithms for maximum induced matching. Information and Computation 256, 196–211.
Zhang, L., Madigan, C. F., Moskewicz, M. H., Malik, S., 2001. Efficient conflict driven learning in a boolean satisfiability

23

solver. In: Proceedings of the 2001 IEEE/ACM international conference on Computer-aided design. IEEE Press, pp.
279–285.

24

