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Abstract We propose a framework of lower bounds for the asymmetric traveling
salesman problem (TSP) based on approximating the dynamic programming formu-
lation with different basis vector sets. We discuss how several well-known TSP lower
bounds correspond to intuitive basis vector choices and give an economic interpreta-
tion wherein the salesman must pay tolls as he travels between cities. We then introduce
an exact reformulation that generates a family of successively tighter lower bounds,
all solvable in polynomial time. We show that the base member of this family yields
a bound greater than or equal to the well-known Held-Karp bound, obtained by solv-
ing the linear programming relaxation of the TSP’s integer programming arc-based
formulation.

Keywords Traveling salesman problem · Dynamic program · Approximate linear
program · Integer program · Lower bound technique

Mathematics Subject Classification (2000) 90C10 · 90C27 · 90C35 · 90C39

1 Introduction

The application of dynamic programming (DP) to routing problems dates back at
least half a century. The traveling salesman problem (TSP) was already a notoriously
difficult and well-studied discrete optimization problem in the early 1960’s when three
different articles [11,24,26] proposed dynamic programming formulations to solve it.
DP still gives the best worst-case running time of any exact algorithm for the TSP;
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however, this running time is exponential because of the curse of dimensionality. In
their text on the TSP [7], Applegate et al. summarize their section on DP by noting:

We will not treat further this dynamic programming approach to the TSP. Despite
the nice worst-case time bound obtained by Held and Karp, the inherent growth
in the practical running time of the method restricts its use, even today, to tiny
instances of the problem.

Nevertheless, DP formulations have since been proposed for many other routing prob-
lems, such as the vehicle routing problem [13], the dial-a-ride problem [35] and various
other extensions of the TSP [18,33]. Though not useful as exact algorithms except
in special cases [10], these formulations serve as starting points for many heuristic
algorithms [20,32] and lower bounding procedures [13,33].

The DP formulation of the TSP is a shortest path problem on a network where
the number of nodes and arcs is exponential with respect to the number of cities.
The linear programming (LP) dual of the shortest path formulation then yields the
famous Bellman recursion. The exponential size of this LP prevents exact solutions,
but one can compute valid dual bounds by solving a tractable restriction. Furthermore,
any feasible dual solution represents an approximate cost-to-go which can also be
exploited to generate primal solutions. This approximate linear programming (ALP)
method for DP was proposed as early as the mid 1980’s [37] and early 1990’s [39,40],
and gained traction within the operations research community around the turn of the
century, e.g. [1,2,4,6,15,17,21]. ALP has had success in various areas within opera-
tions management, such as inventory control [1,2,4,5], commodity valuation [34] and
revenue management [3,21]. Some of these applications, e.g. inventory routing [1,2],
require the solution of many TSP sub-problems to calculate approximations, but in
every application we have seen this computation is treated in a black-box fashion. To
our knowledge, in fact, ALP has never been applied in a routing context.

The modeling, solution, application and analysis of the TSP form a vast body of
work within operations research and mathematical programming that we will not
attempt to treat here; the recent texts [7,25,36] cover many of these topics in detail.
The TSP is defined by a finite set {0, . . . , n} of cities and a cost or distance vector
ci j ∈ R for i, j = 0, . . . , n with i �= j . If ci j = c ji for every pair of cities, the
problem is symmetric; otherwise, it is asymmetric. We do not assume symmetry or
any other restriction on c. For notational convenience, we single out the city 0 and
use N = {1, . . . , n}. The TSP’s objective is to find a permutation σ : N → N that
minimizes c0,σ (1)+∑n−1

i=1 cσ(i),σ (i+1)+cσ(n),0; i.e. the cost of starting at city 0, visiting
the cities N in the order specified by σ , and returning to 0. The TSP can be modeled
as a binary integer program:

min
∑

i∈N∪0

∑

j∈(N∪0)\i

ci j xi j (1a)

s.t.
∑

j∈(N∪0)\i

xi j = 1, ∀ i ∈ N ∪ 0 (1b)

∑

j∈(N∪0)\i

x ji = 1, ∀ i ∈ N ∪ 0 (1c)
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∑

i∈U

∑

j∈(N∪0)\U

x ji ≥ 1, ∀ ∅ �= U � N ∪ 0 (1d)

xi j ≥ 0, xi j ∈ Z, ∀ i ∈ N ∪ 0, j ∈ (N ∪ 0)\i. (1e)

Here and elsewhere we identify an element i with its singleton set {i}. This formulation
is sometimes called arc-based, to emphasize that the solution is represented by a set
of arcs that form a tour. Constraints (1b) require that the tour depart each city exactly
once, while constraints (1c) require the tour to enter each city exactly once. The subtour
elimination constraints (1d) require the tour to leave each proper, non-empty subset
of cities at least once, ensuring that the solution is connected.

The DP formulation for the TSP [11,24,26] is based on the following simple obser-
vation: Given that one is at city i , the only additional information needed to choose
the next city to visit is the subset of N that has not been visited yet. (Equivalently, one
can consider the complementary subset of cities already visited, which includes i .)
The set S = {(i, U ) : i ∈ N , U ⊆ N\i} ∪ {(0, N ), (0,∅)} denotes all possible states,
and

A = {((0, N ), (i, N\i)) : i ∈ N } ∪ {((i,∅), (0,∅)) : i ∈ N }
∪{((i, U ∪ j), ( j, U )) : i ∈ N , j ∈ N\i, U ⊆ N\{i, j}}

denotes all possible transitions from one state to another. The cost of any action
((i, U ∪ j), ( j, U )) ∈ A is then ci j , and the solution of the TSP is given by the shortest
path between (0, N ) and (0,∅) in the directed network (S, A):

min
∑

i∈N

⎛

⎝c0i x(0,N ),(i,N\i) +
∑

∅�=U⊆N\i

∑

j∈U

ci j x(i,U ),( j,U\ j) + ci0x(i,∅),(0,∅)

⎞

⎠ (2a)

s.t.
∑

i∈N

x(0,N ),(i,N\i) = 1 (2b)

x(0,N ),(i,N\i) −
∑

j∈N\i

x(i,N\i),( j,N\{i, j}) = 0, ∀ i ∈ N (2c)

∑

k∈N\(U∪i)

x(k,U∪i),(i,U ) −
∑

j∈U

x(i,U ),( j,U\ j) = 0, ∀i ∈ N ,∅ �= U � N\i (2d)

∑

k∈N\i

x(k,i),(i,∅) − x(i,∅),(0,∅) = 0, ∀ i ∈ N (2e)

∑

i∈N

x(i,∅),(0,∅) = 1 (2f)

xa ≥ 0, ∀ a ∈ A. (2g)

The LP dual of the shortest path formulation (2) is

max y0,N − y0,∅ (3a)

s.t. y0,N − yi,N\i ≤ c0i , ∀ i ∈ N (3b)

123



250 A. Toriello

yi,U∪ j − y j,U ≤ ci j , ∀ i ∈ N , j ∈ N\i, U ⊆ N\{i, j} (3c)

yi,∅ − y0,∅ ≤ ci0, ∀ i ∈ N (3d)

y0,N , y0,∅ ∈ R; yi,U ∈ R,∀i ∈ N , U ⊆ N\i. (3e)

This polyhedron contains the line defined by the vector of all ones; the optimal solution
y∗ with y∗

0,∅ = 0 yields the familiar DP backwards recursion:

y∗
i,U =

{
min j∈U {ci j + y∗

j,U\ j }, U �= ∅
ci0, U = ∅, i �= 0,

where y∗
i,U represents the cost-to-go from state (i, U ) to the end, (0,∅). A formulation

that zeroes the y0,N variable instead yields the forward recursion. Throughout the
remainder of the paper, we assume without loss of generality that y0,∅ = 0.

The goal of this paper is to apply ALP techniques to (3) and obtain tractable lower
bounds for the asymmetric TSP. We see the main contributions in two categories:

(i) We formulate a general lower bound framework for the TSP that approximates
the formulation (3). We show how several well-known lower bounds for the TSP
occur as special cases within this framework, how they correspond to intuitive
choices of the approximating basis vectors, and how the approximation gives a
new “tolling” economic interpretation of the bounds.

(ii) We give an exact reformulation of (3) that generates a new family of successively
tighter polynomially-solvable approximations, and show that the base member
of this family produces a bound at least as good as the well-known Held-Karp
bound [27,28] given by the LP relaxation of (1).

From an integer programming perspective, (2) and (3) can be viewed as extended
formulations. In this context, our results concern approximate extended formulations
[41], but our approximate formulations operate in the dual space, use only continuous
variables, and do not converge to an exact formulation. Our framework does not include
semidefinite lower bounding techniques for the symmetric TSP. We refer the reader
to [14,16] and references therein for details on the subject.

The remainder of the paper is organized as follows: Sect. 2 details the general
ALP lower bound framework and the previously studied lower bounds that occur as
special cases. Section 3 gives an exact reformulation of (3), introduces the new bound
family, and compares it to the Held-Karp bound. Section 4 concludes and outlines
future research avenues. Throughout the paper, we use x variables to represent primal
solutions; e.g. xi j = 1 if city i immediately precedes city j in a solution. We use y
as dual variables for x . We use λ,μ as basis vector multipliers and b to represent a
basis. The letters U, W represent subsets of N , and eU ∈ {0, 1}N and 2U represent the
characteristic vector and power set of U respectively. We use ei, j to denote a matrix
of all zeroes except for a one in the (i, j)th entry, where dimensions are specified or
clear from the context.
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2 Approximate linear program

In ALP, the restriction of the dual LP (3) is achieved by means of a set of basis vectors.
Specifically, let λ ∈ R

m , where usually m ≪ |S|, and define a collection bi,U ∈ R
m

for i ∈ N , U ⊆ N\i . Then we can set yi,U = 〈bi,U , λ〉 for every dual variable
corresponding to an intermediate node in the network (S, A), and the resulting dual
solution is feasible provided it satisfies the constraints in (3). For state (i, U ), 〈bi,U , λ〉
is also an approximate cost-to-go. If we define a matrix b with rows bT

i,U indexed by
pairs (i, U ) for each i ∈ N and U ⊆ N\i , its column space is a subspace of the
dual space of variables yi,U , and its columns are basis vectors. The best lower bound
achievable with this choice of m and b is given by the solution to the approximate LP

max y0,N (4a)

s.t. y0,N − 〈bi,N\i , λ〉 ≤ c0i , ∀ i ∈ N (4b)

〈(bi,U∪ j − b j,U ), λ〉 ≤ ci j , ∀ i ∈ N , j ∈ N\i, U ⊆ N\{i, j} (4c)

〈bi,∅, λ〉 ≤ ci0, ∀ i ∈ N (4d)

y0,N ∈ R; λ ∈ R
m . (4e)

Sometimes it is convenient to consider λ and bi,U as matrices; in this case, 〈bi,U , λ〉
represents the Frobenius inner product. In particular, it is sometimes natural to consider
λ ∈ R

m×2; for this situation we instead use (λ, μ), where λ,μ ∈ R
m .

The ALP (4) has an intuitive interpretation that motivates particular basis vector
choices: Suppose a company operates a tolled shuttle service between the cities N ∪ 0
that the traveling salesman can utilize in lieu of his own personal transportation. The
toll between two cities, yi,U∪ j −y j,U , can depend not only on the origin and destination,
but also on the remaining cities the salesman needs to visit before returning to city
0. However, no toll can exceed the salesman’s own travel cost for a pair of cities,
because otherwise he would not utilize the service for this leg of the journey. The
company would ideally like to solve (3); however, for computational reasons they
consider instead approximations given by m and b. The next sections detail how this
choice of m and b can yield well-known TSP lower bounds.

2.1 State space relaxation

In [13], Christofides, et al., introduced the notion of a state space relaxation for general
DP, and explored various specific relaxations for the TSP and other routing variants
(see also [33]). We summarize their pertinent results for the TSP below.

Lemma 1 [13] Let g : 2N → G, where |G| ≤ 2n. For γ ∈ G, let E(i, γ ) = { j ∈
N\i : ∃ U � j, U �� i, g(U ) = γ }. The DP with states (i, g(U )) and action sets
E(i, g(U )) provides a lower bound f (0, g(N )) for (3) via the recursion

f (i, g(U )) =
{

min j∈E(i,g(U )){ci j + f ( j, g(U\ j))}, U �= ∅
ci0, U = ∅, i �= 0.

(5)

123



252 A. Toriello

A similar lower bound is achievable using the forward recursion instead. Because
the state space relaxation is itself a DP, it fits into the framework provided by (4) in a
straightforward manner.

Proposition 2 Let λ ∈ R
N×G, and let bi,U = ei,g(U ) ∈ {0, 1}N×G. Then the optimal

value of (4) is the lower bound f (0, g(N )).

Proof Substituting this b into (4), it is simple to check that the resulting LP is in fact
the dual LP formulation of the state space relaxation DP with backward recursion (5).

��
This proposition shows that the state space relaxation bound f (0, g(N )) results

from assuming that all subsets U ⊆ N\i with equal g(U ) should be valued equally
when the salesman is at city i ; this approximate cost-to-go is λi,g(U ). The next example
gives one intuitive choice of g.

Example 3 [29] Let g(U ) = |U | + 1 and E(i, U ) = N\i , so bi,U = ei,|U |+1 ∈
{0, 1}N×n . The approximate cost-to-go is λi,|U |+1, implying that from a particular city
i , the basis assigns the same cost to all subsets of the same cardinality. In this case,
the formulation (4) is

max y0,N

s.t. y0,N − λi,n ≤ c0i , ∀ i ∈ N

λi,k+1 − λ j,k ≤ ci j , ∀ i ∈ N , j ∈ N\i, k = 1, . . . , n − 1

λi,1 ≤ ci0, ∀ i ∈ N

λ ∈ R
N×n,

and the LP dual is

min
∑

i∈N

⎛

⎝c0i x0i +
∑

j∈N\i

ci j

n−1∑

k=1

xk
i j + ci0xi0

⎞

⎠

s.t.
∑

i∈N

x0i = 1

−x0i +
∑

j∈N\i

xn−1
i j = 0, ∀ i ∈ N

∑

j∈N\i

(xk
i j − xk+1

j i ) = 0, ∀ i ∈ N , k = 1, . . . , n − 2

−
∑

j∈N\i

x1
j i + xi0 = 0, ∀ i ∈ N

x0i , xi0 ≥ 0, ∀ i ∈ N ; xk
i j ≥ 0,∀ i ∈ N , j ∈ N\i, k = 1, . . . , n − 1.

The optimal solution of this LP is the minimum cost (n+1)-step closed walk that starts
and ends at city 0 and doesn’t visit it otherwise. Returning to the tolling interpretation,
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the toll given by this basis, λi,k+1 − λ j,k , depends on the starting and ending city, and
also on the number of cities the salesman has left to visit.

Of course, tighter lower bounds result from more complex choices of g. We refer
the reader to [13] for details.

2.2 Matroid bounds and the LP relaxation

The state space relaxation bounds stem from assigning a single equal value to different
states; i.e. from a particular city, we value different remaining sets of cities equally
via g. We next consider some additive approximations.

Example 4 Let λ ∈ R
N , bi,U = eU∪i ∈ {0, 1}N . This basis choice assigns yi,U =∑

j∈U∪i λ j ; that is, the cost-to-go assigns individual costs to each remaining city plus
the current location. Thus, when the salesman is at city i , there is an exit toll λi ,
regardless of the remaining cities to visit or the chosen destination.

Letting λ0 = y0,N − ∑
i∈N λi , the formulation (4) under this choice of b becomes

max
∑

i∈N∪0

λi

s.t. λi ≤ ci j , ∀ i ∈ N ∪ 0, j ∈ (N ∪ 0)\i

λ ∈ R
N∪0.

The optimal solution is λ∗
i = min j∈(N∪0)\i ci j , the minimum-cost basis of the partition

matroid given by the forward stars of N ∪0. The dual is the LP relaxation of (1) keeping
only constraints (1b).

The bound given by this example is very weak. One reason is the basis’ inability to
account for the salesman’s current location. The next proposition resolves this issue.

Proposition 5 Let λ ∈ R
N , μ ∈ R

N∪0, and bi,U = (eU∪i , eU∪0), where eU∪i ∈
{0, 1}N , eU∪0 ∈ {0, 1}N∪0. The optimal value of (4) is then the minimum cost of
a basis in the intersection of the two partition matroids given by the forward and
backward stars of N ∪ 0; i.e. the degree relaxation, or assignment bound.

The approximate cost-to-go is now yi,U = λi + μ0 + ∑
j∈U (λ j + μ j ), and the toll

to go from i to j is λi + μ j , regardless of other remaining cities. In other words, the
salesman must pay an entrance toll μi and exit toll λi at every city i .

Proof Rewriting y0,N = ∑
i∈N∪0(λi + μi ) with the new variable λ0, formulation (4)

becomes

max
∑

i∈N∪0

(λi + μi )

s.t. λi + μ j ≤ ci j , ∀ i ∈ N ∪ 0, j ∈ (N ∪ 0)\i

λ,μ ∈ R
N∪0,
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Fig. 1 An example of geometric
duality for the TSP with dual
variables representing tolls

μi j

μj

μi

λ ij

i

i

j

λ

jλ

The dual of this formulation is the LP relaxation of (1) keeping only constraints (1b)
and (1c), precisely the degree relaxation. ��

This proposition’s basis reduces to a well-known special case when the TSP instance
satisfies additional conditions, explained next.

Definition 6 [8] A TSP instance is geometric if each city i corresponds to a point
zi ∈ R

q , and the travel costs are symmetric and satisfy ci j = c ji = ‖zi − z j‖p, where
‖·‖p is the �p norm for some p ∈ N ∪ ∞.

Jünger and Pulleyblank [30] introduced the notion of geometric duality for com-
binatorial optimization problems. For the geometric TSP, Proposition 5’s formu-
lation is their control zone bound: Because the instance is symmetric, we take
λi = μi ,∀ i ∈ N ∪ 0, and the optimal solution represents the radii of �p-balls
centered at each zi with pairwise non-intersecting interiors and maximum sum. The
ALP (4) gives an additional tolling interpretation of their bound that extends to the
non-geometric and non-symmetric case. Figure 1 gives an example with p = q = 2
and n = 3.

Another way to strengthen the bound given by Example 4 is to consider tolls for sets
of cities in addition to individual city tolls. The next basis explores this idea; however,
we first need an additional definition.

Definition 7 [27] A 0-arborescence is a directed graph with vertex set N ∪ 0 where
exactly one arc is directed into each city and there is exactly one directed cycle, which
includes 0.

As Held and Karp note in their classical papers [27,28], any TSP tour is a
0-arborescence, and therefore the minimum cost of a 0-arborescence is a lower bound
on (1).

Proposition 8 Let μ ∈ R
2N \N and bi,U = e2U ∈ {0, 1}2N \N . If we impose the

additional constraints μU ≥ 0 for |U | ≥ 2, the optimal value of (4) is the minimum
cost of a 0-arborescence.
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This basis approximates the cost-to-go using only the set of remaining cities: yi,U =∑
W⊆U μW , implying there is an entrance toll not only for cities, but also for sets of

cities (we use μ here to maintain notational consistency with the other bases).

Proof Rewriting y0,N = ∑
U⊆N μU , where we include a new unrestricted variable

μN , (4) becomes

max
∑

U⊆N

μU

s.t.
∑

U⊆N\i

μU∪i ≤ c0i , ∀i ∈ N

∑

U⊆N\{i, j}
μU∪ j ≤ ci j , ∀i ∈ N , j ∈ N\i

μ∅ ≤ ci0, ∀i ∈ N

μU ≥ 0, ∀2 ≤ |U | ≤ n − 1

μ ∈ R
2N

,

where the second set of constraints implies all constraints (4c) because of non-
negativity. The dual is the LP relaxation of (1) keeping all constraints (1c), constraint
(1b) only for city 0, and constraints (1d) for U ⊆ N . The integer vectors satisfying
these constraints are precisely the characteristic vectors of 0-arborescences.

Moreover, the set of 0-arborescences is the set of bases in the intersection of two
matroids: The partition matroid given by backward stars of N ∪ 0, and the modified
graphic matroid on (N ∪ 0)2 that allows at most one cycle that must include 0. By
the Matroid Intersection Theorem [19], the polyhedron defined by these constraints is
integral, and therefore we can take the optimal solution to be the characteristic vector
of a 0-arborescence. ��

We can combine the concepts from Propositions 5 and 8 to yield the following
result.

Theorem 9 Let λ ∈ R
2N \∅ and μ ∈ R

2N \N . Let bi,U = (e2N \(2N\(U∪i)), e2U ), with

e2N \(2N\(U∪i)) ∈ {0, 1}2N \∅ and e2U ∈ {0, 1}2N \N . Suppose we impose the additional
constraints λU , μU ≥ 0,∀ 2 ≤ |U | ≤ n − 1 and replace constraints (4c) with

∑

U⊆N\{i, j}
(λU∪i + μU∪ j ) ≤ ci j , ∀ i ∈ N , j ∈ N\i (6)

in the formulation (4). Then the optimal solution is feasible for (4) and the optimal
value is that of the LP relaxation of the arc-based formulation (1), the Held-Karp
bound.

The approximate cost-to-go is

yi,U =
∑

(U∪i) �⊆W⊆N

λN\W +
∑

W⊆U

μW ;

there is an entrance toll μU and exit toll λU for every subset of cities U ⊆ N .
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Proof For this basis, constraints (4c) become

∑

W⊆N\(U∪{i, j})
λW∪i +

∑

W⊆U

μW∪ j ≤ ci j , ∀ i ∈ N , j ∈ N\i, U ⊆ N\{i, j},

and they are implied by constraints (6) together with non-negativity, so any feasible
solution of this modified LP is feasible for the original (4). As in previous proofs, define
additional unrestricted decision variables λ∅ and μN , and set y0,N = ∑

U⊆N (λU +
μU ). The formulation is then rewritten as

max
∑

U⊆N

(λU + μU ) (7a)

s.t. λ∅ +
∑

U⊆N\i

μU∪i ≤ c0i , ∀i ∈ N (7b)

∑

U⊆N\{i, j}
(λU∪i + μU∪ j ) ≤ ci j , ∀i ∈ N , j ∈ N\i (7c)

∑

U⊆N\i

λU∪i + μ∅ ≤ ci0, ∀i ∈ N (7d)

λU , μU ≥ 0, ∀2 ≤ |U | ≤ n − 1 (7e)

λ,μ ∈ R
2N

. (7f)

This is exactly the dual of the LP relaxation of (1): Constraints (1b) correspond to λU

with |U | ≤ 1, (1c) correspond to μU with |U | ≤ 1, and constraints (1d) with U � 0
and U �� 0 correspond to λN\U and μU respectively. ��

As with the optimal 0 -arborescence, it is well known that the LP relaxation of (1)
(and thus (4) with this basis) can be solved in polynomial time [7,36].

When the TSP instance is geometric, this basis and formulation correspond to Jünger
and Pulleyblank’s [30] control zone and moat bound: By symmetry, we take λU = μU ,
and the optimal solution represents the radii of �p-balls around each city (for U empty
or a singleton) and the radii of �p moats around sets of cities (for |U | ≥ 2). Figure 1
shows an example of a two-city moat with its associated dual variables.

Table 1 summarizes this section’s results. For each basis, it indicates the basis
dimension, the actual basis values, and the corresponding bounds for both the general
TSP as well as the geometric TSP.

3 A new lower bound family

Our exact reformulation of (3) is based on the following basic linear algebra fact.

Lemma 10 The column space of the matrix (eT
2U )U⊆N is R

2N
.

Proof Let y ∈ R
2N

and define λ ∈ R
2N

recursively as λ∅ = y∅ and λU = yU −∑
W�U λW ,∀ ∅ �= U ⊆ N . Then yU = ∑

W⊆U λU = 〈e2U , λ〉,∀ U ⊆ N . ��
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Table 1 TSP bounds for various basis choices

m bi,U General TSP bound Geometric TSP bound

n eU∪i Forward star

2n + 1 (eU∪i , eU∪0) Degree relaxation Control zone [30]

n2 ei,|U |+1 (n + 1)-step walk [29]

n × |G| ei,g(U ) State space relaxation [13]

2n − 1 e�
2U 0-arborescence [27,28]

2n+1 − 2 (e2N \(2N\(U∪i)), e2U )� LP relaxation of (1) [27] Control zone and moat [30]

A star next to the basis indicates that additional constraints are applied to the ALP (4)

Corollary 11 Let λi ∈ R
2N\i

,∀ i ∈ N and consider λ = (λT
i )i∈N as an n × 2n−1

matrix. Let bi,U ∈ {0, 1}n×2n−1
be a matrix with all zero rows, except for the i-th row,

equal to eT
2U . Then (4) is equivalent to (3); that is, the problems have equal optimal

values and a one-to-one correspondence between feasible solutions.

Remark 12 Another equivalent formulation arises from rewriting a variable y ∈ R
2N

in terms of supersets rather than subsets: yU = ∑
W⊇U μN\W = ∑

W⊆N\U μW =
〈e2N\U , μ〉. In this case the basis bi,U ∈ {0, 1}n×2n−1

consists of a matrix with all zero
rows except for the i-th one, equal to eT

2N\(U∪i) .

Neither basis’ formulation is useful in its entirety, but they generate a family of
approximations.

Definition 13 For each i ∈ N , let U+
i ,U−

i ⊆ 2N\i and U = (U+
i ,U−

i )i∈N . Define as

P(U) the problem (4) with decision variables λ,μ ∈ R
n×2n−1

(considered as matrices)
and bi,U ∈ {0, 1}n×2n

equal to a matrix with all zero rows except for the i-th row, which
is (eT

2U ∩U+
i
, eT

2N\(U∪i)∩U−
i
).

This basis yields the approximation

yi,U =
∑

W⊆U
W∈U+

i

λi,W +
∑

W⊆N\(U∪i)
W∈U−

i

μi,W .

The state (i, U ) is valued using subsets of U (the remaining cities) in the set U+
i , and

subsets of N\(U ∪ i) (the previously visited cities) in U−
i .

Example 14 Let U+
i = {∅},U−

i = ∅,∀ i ∈ N . Then P(U) is

max y0,N

s.t. y0,N − λi,∅ ≤ c0i , ∀ i ∈ N

λi,∅ − λ j,∅ ≤ ci j , ∀ i ∈ N , j ∈ N\i

λi,∅ ≤ ci0, ∀ i ∈ N

y0,N ∈ R; λ ∈ R
N .
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The optimal value of this LP is the minimum cost of a circulation that forces one
unit of flow through city 0.

The next theorem gives our first main result.

Theorem 15 Fix t ∈ Z, 0 ≤ t ≤ n−1
2 , and define

U+
i,t = U−

i,t = {U ⊆ N\i : |U |≥ n − t} ∪ {U ⊆ N\i : |U | ≤ 1}
Ut = (U+

i,t ,U−
i,t )i∈N .

Then the separation problem for P(Ut ) is solvable using O(nt+2 + n3) arithmetic
operations, and therefore P(Ut ) is solvable in polynomial time.

For this basis, the approximate cost-to-go of state (i, U ) is

yi,U = λi,∅ + μi,∅ +
∑

k∈U

λi,k +
∑

k∈N\(U∪i)

μi,k +
∑

W⊆U
|W |≥n−t

λi,W +
∑

W⊆N\(U∪i)
|W |≥n−t

μi,W ,

For a city i , every state (i, U ) is valued using λi,∅ + μi,∅ and n − 1 variables of the
form λi,k and μi,k . In addition, states with |U | ≥ n − t or |U | ≤ t −1 are valued more
finely with the additional, higher-order variables. Before proving the result, we show
that several of the variables defining the basis can be dropped without any loss.

Proposition 16 If we reduce U−
i,t to {U ⊆ N\i : |U |≥ n − t} the optimal value of

P(Ut ) remains unchanged. That is, variables μi,U for |U | ≤ 1 are redundant.

Proof Let i ∈ N , and let λi,U , μi,U ∈ R for |U |≤ 1. Our aim is to define new variables
πi,U , |U | ≤ 1 to replace the λ variables, and show that their approximate cost-to-go
is equal to the one given by λ and μ together. Let πi,∅ = λi,∅ + μi,∅ + ∑

k∈N\i μi,k ,
and πi, j = λi, j − μi, j . Then

πi,∅ +
∑

k∈U

πi,k = λi,∅ + μi,∅ +
∑

k∈N\i

μi,k +
∑

k∈U

(λi,k − μi,k)

= λi,∅ + μi,∅ +
∑

k∈U

λi,k +
∑

k∈N\(U∪i)

μi,k .

��
Proof of Theorem 15 After the variable replacement of Proposition 16, P(Ut ) is

max y0,N (8a)

s.t. y0,N − πi,∅ −
∑

k∈N\i

πi,k −
∑

U⊆N\i
|U |≥n−t

λi,U ≤ c0i , ∀ i ∈ N (8b)
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πi,∅ − π j,∅ + πi, j +
∑

k∈U

(πi,k − π j,k)

+
∑

W⊆U∪ j
|W |≥n−t

λi,W −
∑

W⊆U
|W |≥n−t

λ j,W ≤ ci j , (8c)

∀ i ∈ N , j ∈ N\i, U ⊆ N\{i, j}, |U | ≥ n − t

πi,∅ − π j,∅ + πi, j +
∑

k∈U

(πi,k − π j,k) + λi,U∪ j ≤ ci j , (8d)

∀ i ∈ N , j ∈ N\i, U ⊆ N\{i, j}, |U | = n − t − 1

πi,∅ − π j,∅ + πi, j +
∑

k∈U

(πi,k − π j,k) ≤ ci j , (8e)

∀ i ∈ N , j ∈ N\i, U ⊆ N\{i, j}, t ≤ |U | ≤ n − t − 2

πi,∅ − π j,∅ + πi, j +
∑

k∈U

(πi,k − π j,k) − μ j,N\(U∪ j) ≤ ci j , (8f)

∀ i ∈ N , j ∈ N\i, U ⊆ N\{i, j}, |U | = t − 1

πi,∅ − π j,∅ + πi, j +
∑

k∈U

(πi,k − π j,k)

+
∑

W⊆N\(U∪{i, j})
|W |≥n−t

μi,W −
∑

W⊆N\(U∪ j)
|W |≥n−t

μ j,W ≤ ci j , (8g)

∀ i ∈ N , j ∈ N\i, U ⊆ N\{i, j}, |U | ≤ t − 2

πi,∅ +
∑

U⊆N\i
|U |≥n−t

μi,U ≤ ci0, ∀ i ∈ N (8h)

y0,N ∈ R; λ,μ ∈ R
n×2n−1

. (8i)

Fix (π̂, λ̂, μ̂); we consider the constraint classes in pairs.
(8b), (8h) There are O(n) constraints, each with O(n + nmax{t−1,0}) variables,

requiring a total of O(n2 + nt ) operations.
(8c) If t ≤ 1, this class is empty. Otherwise, there are O(n2) ordered city pairs

(i, j), and for each s = 2, . . . , t , there are O(ns−2) subsets U ⊆ N\{i, j} with
|U | = n − s, and hence O(ns−2) constraints per ordered city pair. Each constraint has
O(nt−s+1) variables, and so the total number of operations is O(nt+1). Constraints
(8g) are handled analogously.

(8d) If t = 0, this class is empty. When t ≥ 1, for each city pair there are O(nt−1)

subsets U ⊆ N\{i, j} with |U | = n − t − 1, and each constraint has O(n) variables,
yielding O(nt ) operations per pair, and O(nt+2) total operations. Constraints (8f) are
analogous.

(8e) For any ordered pair (i, j), the most violated constraint in this class is given
by the optimal solution of

max
U⊆N\{i, j}

t≤|U |≤n−t−2

∑

k∈U

(π̂i,k − π̂ j,k).
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To find the optimal set, it suffices to sort the values π̂i,k − π̂ j,k in non-increasing
order, add the first t elements to U and thereafter add elements greedily until we either
encounter the first non-positive value or add n − t − 2 elements.

However, the optimization can actually be carried out in linear time because t is
constant: For every k ∈ N\{i, j}, add the element to U if π̂i,k − π̂ j,k > 0, but also
keep a count of the number of positive elements and two arrays of size t , one with
the t smallest positive elements added, the other with the t non-positive elements of
smallest absolute value. After checking every element k, if we have added more than
n−t −2, delete enough elements to reduce the set’s cardinality to this number, deleting
elements greedily based on the values stored in the first array; if we have added less
than t , add enough elements from the second array in a similar fashion. Thus, the total
number of operations is O(n3). ��

The choice of basis in the approximation is unbalanced, since there are only
O(n) “lower order” multipliers (corresponding to empty or singleton sets) but
O(nmax{t−1,0}) “higher order” terms. The following negative complexity result shows
that we cannot substantially increase the fineness of the approximation at the lower
end without sacrificing efficiency.

Lemma 17 Suppose for some i ∈ N that either Û+
i or Û−

i contain �(n2) sets of

cardinality two. Then the separation problem for P(Û) is NP-hard.

Proof For simplicity, assume Û+
i = Û−

i = {U ⊆ N\i : |U | ≤ 2},∀ i ∈ N . After
variable replacement, the constraint class (4c) is

πi,∅ − π j,∅ + πi, j +
∑

k∈U

(πi,k − π j,k + λi,{ j,k}) −
∑

k∈N\(U∪{i, j})
μ j,{i,k}

+
∑

W⊆U
|W |=2

(λi,W − λ j,W ) +
∑

W⊆N\(U∪{i, j})
|W |=2

(μi,W − μ j,W ) ≤ ci j ,

∀ i ∈ N , j ∈ N\i, U ⊆ N\{i, j}.

Given π̂ , λ̂, μ̂ and an ordered pair (i, j), the most violated constraint corresponds to
the optimal solution of

max
U⊆N\{i, j}

⎧
⎨

⎩

∑

k∈U

(π̂i,k − π̂ j,k + λ̂i,{ j,k}) −
∑

k∈N\(U∪{i, j})
μ̂ j,{i,k}

+
∑

W⊆U
|W |=2

(λ̂i,W − λ̂ j,W ) +
∑

W⊆N\U∪{i, j}
|W |=2

(μ̂i,W − μ̂ j,W )

⎫
⎪⎪⎬

⎪⎪⎭
.

Even if μ̂ = 0 and λ̂i,W − λ̂ j,W ≤ 0 for W ⊆ N\{i, j} with |W | = 2, this is an
arbitrary instance of the quadratic cost partitioning problem [31] on N\{i, j}, itself a
generalization of the max-cut problem. ��
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We next address our bound’s relation to the Held-Karp bound.

Theorem 18 The optimal value of P(U0) is greater than or equal to the optimal value
of the LP relaxation of (1), the Held-Karp bound.

Proof Let (λ̂, μ̂) be feasible for (7), the dual of the LP relaxation of (1). We may
assume λ̂∅ = μ̂∅ = 0, since these variables are made redundant by μN and λN

respectively. Define ŷ0,N = ∑
U⊆N (λ̂U + μ̂U ) and

π̂i,∅ =
∑

U⊆N\i

λ̂U∪i , π̂i, j =
∑

U⊆N\{i, j}

λ̂U∪ j + μ̂U∪ j

|U | + 1
.

Intuitively, for each city i ∈ N this construction attempts to give each remaining city
j ∈ N\i equal share in each of its moats. By definition, the two solutions’ objectives
are equal in their respective problems, so it remains to check the feasibility of (ŷ0,N , π̂)

for P(U0); since t = 0, only constraints (8b), (8e) and (8h) must be checked.
For (8b), let i ∈ N :

ŷ0,N − π̂i,∅ −
∑

k∈N\i

π̂i,k =
∑

U⊆N

(λ̂U + μ̂U ) −
∑

U⊆N

λ̂U −
∑

U⊆N\i

μ̂U

=
∑

U⊆N\i

μ̂U∪i ≤ c0i .

Similarly, for (8h) and i ∈ N , we have

π̂i,∅ =
∑

U⊆N\i

λ̂U∪i ≤ ci0.

Finally, for (8e), let i ∈ N , j ∈ N\i and U ⊆ N\{i, j}. Then

π̂i,∅ − π̂ j,∅ + π̂i, j +
∑

k∈U

(π̂i,k − π̂ j,k)

=
∑

W⊆N\i

λ̂W∪i −
∑

W⊆N\ j

λ̂W∪ j +
∑

W⊆N\{i, j}

λ̂W∪ j + μ̂W∪ j

|W | + 1

+
∑

k∈U

⎡

⎣
∑

W⊆N\{i,k}

λ̂W∪k + μ̂W∪k

|W | + 1
−

∑

W⊆N\{ j,k}

λ̂W∪k + μ̂W∪k

|W | + 1

⎤

⎦

= λ̂i + μ̂ j +
∑

∅�=W⊆N\{i, j}

[ |W\U |
|W | + 1

λ̂W∪i − |U ∩ W |
|W | + 1

μ̂W∪i

− |W\U |
|W | + 1

λ̂W∪ j + |U ∩ W | + 1

|W | + 1
μ̂W∪ j

]

≤
∑

W⊆N\{i, j}
(λ̂W∪i + μ̂W∪ j ) ≤ ci j ,

where for the first inequality we use λ̂U , μ̂U ≥ 0,∀ 2 ≤ |U | ≤ n − 1. ��
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Corollary 19 Suppose c ≥ 0 and it satisfies the triangle inequality: ci j ≤ cik +
ck j ,∀ i, j, k ∈ N. Let y∗

0,N be the cost of an optimal tour, and let y0
0,N be the

optimal value of P(U0). If c is symmetric, then y∗
0,N ≤ 3

2 y0
0,N . Otherwise, y∗

0,N ≤
min

{
log(n + 1), 2 + 8 log(n+1)

log log(n+1)

}
y0

0,N .

Proof This follows directly from integrality gap results for the Held-Karp bound
[9,22,38,42,43]. ��

There is a well-known conjecture that the integrality gap of the Held-Karp bound
in the symmetric case is actually 3

4 [12,23]. If this conjecture is proved, Theorem 18
would then imply the same bound guarantee for P(U0).

Although we have found instances for which the optimal value of P(U1) is greater
than the Held-Karp bound, we have thus far been unable to find an instance for which
P(U0)’s objective is greater. This motivates the following conjecture.

Conjecture 20 The optimal value of P(U0) is equal to the Held-Karp bound.

Our inability may also stem from the difficulty we have encountered in solving P(U0).
We are so far able to solve only modestly sized instances, under 50 cities. For the
instances we can solve, the computation times are an order of magnitude greater than
the Held-Karp computation times on the same machine. There is also an additional
inherent difficulty in solving P(U0): Unlike the Held-Karp bound, our constraint gen-
eration operates in the dual space. Therefore, a relaxed dual solution does not provide
a valid bound, so if we attempt to solve the problem in textbook fashion, only the
optimal solution actually yields a valid bound. Our attempts to mitigate this difficulty
have only met with partial success.

4 Conclusions

We have introduced a framework to generate lower bounds for the asymmetric TSP
via an ALP approach to the DP formulation. This approach includes several existing
bound techniques for the TSP, and also generates a new family of bounds by restricting
an exact reformulation of the DP formulation. Our results motivate further research
questions.

The first such question involves efficient computational methods to solve P(Ut ).
The inadequacy of a typical constraint generation algorithm for the problem suggests
using an approach that maintains dual feasibility, and thus a valid bound, at every step.
However, in this case one has to contend with the constraint class (8e) of exponential
size. Another alternative could be to use constraint generation but somehow shift the
relaxed dual solutions to enforce dual feasibility; this approach is viable only if the
shift does not decrease the objective excessively.

A second important issue is the use of solutions to (4) as approximate cost-to-go
functions for price-directed tours. In particular, there is potential to use lower bound
guarantees like those given in Corollary 19 to derive worst-case performance ratios
for the price-directed tours. This approach would reverse the usual direction of many
TSP integrality gap proofs, which depend on an approximation algorithm guarantee
[9,22,43].
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