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The maximum weight-independent set problem (MWISP)
is one of the most well-known and well-studied prob-
lems in combinatorial optimization. This article presents
a novel approach to solve MWISP exactly by decompos-
ing the original graph into vertex-induced subgraphs.
The approach solves MWISP for the original graph by
solving MWISP on the subgraphs to generate columns
for a branch-and-price framework. The authors inves-
tigate different implementation techniques that can be
associated with the approach, and offer computational
results to identify the strengths and weaknesses of each
implementation technique. © 2005 Wiley Periodicals, Inc.
NETWORKS, Vol. 46(4), 198–209 2005
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1. INTRODUCTION

A set of a graph’s vertices is an independent set if no
two vertices in the set are adjacent (i.e., connected by an
edge). Given a weighting of vertices, the maximum weight
independent set problem (MWISP), which is NP-hard [23],
is to prescribe an independent set of the graph that has
maximum weight. MWISP has many important applications,
including combinatorial auctions [44], graph coloring [34],
coding theory [32], geometric tiling [18], fault diagnosis
[11], pattern recognition [26], molecular biology [22, 24, 35],
and scheduling [27]. Additional applications arise in more
comprehensive problems that involve MWISP with side
constraints.

This article investigates a novel approach that solves
MWISP exactly. Our approach partitions the vertex set of
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a graph to obtain smaller vertex-induced subgraphs on which
MWISP is less challenging, on average, to solve. We use a
branch-and-price (B&P) framework to solve MWISP on the
original graph G using these specially constructed subprob-
lems to generate columns. MWISP is a member of the class of
graph problems that we call inheritly decomposable because
instances can be decomposed with subproblems of the same
type as the original problem (i.e., they inherit the nature of
the original problem).

Our goal is to investigate methods to distribute and manage
the challenges posed by complexity. In a sense, a traditional
application of B&P deals with complexity by decomposing
a block diagonal matrix structure, distributing the challenges
of complexity among subproblems and the master problem.
However, the analyst typically has little control over the sizes
and structures of the subproblems. In contrast, our approach
allows the analyst to distribute complexity by prescribing the
sizes and structures of subproblems and manage it, for exam-
ple, by devising algorithms to solve resulting subproblems,
facilitating solution of the master problem (e.g., reducing
degeneracy and improving the coordination of subproblem
solutions), implementing special-purpose branching rules,
and tightening the master problem to facilitate solution. Spe-
cific objectives of this research are to present a rationale
for using price-directed decomposition to solve MWISP, to
investigate effective implementation techniques, and to con-
duct computational tests to identify strengths and weaknesses
of the approach.

This article deals only with finite, simple graphs that are
undirected. In graph G = (V , E), which comprises vertex set
V and edge set E, an edge in E joining vertices u, ν ∈ V is
denoted uν. The neighbors of vertex ν ∈ V are N(ν) = {u ∈
V : uν ∈ E}, and the nonneighbors ofν are N̄(ν) = V\(N(ν)∪
{ν}). We extend this notation to a set W ⊆ V by defining
N(W) = (∪ν∈W N(ν))\W and N̄(W) = V\(N(W)∪W). For
any W ⊆ V , we denote the subgraph induced by W as G[W ];
and for any F ⊆ E, we denote the subgraph induced by F
as G F .A nonnegative weight wν is associated with vertex
ν ∈ V . We use S ⊆ V to denote an independent set of G and
subgraph K to denote a clique of G (i.e., a complete subgraph
of G). For an introduction to graph theory, we refer the reader
to [45].
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Bron and Kerbosch [15] initiated exact approaches to the
maximum independent set problem, a special case of MWISP
with wν = 1 for all ν ∈ V , by proposing an explicit enumera-
tion procedure. Subsequent improvements using B&B [4, 17]
stimulated development of optimization methods for MWISP
[1, 2, 12, 14, 16, 20, 25, 28, 33, 38–41, 47]. Balas and Xue [3]
devised a notable algorithm that extended their previous work
[2], using a fast heuristic for the weighted-fractional color-
ing problem to obtain good upper bounds for B&B. Other
effective heuristics are also available [16]. Nemhauser and
Sigismondi [36] and Verweij [42, 43] have reported appli-
cations of strong cutting plane methods. Mehrotra and Trick
[34] recently proposed a column generation approach to the
minimum coloring problem that employs a set-covering mas-
ter problem [13] and a single subproblem, which generates
columns, each of which is a solution to MWISP with objec-
tive function coefficients determined by the values of dual
variables associated with the master problem.

The body of this article is organized in six sections.
Section 2 presents the decomposition of MWISP that our
B&P approach uses to distribute the challenges of complex-
ity. Sections 3, 4, and 5 describe methods for managing the
challenges of complexity. Section 3 discusses two methods
for partitioning a graph to create the subproblems required
by our approach. Section 4 relates two methods for man-
aging the size of the restricted master problem (RMP) (so
called because it deals with a restricted set of all possi-
ble columns), and Section 5 describes two special-purpose
branching rules. Section 6 summarizes our computational
tests, and Section 7 presents conclusions and recommenda-
tions for future research.

2. B&P FORMULATION

MWISP can be formulated as a linear integer program:

Z∗
MWISP = Max

{∑
ν∈V

wνxν : x ∈ Q

}
, (1)

in which edge inequalities define Q:

Q = {
x ∈ B|V | : xu + xν ≤ 1, ∀uν ∈ E

}
, (2)

where Bn denotes the set of binary n vectors (n = |V | in this
case) and

xν = 1 if vertex ν is included in the independent set and

xν = 0 otherwise.

Our approach begins by partitioning the vertex set of graph
G = (V , E) into P parts, V1, . . . , VP. For every p ∈ {1, . . . ,
P}, we define subgraph GP = G[VP] with edge set EP =
E(GP). Edges of G whose ends lie in different sets of the
partition constitute set Ê = E\⋃P

P=1 EP, which induces the
subgraph G Ê with vertex set that we denote by V̂ .

With this partitioning, MWISP can be expressed as

Z∗
MWISP = Max




P∑
p=1

∑
ν∈VP

wνxν : xu + xν ≤ 1, ∀uν ∈ Ê,

xp ∈ Qp, ∀p ∈ {1, . . . , P}

 , (3)

where QP = {
x ∈ B|Vp| : xu + xν ≤ 1, ∀uν ∈ EP

}
. Formu-

lation (3) has a block-diagonal structure that is amenable to
B&P:

Z∗
MWISP = Max

∑
ν∈V

wνxν = Max
P∑

p=1

w px p

subject to




A1 A2 · · · AP

D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...
0 0 · · · DP







x1

x2

...
xP


 ≤ 1 and x p ∈ B|VP|,

∀p ∈ {1, . . . , P},

where AP is the matrix of coefficients in inequalities associ-
ated with edges uν ∈ Ê; DP is the matrix of coefficients in
inequalities associated with edges uν ∈ EP; xP is the |VP|
vector of decision variables associated with vertices ν ∈ VP;
and wP is the |VP| vector of weights associated with vertices
ν ∈ VP.

Applying Dantzig-Wolfe Decomposition [5] to the lin-
ear relaxation of (3), we obtain RMP, a restricted version
of the master problem that includes a subset of the columns
associated with the extreme points of subproblem polytopes:

Z∗
LP = Max

P∑
p=1

∑
j∈ Jp

λjp(w px jp)

subject to

P∑
p=1

∑
j∈ Jp

λjp(Apx jp) ≤ 1 (4)

∑
j∈ Jp

λjp = 1 ∀p ∈ {1, . . . , P} (5)

λjp ≥ 0 ∀p ∈ {1, . . . , P}, j ∈ Jp,

where JP is the set of integer extreme points of QP associated
with generated columns in RMP; x jp is the |VP| vector that
defines extreme point j ∈ JP; λjp is the RMP decision variable
that corresponds to extreme point j ∈ JP.
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MWISP subproblem p ∈ {1, . . . , P} has the form

Z∗
p = Max

{(
w p − AT

p α
)
x p : x p ∈ Qp

}
,

where α is the |Ê|-vector of dual variables associated with
the rows of constraints (4). In this model, x jp is an improv-
ing column if Z∗

p − βp ≥ 0, where βp is the dual variable

associated with the pth convexity constraint (5). The role of
RMP is to co-ordinate subproblem solutions (through the val-
ues of dual variables) to prescribe a solution to MWISP on
graph G. Depending on the subgraph structure, the subprob-
lem may also be NP-hard; however, subgraphs are smaller
than the original graph G, and we expect that they will be
less challenging, on average, for optimizing algorithms to
solve.

For an introduction to column generation, we refer the
reader to [46]. We manage our column pool and subproblem
optimization in standard ways (again, see [46]), for example,
entering, at each iteration, all improving columns into the
column pool that CPLEX manages.

3. PARTITIONING V (G)

We use two alternative methods to partition V(G). The first
method (p1) employs the procedure of Balas and Yu [4] to find
a maximal chordal induced subgraph G1 in G. We then find a
maximal chordal induced subgraph G2 in G[V(G)\V(G1)]
and repeat the process until every vertex of G has been
included in a chordal induced subgraph. The advantage of
(p1) is that MWISP can be solved on each chordal subgraph
in polynomial time, for example, using Frank’s solver [21]. A
prime disadvantage is that it results in a large number of small
subproblems so that |Ê| is large and, consequently, RMP is
also large and requires more computational effort.

The second method (p2) applies METIS [29–31], a well-
known clustering heuristic, to partition V(G) into a prede-
termined number P of sets. METIS assigns vertices to sets
so that the cardinalities of the sets differ as little as possi-
ble (i.e., to assign n vertices to k sets, it creates (n mod k)

sets of
⌈ n

k

⌉
vertices and k − (n mod k) sets of

⌊ n
k

⌋
vertices).

Subject to that constraint, METIS attempts to minimize the
number of edges that have ends in different sets. As many as
P = |V | sets can, in principle, be specified for (p2), but we
determine P by setting an a priori bound based on the size
of a subproblem that can typically be solved in an acceptable
amount of time. The advantage of (p2) is that it gives the ana-
lyst more control over the number of sets P and the density
of Ĝ; its primary disadvantage is that the induced subgraphs
cannot be expected to have a special structure so that, typi-
cally, subproblems cannot be solved in polynomial time. We
adapted the Carraghan-Pardalos algorithm [17], which finds
a maximum clique in a graph, to solve these subproblems.

The resulting Carraghan-Pardalos Adapted Algorithm
(CPAA) incorporates obvious adaptations to enumerate all
maximal independent sets (which suffices when all vertex
weights are nonnegative) either explicitly or implicitly by
pruning one of its ancestors in a search tree whose nodes

represent all independent sets of G. Next, we outline our
adaptation, CPAA.

First, index the vertices of G as {ν1, . . . , νn}. The root node
of the search tree represents the empty set, but each of the
other nodes in the tree represents an independent set contain-
ing all vertices that comprise its parent’s independent set plus
one additional vertex whose index (according to our number-
ing) is greater than those in its parent’s independent set. All
children of a node in the search tree that represent indepen-
dent sets must be considered to ensure that all independent
sets are enumerated. Because each leaf of the tree represents
a maximal independent set, enumerating leaves of the tree
corresponds to enumerating maximum weight independent
sets (assuming, as we do, that all vertex weights are non-
negative). Because the number of maximal independent sets
can be prohibitively large, searching major parts of the tree
implicitly is most desirable.

Begin a search by assigning the heaviest known indepen-
dent set to be empty (i.e., Ŝ = Ø) and activating the root
node in the search tree. An active nonleaf node of the tree
represents an independent set S to which we assign a weight
that is the sum of the weights of vertices in S ∪ N(S). If this
exceeds the weight of Ŝ, construct the children of that node
and make one of them active. Otherwise, eliminate the sub-
tree rooted at the current node and set as active its nearest
unexplored relative (sibling, parent’s sibling, grandparent’s
sibling, etc.), if any exists. If an active leaf of the tree rep-
resents an independent set S that is heavier than Ŝ, update
Ŝ ← S, eliminate the subtree rooted at the current node, and
designate as active the nearest unsearched relative of the cur-
rent node, if any exists. After enumerating the search tree in
this manner until no additional nodes can be made active, Ŝ
prescribes a maximum weight independent set of G. In addi-
tion to using CPAA to solve subproblems, we use it in our
computational tests to solve each MWISP instance as a basis
of comparison with our approach.

4. RMP

Method (p1) results in a large number of edges whose
ends lie in different sets of the partition (i.e., |Ê| is large) so
that RMP has a large number of rows. Even though method
(p2) employs METIS, which seeks to minimize |Ê|, it may
also result in a large RMP, especially in application to a
dense graph. This leads to a second issue because it can be
shown that edge inequalities (4) relegated to RMP form a
polytope that is degenerate if any vertex is included in more
than one inequality. If a vertex appears in m edge inequali-
ties, it increases the order of degeneracy of RMP by m − 1.
Method (p1) typically relegates many edge inequalities to
RMP and causes most vertices to appear in several of these
inequalities, so it leads to large, highly degenerate RMPs. If
K is a clique in G that induces m edges of Ê, replacing the
m corresponding constraints in RMP by a single inequality
of the form

∑
ν∈V(K) xν ≤ 1 would decrease the order of

degeneracy of RMP by 2m − |V(K)|, assuming V(K) ⊆ V̂
(we can substitute V(K) ∩ V̂ for V(K) without reducing m).
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Note, however, that for a second clique K ′ that induces m′
edges in G Ê \V(K) and m′′ edges in Ê, substituting the
clique inequality would reduce RMP degeneracy by 2m′ −
|V(K ′)| ≤ 2m′′ − |V(K ′)|. All degeneracy could be elimi-
nated by such substitutions only if every component of G Ê
is a clique, an unlikely circumstance.

We dealt with RMP using two alternative methods. The
first method (m1) simply uses the constraints associated with
edges in Ê; it offers the advantage of simplicity but incurs the
computational disadvantages caused by the resulting size of
RMP and its attendant degeneracy.

The second method (m2) solves a set-covering problem
using a greedy heuristic [37] to select a set of clique and
edge inequalities that covers all edges in Ê. To identify clique
inequalities we employ a best-in greedy heuristic, which the
next paragraph describes, to construct a clique K̂ that is max-
imal in G Ê and then employ the same heuristic to find
a maximal clique K of G[V̂ ] such that V(K̂) ⊆ V(K). This
method offers the advantages of producing a smaller polytope
than does method (m1), cutting off many fractional solutions
that are feasible for the (m1) polytope; of reducing the size of
RMP in comparison with method (m1); and of incorporating
clique inequalities that tighten RMP, improving the bounds it
prescribes. However, it may cover some edges of Ê with more
than one inequality, so that it may not eliminate degeneracy
altogether.

The best-in greedy heuristic, which we employ to find
independent sets, uses the function ηG to assign a value to
each vertex ν ∈ V equal to the ratio of its weight to the
weight of its neighbors: specifically, it starts by setting S = Ø
and assigning ηG(ν) = w(ν)/w(NG(ν)), where w(NG(ν)) =∑

u∈NG(ν) w(u). At each iteration, it selects a vertex ν̂ =
arg maxν∈V {ηG(ν)} and includes ν̂ in the independent set,
S ← S ∪ {ν̂}; removes the neighbors N(ν̂) of ν̂ from consid-
eration; and updates the values ηG(ν) for v ∈ N(ν̂). It imple-
ments this process at each iteration until the set of selected
vertices S form a maximal independent set. We use a com-
plementary procedure to find heavy cliques (see Section 5).

5. BRANCHING

To obtain a lower bound for MWISP at each node in the
search tree, we select the k vertices with the highest ηG values
and apply our best-in heuristic to each of k graphs G[N(ν)],
where ν is one of these k vertices. For each independent set S
prescribed by the heuristic, S ∪{v} is a maximal independent
set in G; we use the weight of the heaviest of these k sets as
an initial lower bound for MWISP. We then solve RMP to
optimality to obtain an upper bound for MWISP at that node.

We use two different branching rules when the optimal
solution of RMP is fractional. The first rule (b1) branches
on the most fractional variable xν = ∑

j∈ JP
x jp
ν λjp, where

ν ∈ Vp. Two new (child) B&B nodes result: one in which
xν = 0, and one in which xν = 1. This traditional branching
rule offers the advantage that it has been used successfully in
many situations.

The second rule (b2) branches on the vertices of a clique.
We identify a clique for branching by weighting each vertex
according to the fractional part of its associated variable (i.e.,
the weight of vertex v is given by (0.5−|xν −0.5|)) and then
greedily constructing a clique K of large weight that includes
no vertices whose variables are fixed in the current B&B node.
To branch on the clique (see successful, analogous methods in
[6–10, 19]), we create |V(K)| + 1 children, fixing xν = 1 for
one v ∈ K at each child node 1, . . . , |V(K)| and all variables
to zero at child node |V(K)| + 1. Our subproblem solvers
enforce the fixed values of decision variables. Preliminary
tests indicate that this method improves on traditional SOS
branching [37] applied to the same set. Note that K need not
be maximal and need not correspond to a cut for the current
fractional solution.

6. COMPUTATIONAL BENCHMARKS

This section describes the computational environment,
sets of instances, and measures of performance we use in
our tests. A table displays the results of each test and we
discuss them to put them into perspective.

We conduct all tests using a Dell Optiplex GX240 with a
3-GHz Pentium IV processor and 512 MB of memory. We
use CPLEX 7.1 to solve the linear programs.

We employ two sets of test instances. The first set com-
prises instances from the Second DIMACS Implementation
Challenge, which are unweighted (we actually use the com-
plements of the listed graphs, and this is reflected in the values
of |E|). These DIMACS instances represent several families
of graphs, each with a special structure induced by a particular
application.

Second, we generate random π graphs to study our meth-
ods in application to instances that have no special structure.
After specifying the number of vertices |V(G)| and the para-
meter π , we generate each π graph G by including each
possible edge (denoted uν and νu) with probability π(0 ≤
π ≤ 1). We then draw the weight of each vertex from
a discrete uniform distribution on the interval [1, M], with
M = 1, 20, 40, 60, or 100. The M = 1 case is, of course, the
(unweighted) independent set problem. For each value of π ,
we generate 25 independent instances (each using a unique
random number seed), forming five subsets, each with a dif-
ferent value of M and each comprising five instances. We
note that very sparse graphs (i.e., densities of 5% or less)
are not likely to be connected; we use them in our tests to
evaluate the robustness of our B&P approach in comparison
with CPAA. Very sparse graphs are encountered in practice
(e.g., Hamming8-2 in Table 4) so robustness is a desirable
characteristic of a solution approach.

We describe the graph involved in each test, giving the
number of vertices |V |, the number of edges |E|, and the %
Density � = [(200)|E|]/[|V |(|V | − 1)]. We relate P, the
number of sets we specified in the partition, and the resulting
|Ê| and RMP Rows, the number of rows in RMP. To evaluate
model tightness, we give ZLP, ZH , and ZIP (or appropriate
ratios), the optimal value of RMP at the root node of the
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TABLE 1. Comparison of methods (m1) and (m2).

B&P
RMP B&B MP time

Graph |V | |E| � P |Ê| Method rows nodes sols. (seconds)

hamming8-2 256 1,024 3.1 20 626 (m1) 626 1 3 0.6
(m2) 626 1 3 0.6

MANN_a9 45 72 7.3 5 26 (m1) 26 98 2, 091 2.4
(m2) 20 19 527 0.5

hamming6-2 64 192 9.5 8 96 (m1) 96 1 3 0.3
(m2) 96 1 3 0.3

johnson8-4-4 70 560 23.2 3 240 (m1) 240 6 89 0.9
(m2) 127 1 23 0.6

johnson16-2-4 120 1,680 23.5 8 1,082 (m1) 1,082 >3,500 >76,809 *
(m2) 42 1 14 0.6

keller4 171 5,100 35.1 5 3,293 (m1) 3,293 21,067 405,073 4,557.1
(m2) 1,995 12,523 307,029 1,812.2

hamming8-4 256 11,776 36.1 4 6,528 (m1) 6,528 1 6 4.4
(m2) 3,707 1 12 6.1

brock200-3 200 7,852 39.5 2 3,463 (m1) 3,463 775 15,331 1,671.5
(m2) 2,736 3, 624 62,432 2,537.4

johnson8-2-4 28 168 44.4 8 137 (m1) 137 136 1,962 1.3
(m2) 23 8 126 0.2

c-fat200-5 200 11,427 57.4 7 9,523 (m1) 9,523 45 1, 321 86.1
(m2) 9,393 33 1, 238 86.3

p_hat300-1 300 33,917 75.6 2 16,580 (m1) 16,580 712 9, 802 705.7
(m2) 10,441 1, 086 11,564 479.4

c-fat200-2 200 16,665 83.7 4 12,261 (m1) 12,261 17 233 20.9
(m2) 11,406 8 127 19.2

c-fat200-1 200 18,366 92.3 2 8,999 (m1) 8,999 6 53 7.5
(m2) 7,453 6 68 8.9

(m1) edge constraints only in master problem.
(m2) clique constraints replace edge constraints in master problem.
∗Exceeded memory capacity of 512 MB.

B&B tree, the value that the initial heuristic returns, and the
optimal value of the integer program, respectively. Finally,
we use several measures of performance to evaluate our B&P
approach: B&B Nodes, the number of B&B nodes required
to find the optimal solution; MP Sols., the total number times
RMP is solved; and B&P Time, the CPU run time for our
B&P approach to prescribe an optimal solution.

We started with a battery of preliminary tests to compare
the performances of alternative methods (p1) and (p2), (m1)
and (m2), and (b1) and (b2). Of the eight possible combina-
tions of these three pairs of alternative methods, we report
results on the same set of 13 DIMACS instances for the three
most promising combinations in Tables 1–3.

Table 1 compares performances of (m1) and (m2) using
methods (p2) and (b2). The first six columns in Table 1 define
the instance: graph designation, |V |, |E|, �, P, and |Ê|. The
last five columns give the method [i.e., (m1) or (m2)] and
the results for each, including RMP Rows, B&B Nodes, MP
Sols., and B&P Time. Results show that (m2) solves 7 of
these 13 instances faster than (m1) (including three of the
four most challenging instances), essentially ties on five of
the instances, and is substantially slower on only one instance
(brock200-3). Because (m2) must incur a “setup” time to
identify cliques, it is at somewhat of a disadvantage, espe-
cially on relatively sparse and relatively dense instances,

which tend to require longer times for this set up. (m2)
requires more B&B nodes than (m1) in only two instances
(brock200-3 and p_hat300-1), indicating that (m2) typically
leads to a tighter model. (m2) yields a smaller RMP (see RMP
Rows) in 11 of the 13 instances and ties in the remaining
two. This speeds solution time in two ways: a smaller RMP
basis requires less computational effort and, significantly,
less degeneracy is involved. The advantage provided by a
smaller RMP may be substantial; for example, the p_hat300-1
instance (m2) requires considerably more B&B Nodes and
MP Solutions, but it requires less run time because it yields a
smaller RMP. Method (m1) outperforms (m2) substantially
in only one instance (brock200-3). Based on this comparison,
we select (m2) as a default to use on other tests.

Table 2 compares performances of (p1) and (p2) using
methods (m2) and (b2). Results show that (p2) solves 12 of
the 13 instances faster than (p1) and essentially ties (p1) on the
13th instance (hamming8-2). (p1) suffers from a property that
is difficult to overcome. In particular, MWISP on a subgraph
that results from (p1) may be modeled using edge inequal-
ities as shown in (2). The polytope of the linear relaxation
of (2) contains the convex hull of feasible integer solutions.
However, chordal graphs are perfect (West [45]) so that asso-
ciated clique inequalities can be used to model MWISP; the
polytope of the linear relaxation in this case is the same
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TABLE 2. Comparison of methods (p1) and (p2).

B&P
RMP B&B MP time

Graph |V | |E| � P Method |Ê| rows nodes sols. (seconds)

hamming8-2 256 1,024 3.1 20 (p1) 846 846 1 3 0.6
(p2) 626 626 1 3 0.6

MANN_a9 45 72 7.3 5 (p1) 32 26 40 904 2.7
(p2) 26 20 19 527 0.5

hamming6-2 64 192 9.5 8 (p1) 156 156 1 3 0.3
(p2) 96 96 1 3 0.3

johnson8-4-4 70 560 23.2 3 (p1) 433 295 79 2,882 11.5
(p2) 240 127 1 23 0.6

johnson16-2-4 120 1,680 23.5 8 (p1) 1,243 108 16 400 1.7
(p2) 1,082 42 1 14 0.6

keller4 171 5,100 35.1 5 (p1) 4,499 3,226 >26,370 >853,215 *
(p2) 3,293 1,995 12,523 307,029 1,812.2

hamming8-4 256 11,776 36.1 4 (p1) 10,650 7,434 >3,500 >38,126 *
(p2) 6,528 3,707 1 12 6.1

brock200-3 200 7,852 39.5 2 (p1) 7,325 6,738 >9,334 >200,240 *
(p2) 3,463 2,736 3,624 62,432 2,537.4

johnson8-2-4 28 168 44.4 8 (p1) 113 22 8 99 1.1
(p2) 137 23 8 126 0.2

c-fat200-5 200 11,427 57.4 7 (p1) 11,201 11,077 >13 6,396 *
(p2) 9,523 9,393 33 1,238 86.3

P_hat300-1 300 33,917 75.6 2 (p1) 31,511 24,833 >2,170 >84,660 *
(p2) 16,580 10,441 1,086 11,564 479.4

c-fat200-2 200 16,665 83.7 4 (p1) 15,912 15,156 25 1,293 261.1
(p2) 12,261 11,406 8 127 19.2

c-fat200-1 200 18,366 92.3 2 (p1) 16,696 14,504 90 2,047 158.5
(p2) 8,999 7,453 6 68 8.9

(p1) partitioning the graph into chordal subgraphs.
(p2) partitioning the graph using METIS.
∗Exceeded memory capacity of 512 MB.

as the convex hull of feasible integer solutions. Thus, (p1)
defines subproblems that have the Integrality Property (Wil-
helm [46]); it is well known that such formulations may offer
the advantage that subproblems can be solved in polynomial
time but they typically suffer the serious disadvantage that
they do not prescribe tight bounds and, therefore, more nodes
must be explored in the B&B tree, requiring longer solution
times. We conclude that (p2) outperforms (p1) because it
yields subproblems that do not, in general, exhibit the Inte-
grality Property, resulting in smaller, tighter RMPs. B&B
Nodes shows that (p2) enjoys a considerable advantage from
the tightness of RMPs. Method (p1) typically results in more
subproblems so that |Ê| and, consequently, RMP rows are
larger, requiring more run time.

Table 3 compares the performances of (b1) and (b2) using
methods (p2) and (m2). Results show that method (b2) is
faster than (b1) on 10 of the 13 instances; it is significantly
faster on each of the four most challenging instances. Method
(b2) essentially ties (b1) on the remaining three instances,
which are small graphs for which the overhead involved in
finding cliques puts (b2) at a disadvantage. Although (b2)
creates more children at each node in the branch-and-bound
tree than (b1), (b2) requires much smaller search-trees than
(b1), on average (see B&B Nodes). We conclude that (b2) is
superior because cliques promote more discerning branching,

improving performance, even though (b2) requires time to
identify appropriate cliques.

These tests show that a number of complex interactions
influence the performance of our B&P approach. Based on
preliminary tests, which are only partially described above,
we conclude that the (m2)-(p2)-(b2) combination is the most
reasonable and intuitively appealing.

Next, we evaluate the (m2)-(p2)-(b2) combination more
extensively. Table 4 compares the performance of our B&P
approach to that of CPAA on the set of 13 DIMACS instances.
We test three different values of P on each instance to
evaluate the sensitivity of our B&P approach to that para-
meter. We selected CPAA as a basis of comparison because
the Carraghan-Pardalos algorithm is effective, easily imple-
mented, and has been used for benchmarking previously (e.g.,
see Balas and Xue [2]). Columns 1–4 in Table 4 describe
each DIMACS instance: graph designation, |V |, |E|, and �.
Columns 5–7 give the value of P we selected, and the resulting
|Ê| and RMP Rows, respectively. Columns 8–10 list ZLP, ZH ,
and ZIP, respectively. Finally, Columns 11–14 give the perfor-
mance measures we use: B&B nodes; MP Sols.; B&P Time;
and CPAA Time, the CPU run time for CPAA to solve the
instance.

Results show that the performance of our B&P approach
is sensitive to P, the number of sets specified in the partition;
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TABLE 3. Comparison of methods (b1) and (b2).

B&P
RMP B&B time

Graph |V | |E| � P |Ê| rows Method nodes (seconds)

hamming8-2 256 1,024 3.1 20 626 626 (b1) 1 0.7
626 (b2) 1 0.6

MANN_a9 45 72 7.3 5 26 20 (b1) 13 0.6
20 (b2) 19 0.5

hamming6-2 64 192 9.5 8 96 96 (b1) 1 0.2
96 (b2) 1 0.3

johnson8-4-4 70 560 23.2 3 240 127 (b1) 1 0.6
127 (b2) 1 0.6

johnson16-2-4 120 1,680 23.5 8 1,082 42 (b1) * *
42 (b2) 1 0.6

keller4 171 5,100 35.1 5 3,293 1,995 (b1) 16,579 12,793.5
1,995 (b2) 12,523 1,812.2

hamming8-4 256 11,776 36.1 4 6,528 3,707 (b1) 1 6.0
3,707 (b2) 1 6.1

brock200-3 200 7,852 39.5 2 3,463 2,736 (b1) >7,500 *
2,736 (b2) 3,624 2,537.4

johnson8-2-4 28 168 44.4 8 137 23 (b1) 7 0.7
23 (b2) 8 0.2

c-fat200-5 200 11,427 57.4 7 9,523 9,393 (b1) 51 293.2
9,393 (b2) 33 86.3

p_hat300-1 300 33,917 75.6 2 16,580 10,441 (b1) >2,000 *
10,441 (b2) 1,086 479.4

c-fat200-2 200 16,665 83.7 4 12,261 11,406 (b1) 13 41.5
11,406 (b2) 8 19.2

c-fat200-1 200 18,366 92.3 2 8,999 7,453 (b1) 9 9.5
7,453 (b2) 6 8.9

(b1) branch on most fractional variable.
(p2) branch on vertices (i.e., nodes) of a clique.
∗Exceeded memory capacity of 512 MB.

that it is able to solve the Hamming and Johnson graphs at the
root node; and that it is more effective than CPAA on graphs
with densities less than 40%. Method (m2) reduces the RMP
size substantially for many of these graphs (compare |Ê| and
RMP Rows). Our run times to solve these DIMACS instances
are quite reasonable, even for graphs with a large number of
vertices.

In preliminary tests, we selected P using the rule of thumb
that each subgraph should comprise 30–50 vertices, a size
that CPAA can typically solve effectively. We found that
CPAA cannot deal effectively with large, sparse subgraphs
so we increased the value of P for sparse graphs to make sub-
graphs smaller. However, as P increases, |Ê| also increases
because more edges connect vertices in two different parti-
tions. For larger values of P, subgraphs are smaller so that
subproblems contain fewer edge inequalities, RMP provides
weaker bounds, and the gap (i.e., the difference between
the optimal solutions of the integer program and its linear
relaxation) is larger. We conclude that smaller |Ê| is good
in two ways: it indicates that RMP is smaller and easier to
solve, and subproblems contain more edge inequalities so that
RMP provides tighter bounds. Based on preliminary tests, we
select P = 4 as a reasonable “default” value for all instances,
although some can be solved much faster by selecting more
appropriate P values.

Table 5 describes the random π graphs that we gener-
ate for testing; all graphs use |V | = 100 and P = 4; our
analysis and conclusions relate to this set of graphs and do
not attempt to extrapolate to other cases. Column 1 gives
the value of π and other columns describe the generated
set of instances. Columns 2–4, 5–7, and 8–10 give mini-
mum, maximum, and average values (over five instances)
for the generated value of |E| and the |Ê| and RMP Rows
that result from method (m2) for the specified |V |, P, and π ,
respectively.

Method (m2) reduces the size of the master problem if
cliques that include more than two vertices that are incident
to edges in Ê can be found. If our procedure identifies a
clique that includes only two vertices connected by an edge
in Ê, it does not reduce the number of rows in the master
problem. Only a few cliques identified for the sparse graphs
in Table 5 include more than two vertices connected by an
edge in Ê, so that RMP Rows is not much less than |Ê| for
these instances (i.e., π = 0.01, 0.05, and 0.10). In any event,
clique inequalities tighten the master problem. Thus, clique
inequalities can improve run time in two ways: by reduc-
ing the size of the master problem, and by tightening it. We
employ our best-in heuristic to identify cliques but a more
sophisticated procedure may be able to find “better” cliques
for (m2) to use.
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TABLE 4. Instances taken from the Second DIMACS Implementation Challenge solved using the (m2)–(p2)–(b2) combination of methods.

B&P CPAA
RMP B&B MP time time

Graph |V | |E| � P |Ê| rows ZLP ZH ZIP nodes sols. (seconds) (seconds)

hamming8-2 256 1,024 3.1 11 493 493 128.0 128 128 1 3 1.0 *
hamming8-2 256 1,024 3.1 20 626 626 128.0 128 128 1 3 0.6 *
hamming8-2 256 1,024 3.1 24 716 716 128.0 128 128 1 3 0.6 *
MANN_a9 45 72 7.3 5 26 20 18.0 16 16 19 527 0.5 620.8
MANN_a9 45 72 7.3 6 29 22 18.0 16 16 25 687 0.5 620.8
MANN_a9 45 72 7.3 8 35 31 18.5 16 16 43 1,363 0.7 620.8
hamming6-2 64 192 9.5 4 64 64 32.0 32 32 1 3 0.3 *
hamming6-2 64 192 9.5 6 114 114 32.0 32 32 1 3 0.3 *
hamming6-2 64 192 9.5 8 96 96 32.0 32 32 1 3 0.3 *
johnson8-4-4 70 560 23.2 2 140 62 14.0 14 14 1 22 1.7 14.9
johnson8-4-4 70 560 23.2 3 240 127 14.8 14 14 1 23 0.6 14.9
johnson8-4-4 70 560 23.2 6 348 217 16.4 14 14 13 492 0.8 14.9
johnson16-2-4 120 1,680 23.5 6 1,088 15 8.0 8 8 1 9 0.6 *
johnson16-2-4 120 1,680 23.5 8 1,082 42 8.5 8 8 1 14 0.6 *
johnson16-2-4 120 1,680 23.5 10 1,234 128 10.5 8 8 11 335 0.9 *
keller4 171 5,100 35.1 4 3,003 1,853 17.8 8 11 14,456 329,556 1,934.2 3,075.4
keller4 171 5,100 35.1 5 3,293 1,995 18.1 8 11 12,523 307,029 1,812.2 3,075.4
keller4 171 5,100 35.1 8 3,744 2,554 20.7 8 11 24,690 694,846 12,831.5 3,075.4
hamming8-4 256 11,776 36.1 4 6,528 3,707 16.0 16 16 1 12 6.1 *
hamming8-4 256 11,776 36.1 5 7,707 4,505 20.8 16 16 440 21,373 536.5 *
hamming8-4 256 11,776 36.1 8 8,774 6,529 23.5 16 16 2,332 97,283 2,357.9 *
brock200-3 200 7,852 39.5 2 3,463 2,736 20.0 11 15 3,624 62,432 2,537.4 *
brock200-3 200 7,852 39.5 3 4,709 3,964 24.0 11 – >10,024 >50,049 >14,400 *
johnson8-2-4 28 168 44.4 4 100 12 4.0 4 4 1 7 0.53 0.0
johnson8-2-4 28 168 44.4 5 124 32 5.3 4 4 6 95 0.45 0.0
johnson8-2-4 28 168 44.4 8 137 23 5.0 4 4 8 126 0.23 0.0
c-fat200-5 200 11,427 57.4 4 8,118 7,985 66.7 58 58 33 1,328 157.8 41.4
c-fat200-5 200 11,427 57.4 7 9,523 9,393 66.7 58 58 33 1,238 86.3 41.4
c-fat200-5 200 11,427 57.4 8 9,787 9,655 66.7 58 58 33 1,599 112.1 41.4
p_hat300-1 300 33,917 75.6 2 16,580 10,441 12.9 5 8 1,086 11,564 479.4 3.9
p_hat300-1 300 33,917 75.6 3 21,972 13,968 16.0 5 8 4,032 44,928 2,302.3 3.9
p_hat300-1 300 33,917 75.6 5 26,448 17,813 20.7 5 8 8,834 122,254 6,411.4 3.9
c-fat200-2 200 16,665 83.7 4 12,261 11,406 26.2 24 24 8 127 19.2 1.2
c-fat200-2 200 16,665 83.7 5 13,156 12,300 25.5 24 24 8 138 22.6 1.2
c-fat200-2 200 16,665 83.7 8 14,504 13,783 26.9 24 24 26 685 56.6 1.2
c-fat200-1 200 18,366 92.3 2 8,999 7,453 13.0 12 12 6 68 8.9 1.0
c-fat200-1 200 18,366 92.3 3 12,137 9,996 14.0 12 12 19 219 19.4 1.0
c-fat200-1 200 18,366 92.3 6 15,232 12,807 13.3 12 12 13 181 24.6 1.0

*Exceeded memory capacity of 512 MB.

Table 6 reports test results. Column 1 gives π , providing
a crossreference to corresponding measures in Table 5, and
column 2 relates M. We solve each generated graph for the
unweighted case and then solve four additional instances,

each using a different distribution for assigning weights
to vertices. Columns 3–6 give overall measures, including
Z∗

LP, Z∗
IP, B&B nodes, and RMP iterations. Columns 7–9

give the minimum, maximum, and average run times for

TABLE 5. Randomly generated graphs.

|E| |Ê| RMP rows

π Min Max Avg Min Max Avg Min Max Avg

0.01 37 62 50.0 0 3 0.4 0 3 0.4
0.05 219 276 246.2 67 107 91.4 67 107 86.6
0.10 461 534 497.2 224 281 252.7 195 243 220.5
0.15 704 780 742.6 390 453 419.2 332 397 361.8
0.20 949 1,040 983.1 549 629 591.6 462 538 503.2
0.30 1,405 1,530 1,471.9 883 977 939.0 747 819 786.4
0.40 1,919 2,089 1,981.6 1,268 1,407 1,321.4 1,025 1,143 1,079.4
0.50 2,395 2,586 2,475.8 1,622 1,779 1,697.2 1,231 1,362 1,325.2
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TABLE 6. Test results on randomly generated graphs.

Overall measures
B&P run times CPAA run times

B&B RMP
π M Z∗

LP/Z∗
IP ZH/Z∗

IP nodes iterations Min Max Avg Min Max Avg

0.01 1 1.00 1.00 1.0 3.0 0.3 0.6 0.4 * * *
20 1.00 0.91 1.0 3.0 0.2 0.5 0.3 * * *
40 1.00 0.98 1.0 3.0 0.2 0.5 0.3 * * *
60 1.00 0.98 1.0 3.0 0.2 0.5 0.3 * * *

100 1.00 0.98 1.0 3.0 0.2 0.4 0.3 * * *

0.05 1 1.03 0.93 11.2 553.4 25.1 65.8 36.8 * * *
20 1.01 0.94 6.2 350.8 3.5 27.9 10.2 * * *
40 1.00 0.91 0.6 56.2 0.8 7.7 4.5 * * *
60 1.00 0.93 1.2 74.6 0.3 7.3 3.3 * * *

100 1.01 0.94 7.0 453.4 0.3 52.2 19.6 * * *

0.10 1 1.21 0.86 696.4 31,760.6 88.5 437.3 261.0 * * *
20 1.06 0.92 22.6 1,348.6 13.8 46.3 27.1 * * *
40 1.11 0.91 106.0 6,224.4 29.8 137.3 72.7 * * *
60 1.10 0.93 72.8 4,459.2 27.7 97.7 55.3 * * *

100 1.13 0.90 182.6 11,423.2 66.9 295.0 128.5 * * *

0.15 1 1.33 0.87 365.0 69,322.0 138.4 538.5 311.3 11,125.0 16,046.0 12,745.0
20 1.24 0.91 384.6 17,263.0 29.7 135.9 84.1 1,688.6 5,281.4 3,100.2
40 1.23 0.90 331.6 16,167.8 28.6 129.84 79.8 1,772.4 4,011.2 2,879.2
60 1.24 0.89 247.2 11,392.4 44.0 76.9 59.2 1,992.0 4,626.9 2,998.8

100 1.26 0.92 365.4 25,243.6 45.1 225.5 112.6 1,844.8 3,355.2 2,845.3

0.20 1 1.43 0.82 3,516.8 109,975.4 179.1 548.9 362.3 836.6 1,991.5 1,527.6
20 1.30 0.90 403.8 15,594.6 35.7 83.2 63.9 245.4 1,032.8 570.6
40 1.30 0.90 483.8 17,932.6 30.3 82.5 69.1 321.4 772.9 529.1
60 1.31 0.91 447.0 17,645.2 46.3 83.3 67.4 212.6 1,141.9 437.8

100 1.32 0.87 505.4 19,118.6 41.8 92.1 72.7 356.9 595.7 471.3

0.30 1 1.55 0.85 2,142.4 49,392.2 77.7 220.1 148.5 58.1 73.2 66.7
20 1.43 0.88 351.2 9,881.2 25.2 45.2 34.4 15.2 30.3 20.6
40 1.46 0.90 455.6 13,170.4 21.2 69.1 43.8 18.7 34.0 24.1
60 1.46 0.86 687.8 18,199.4 38.7 122.9 59.6 19.6 40.9 28.7

100 1.40 0.88 351.2 10,186.8 20.5 48.5 33.9 12.7 35.5 22.7

0.40 1 1.68 0.83 1,327.2 25,159.8 35.3 114.8 84.4 4.3 8.6 6.6
20 1.57 0.86 444.6 9,500.2 19.5 43.9 33.8 2.5 3.7 3.1
40 1.64 0.87 590.0 12,355.0 33.9 53.8 41.3 2.6 3.8 3.3
60 1.51 0.87 353.2 7,780.8 19.3 37.1 27.2 3.2 4.4 3.8

100 1.59 0.87 548.2 11,431.0 20.6 56.3 39.6 2.9 4.2 3.6

0.50 1 1.66 0.73 605.6 10,261.4 26.2 52.0 39.0 1.1 1.4 1.2
20 1.68 0.78 377.0 6,637.4 18.2 35.7 25.1 0.7 1.0 0.8
40 1.61 0.76 287.4 5,117.8 9.6 28.8 19.7 0.6 0.8 0.7
60 1.56 0.75 227.6 4,100.2 12.9 20.1 16.3 0.6 0.8 0.7

100 1.64 0.87 370.6 6,441.4 23.1 30.8 27.4 0.6 0.8 0.7

*Exceeded memory capacity of 512 MB.

our B&P approach to solve each set of five random graphs.
Columns 10–12 give corresponding run times for CPAA to
solve each set of five random graphs.

As π increases, the upper bounds from the linear relax-
ations (Z∗

LP/Z∗
IP values in column 3) as well as the lower

bounds from the heuristic (ZH/Z∗
IP values in column 4)

degrade. The tightness of Z∗
LP, the optimal solution at the root

node, reduces asπ increases because subgraphs contain fewer
edges (they are assigned to Ê) so that generated columns
reflect fewer (edge inequality) constraints. As expected,
weaker bounds make the denser problems more challenging

(note B&B Nodes in column 5, RMP iterations in column 6
and run times in columns 7–9).

Results in columns 5–12 show that, for a given π , the set of
unweighted instances is consistently more challenging than
the set of related, weighted instances. Weighted instances
(i.e., with M = 20, 40, 60, 100) have comparable run times
for most values of π (exceptions are for π = 0.05 and for
M = 100 with π = 0.10 and π = 0.15).

Most of the random graphs we generate using π = 0.01
are disconnected; in these instances METIS is able to partition
the vertices so that |Ê| = RMP Rows = 0 (see Table 5).
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Our B&P approach solves MWISP at the root node of the
B&B tree in each instance with π = 0.01 (see Table 6).

For each value of M there is a trend for average run
time to increase monotonically up to a certain value of π ,
then to decrease monotonically as π continues to increase.
For example, this value of π is 0.20 for the M = 1 (i.e.,
unweighted) case. CPAA failed to solve all instances with
0.01 ≤ π ≤ 0.10, because they exceeded memory capacity
(512 MB). Our B&P gives better run times for instances with
0.01 ≤ π ≤ 0.20, but CPAA requires less run time on denser
instances with 0.30 ≤ π ≤ 0.50. Even in these denser cases,
however, our B&P approach does not require excessive run
times.

Complex interactions cause the run time of our B&P
approach to increase, then decrease, as π increases. When
π is small, |Ê| is small so that RMP has few rows and a low
order of degeneracy. Even though CPAA is most effective
in application to dense (sub)graphs, subproblem solutions
need little coordination so that B&P requires little run time
to solve sparse problems. |Ê| increases with π , increasing
the number of rows in RMP, the order of degeneracy of RMP,
and run times. As π increases further, |Ê| and the number
of rows in RMP and its order of degeneracy all continue
to increase, but CPAA can solve the resulting subproblems,
which are quite dense, effectively. In addition, subproblems
provide more information about the global solution because
they incorporate more edges; as a consequence, RMP requires
fewer iterations to prescribe an optimal solution.

7. CONCLUSIONS

This article offers a new approach for solving MWISP
by utilizing a price-directed decomposition approach in con-
junction with a branch-and-price framework to divide the
complexity of the problem between the master problem and
subproblems. This article also offers a computational eval-
uation of the approach and accompanying implementation
techniques to offer guidance for utilizing the approach.

We evaluate two methods for partitioning the graph, (p1)
and (p2); two methods for dealing with the master prob-
lem, (m1) and (m2); and two methods for branching, (b1)
and (b2). Preliminary computational tests indicate that the
(p2)–(m2), and (b2) combination is generally more effective
than alternatives.

Tests using a set of graphs taken from the Second DIMACS
Implementation Challenge and another set of randomly gen-
eratedπ graphs show that our B&P approach is more effective
in application to sparse graphs, which result in small RMPs
with low orders of degeneracy. These tests on random π

graphs also show that the unweighted maximum independent
set problem is consistently more computationally challeng-
ing than its MWISP counterpart. Run time is sensitive to P,
the number of sets in the partition. Parameters π and P affect
the magnitude of |Ê| and thus, the size of the master problem,
which increases with |Ê|, tending to require longer run times.
Importantly, our B&P approach is effective in application to
graphs of low densities, the category of instances that are most

challenging for earlier approaches. In particular, our B&P
approach performs well on very sparse graphs, demonstrating
its robustness in comparison with CPAA. These conclusions
relate to the set of graphs we tested with |V | = 100 vertices
and P = 4 partitions; we do not attempt to extrapolate to
other cases.

Clearly, the challenges of complexity cannot be elimi-
nated. This article shows, however, that they can be dis-
tributed and managed to improve performance. By investi-
gating two methods to partition a graph, this article explores
alternatives for distributing the challenges of complexity by
prescribing the sizes and structures of subproblems. By study-
ing two methods to formulate the master problem and two
branching rules, this article assesses means of managing these
challenges. Specific techniques used to this end include con-
trolling the size and tightness of the master problem, devising
algorithms to solve resulting subproblems, facilitating solu-
tion of the master problem (e.g., reducing degeneracy and
improving the coordination of subproblem solutions), imple-
menting special-purpose branching rules, and tightening the
master problem to facilitate solution. The tests described in
this article demonstrate that a complex set of tradeoffs must
be accommodated in managing these challenges, including
the sizes and structures of subproblems; the size, tightness,
and order of degeneracy posed by the master problem; the
size and density of the graph induced by edge inequalities
that are relegated to the master problem; and the capabilities
of the algorithm(s) employed to solve subproblems and the
overall B&B search.

Future research could contribute, for example, by devis-
ing techniques to determine a priori an optimal number of
partitions (i.e., value of P) for a particular instance. Other
fertile opportunities to advance this line of research include
devising more effective methods for partitioning, for dealing
with large degenerate master problems, and for incorporating
cutting planes to tighten the master problem in a branch-and-
price-and-cut approach. In addition, this study indicates an
attractive potential for the successful application of B&P to
other inheritly decomposable graph problems. Our research
continues along these lines.
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