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Abstract. In this paper a local integral simplex algorithm will be described which, starting with the initial tableau
of a set partitioning problem, makes pivots using the pivot on one rule until no more such pivots are possible because
a local optimum has been found. If the local optimum is also a global optimum the process stops. Otherwise, a
global integral simplex algorithm creates and solves the problems in a search tree consisting of a polynomial
number of subproblems, subproblems of subproblems, etc. The solution to at least one of these subproblems is
guaranteed to be an optimal solution to the original problem. If that solution has a bounded objective then it is
an optimal set partitioning solution of the original problem, but if it has an unbounded objective then the original
problem has no feasible solution. It will be shown that the total number of pivots required for the global integral
simplex method to solve a set partitioning problem having m rows, where m is an arbitrary but fixed positive
integer, is bounded by a polynomial function of n.

A method for programming the algorithms in this paper to run on parallel computers is discussed briefly.

1. Introduction

In this paper a new approach to solving some kinds of zero/one integer programming
problems will be presented which (a) is independent of previous popular approaches such
as cutting plane or branch and cut methods; (b) depends only on linear algebra and linear
programming; together with some new results contained in this paper; (c) requires only a
polynomial number of pivots to solve any set partitioning problem having m rows, where
m is an arbitrary but fixed positive integer; and (d) and provides a certificate of optimality
for the final solution. The complete theoretical development of the method and preliminary
computational results are presented.

The basic idea of the method of this paper is to use a modified version of the sim-
plex method, called the local integral simplex method, in which pivot steps are made
only on one entries in the simplex tableau. Since the problems considered here are set
partitioning problems, the initial pivots on ones are easy to find. However, in later steps
the integral simplex method frequently stops at a point at which there are columns hav-
ing negative indicators which could improve the objective function if brought into the
basis, but the minimum ratio rule, applied to these problems, can find pivots only on
numbers larger than one. In other words the method finds only a local optimum for the
problem. In order to find the overall optimum another method, called the global inte-
gral simplex algorithm, is applied which uses the local simplex method as a subroutine.
Once the local method stops at a local optimum the global method defines a subprob-
lem for each negative reduced “cost” in the local method’s final tableau. It is shown
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in this paper that the best solution found among all of the subproblems is the global
optimum (if there is one) for the original problem. It is also shown that the number
of pivot steps needed for the global integral simplex method to solve a set partition-
ing problem having m (where m is fixed) rows is bounded by a polynomial function
of n.

In previous papers Balas and Padberg [1, 2] have shown that the simplex method, when
restricted to pivoting using the pivot on one rule, can be used to explore the integer solutions
within the feasible set of the linear programming relaxation of the set partitioning problem.
In their 1975 paper they provide two algorithms for solving set partitioning problems with
their pivoting method together with column generation techniques.

2. The local integral simplex method (LISM)

Many combinatorial optimization problems have one of the following forms:

Minimize cx

Subject to Ax≤, =, ≥b

x ∈ {0,1}n

where A is an m × n matrix with 0/1 entries, x is an n × 1 column vector, b is an m × 1
vector with positive integral entries, and c is a 1 × n vector with positive integral entries.

For instance, the set partitioning problem can be stated as:

Minimize cx + My = z

Subject to Ax + y = f

x ∈ {0,1}n

y ≥ 0

(1)

where A is an m ×n 0/1 matrix, x is an n ×1 vector, y is an m ×1 vector whose components
are called artificial variables, c is an 1 × n vector of integer costs, f is an m × 1 vector of
all ones, M is a large positive number and scalar z is the value of the objective function. All
the example problems considered in this paper will be set partitioning problems. Solutions
(x, y) to this problem have coefficients 0 or 1, and are called partition solutions. Since the
integral simplex method uses the pivot on one rule all of the entries in the tableaus calculated
by this method are integers. A partition solution (x, y) is said to be an integral partition if
y = 0.

In the LP relaxation of the problem, the condition “x ∈ {0,1}n” in (1) is replaced by the
condition “x ≥ 0”. The integral partition solutions just defined, found by the usual simplex
method, are extreme points of X , the set of all feasible solutions to the LP relaxation. More-
over, X has other extreme points, called fractional partitions, (x, y), whose components are
real numbers in the closed interval [0,1], and having at least one component x j satisfying
0 < x j < 1.
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Figure 1.

We use the following notation for the tableaus of the problem. Let T be the (m + 1) ×
(n + m + 1) initial tableau of a set partitioning problem in which the m × n matrix A is put
in rows 1, . . . , m and columns 1, . . . , n, the artificial vectors are put in rows 1, . . . , m and
columns n + 1, . . . , n + m, the b vector is put in column 0 in rows 1, . . . , m, the c vector is
put in row 0 in columns 1, . . . , n, and the costs M of the artificial variables are put in row
zero and columns n + 1, . . . , n + m. In row 0 and column 0 a zero entry is placed which
will record the values of the objective function. In the LP phase I step the artificial vectors
are pivoted in, to become the initial basis, and the last m columns are dropped to give a
compact initial tableau, see figure 1(a). The entries in row 0, columns 1, . . . , n are called
indicators of the corresponding variables that label the columns, instead of reduced costs
as in ordinary LP, because there are no dual variable prices. (However, no harm is done
by thinking of them as reduced costs). The indicators of the basic variables whose labels
appear on the righthand side of the tableau are all zeros.

The steps of the local integral simplex method, written in a pseudo C language, are shown
in figure 2. In that figure there are two places where a RULE is referred to. By that is meant
one of the following rules: Bland’s rule for preventing cycling, the lexicographic ordering
rule for preventing cycling, or random selection rule for preventing cycling with probability
one, see, for instance Chvatal [3].

When LISM stops its final tableau may have all nonnegative indicators (i.e., reduced costs)
which means that a global optimum has been found. If LISM has some negative indicators,
then it is possible that there are some better integral solutions. The global integral simplex
method to be illustrated next, and covered fully in Section 3, will find such better solutions.
To do so it defines a subproblem at a node of the tree having a negative indicator x j by
calculating the effect in the tableau of making x j equal to one and omitting that variable in
the tableau of the new subproblem. In addition none of the variables at the node of the tree
that were previously set to one are included in the new subproblem (see figure 3). It then sets
up and solves each of these subproblems (which in turn may require solving subproblems
of subproblems, etc.) so defined.

To illustrate, consider the 3 × 4 example whose A matrix and c vector are shown in
figure 4.

Putting these quantities and some artificial variables into the initial (infeasible) 3 × 7
simplex tableau shown in figure 5. In that figure the primal variables are the x’s and the
artificial variables are the y’s. Note that the “large” cost for the artificial variables is M = 10.
We follow the usual convention that the entries of the c vector and the penalty costs M in
(1) are negatives, and the entries in the last row of the first 7 columns are their negatives.
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Figure 2. Pseudo C code for LISM.

Figure 3.

Figure 4.
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Figure 5.

Pivoting in each of the artificial variables gives the initial compact simplex tableau shown
in figure 1(a). Pivoting on the entries (1,1), (2,2), and (3,3) in figure 1(a) gives the simplex
tableau of the local optimum shown in figure 1(b). No further pivoting is possible even
though the fourth column has a negative indicator of −1, because when the minimum
ratio rule is applied to column 4, it chooses the 2 entry in the (1,4) location on which to
pivot. At this local optimum the current integral solution is given by x1 = x2 = 1 with
objective function z = 2. The sign of the objective is changed because the problem requires
minimizing the sum of the negative costs. At this point the LISM algorithm stops because
no further pivots on one can be made.

In Section 3 the solution given in figure 1(b), x1 = x2 = 1 and z = 2, is shown to be
optimal for the problem in figure 5.

It is easy to show from figure 5 that there is another fractional solution to the problem,
namely x2 = x3 = x4 = 1/2 with z = 3/2. This can also be seen by making an ordinary
LP pivot on the 2 entry in row 1 and column 4 of figure 1(b). This solution is, in fact, a
fractional solution obtained as the linear programming solution to the LP relaxation of the
integer problem given in figure 5.

3. The global integral simplex method (GLISM)

We begin this section by making some definitions.

Definition 1. Two zero/one column vectors a and b with the same number of components
are said to be orthogonal if their inner product a ·b is zero, i.e., if for every row i the product
ai bi = 0. They are said to be non-orthogonal if for some row i the product ai bi = 1.

For instance, in figure 1(a) columns 1 and 2 are orthogonal while column 4 is not ortho-
gonal to any of the columns 1, 2 or 3. So that if we wish to set x4 to 1 we would also have
to set x1 = x2 = x3 = 0 to create a feasible solution.

Definition 2. Let T be the tableau of the original problem, let Tj be the j th column of T
and let N be the indices of an orthogonal set of columns of T that are to be set equal to 1; let
Z be a set of columns that are to be set equal to 0; then the subproblem defined by setting
x j (1) = 1, . . . , x j (k) = 1 is obtained by doing the following steps: (a) let w = ∑

j∈N Tj ;
and cross out non-orthogonal columns j of T for which w · Tj > 0; (b) cross out columns
j of T which belong to Z , (c) calculate the effect of setting the columns in N to one by
pivoting on a one for each element of N ; (d) cross out rows i of T such that wi = 1; and
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(e) cross out all rows and/or columns of T that have all zero entries. The resulting tableau,
if not empty, is called a subproblem of the original problem.

When crossing out a column, the label at the top of the column must also be eliminated.
Thus, when crossing out columns 1, 2, and 3 in figure 1(a), the labels x1, x2, and x3 are also
crossed out. Note that in setting a variable to zero, no record of that variable needs to be
kept since the absence of that variable in any solution found subsequently indicates that it
is zero.

In figure 1(b) it is clear that to get a better solution the variable x4 must be set to 1 and
eliminated from the tableau. But this means that columns x1, x2, and x3 must also be crossed
out which means that the whole tableau is eliminated and no subproblem has been created.
This proves that there is no better integral solution than the one shown in figure 1(b), which
is therefore optimal.

Definition 3. Let T be the final tableau of a set partitioning problem or subproblem, and
let x be the partition solution shown in T for the problem. If x∗, not equal to x , is feasible
partition solution, x∗

j > 0 is a nonbasic variable labeling a column of T having a negative
indicator, then x∗

j is said to be an set partition flag variable for x∗. If x∗ is an integral
partition, then x∗

j is said to be an integral set partition flag variable for x∗. If x∗ is a
fractional solution then x∗

j is said to be a fractional set partition flag variable for x∗.

As an example, note that in final tableau of figure 1(b) the variable x4 is a fractional set
partition flag variable for the fractional solution x2 = x3 = x4 = 1/2 and z = 3/2.

It should be remarked that a set partition flag variable appearing in a final tableau can
simultaneously be an integral flag variable for one or more integral set partition solutions
and also a fractional set partition variable for one or more fractional set partition solutions.
This will be illustrated in the numerical example of figure 6 in Section 3.

The global integral simplex method GLISM constructs a search tree of subproblems
which are solved using LISM as a subroutine. To see how the search tree is constructed
see figure 3. In that figure node 0 stands for any new node (including the initial node in the
tree) that is to be added to the tree, nodes 1, 2, 3, and 4 stand for subsequent nodes, and
the symbols x1, x2, x3, x4 (etc.) stand for the values of the new variables having negative
indicators in the current tableau.

Figure 6. Data for a 5 × 11 example.
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Figure 7. Pseudo C code for GLISM.

To create the tableau at node 1, the effect of setting x1 is calculated and the column labeled
x1 is crossed out. To calculate the tableau at node 2, the effect of setting x2 = 1 is calculated
and the columns labeled x1 and x2 are crossed out. To create the tableau at node 3, the
effect of setting x3 = 1 is calculated and the columns labeled x1, x2, and x3 are crossed out.
Similarly for node x4. Note that due to the crossing out of columns, the sizes of subproblems
tend to decrease rapidly as the depth of search increases, making them easier to solve.

It will be shown that the optimal solution to the subproblem having the smallest objective
function value is also an optimal solution to the original problem, provided that problem
has an optimal solution.

A pseudo C code for the global simplex method is given in figure 7. In that figure N is
the subset of variables that must be set equal to one; Z is the subset of variables that must
be set equal to zero, and Q is the subset of problems that are still to be solved.

4. Theoretical results

Here we will derive all of the theoretical results that are needed to prove that the GLISM
algorithm will find optimal solutions (if such exist) to set partitioning problems. Although
some of the results are similar to those that are true for the theory of linear programming,
others are not.
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Property 1. Let T be the tableau of a locally optimal integer partition solution x.
(a) The objective value of x is the negative of the entry in the first row and first column

of T .
(b) If x∗ is any other locally optimal integral partition then its objective value is the

objective value of x shown in T plus the sum of the indicators of T corresponding to
the components of x∗ that are equal to 1.

Property 1(a) follows because the problem being solved by the simplex method is to
maximize the negative of the objective function. Property 1(b) follows directly from the
invariance of linear relations property which is: any linear relation that holds for vectors in
one basic solution holds for the same vectors in every other basic solution. The latter holds
because linear transformations, such as the pivot transformations of the simplex method,
preserve linear relations.

Theorem 1. Let T be the tableau of a locally optimal integer partition x which has some
negative indicators and assume there is a better locally optimal integer partition x∗. Then
(a) T contains a column labeled with a nonbasic variable x j having a negative indicator,

and such that x∗
j = 1; i.e., x j is a set partition flag variable for x∗.

(b) x∗ is a locally optimal integer partition for the subproblem of the current problem which
is defined by setting x j equal to one.

Proof:

(a) Let x and x∗ be partition solutions having the properties stated in the hypothesis of
the theorem. By Property 1(b) the objective function of x∗ is equal to the sum of the
objective function of x plus the indicators of components of x∗ for which x∗

j = 1. Since
x∗ has a smaller objective value that x does, at least one of the indicators of x∗ for
which x∗

j = 1 must be negative. Since the indicators of the basic variables are always
equal to 0, it follows that x∗

j must be nonbasic.
(b) From the assumptions, x∗

j = 1 in x∗. Also the column labeled x j is orthogonal with the
column of every other variable x∗

k that equals 1 in x∗, so that the subproblem defined by
x j = 1 will contain all the variables that are equal to one in x∗, except for x j itself. Since
x∗ is optimal in the original problem it will also be optimal in the new subproblem. For
suppose on the contrary, that x∗∗ is better than x∗ in the subproblem. Then all column
vectors h, with x∗∗

h = 1 in the subproblem must be orthogonal with x∗
j , which means

that x∗∗ must have been better than x∗ in the original problem, a contradiction.

Corollary 1. Either the current solution is globally optimal for the current problem, or
else T will have a column whose label is a set partition flag variable for such a globally
optimal solution x0.

The result in the Corollary 1 is much stronger than any similar result for linear program-
ming. In the simplex solution of an LP problem it rarely happens that a variable having a
negative indicator at some point during solution process will belong to a globally optimal
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solution. But in the case of LISM it happens for at least one variable in every tableau whose
solution is locally but not globally optimal.

Theorem 2. Let T be the tableau of a locally optimal partition x which has some negative
indicators and assume there is a better locally optimal fractional partition x∗. Then
(a) Tableau T contains a column whose label x∗

j is a fractional set partition flag variable
for x∗.

(b) If x∗
j is an integral variable of x∗, i.e., x∗

j = 1, then x∗ is a locally optimal fractional
partition for the subproblem that is defined by setting x∗

j = 1.
(c) Let x∗

j < 1 be a fractional variable of x∗; then x∗ is not a locally optimal partition for
the subproblem that is defined by setting x∗

j = 1.

The proofs of (a) and (b) are similar to the proofs of the previous theorem.
To prove part (c), recall that if x∗

j labels column j and is a fractional variable then there is
at least one other column which is labeled by a fractional variable x∗

k and, since x∗
j < 1, for

these two columns there is at least one row in which they both have a 1, i.e., they are non-
orthogonal. Hence the subproblem P defined by setting x∗

j equal to 1 does not contain the col-
umn labeled by x∗

k which means that the fractional solution x∗ is not feasible for problem P .
Property (c) of this theorem is the key result that shows how the global simplex method

eliminates fractional partitions as candidates for globally optimal integer partitions by defin-
ing subproblems as the search tree is being created. Notice that when the local integral sim-
plex method stops at a local minimum the global integral simplex method merely searches
for negative indicators in the tableau and sets the corresponding variable equal to one to
create a new branch in the subproblem search tree without determining whether that variable
corresponds to (a) an integral set partition, or only to (b) a fractional set partition. In the case
(a) the tree may branch further to locate other, and perhaps better integral solutions, while
in case (b) the fractional partition solution simply vanishes, and does not appear anywhere
lower in the subproblem search tree.

Theorem 3. Assume that the final tableau T of a problem (or subproblem) has all non-
negative indicators.
(i) If all artificial variables have value zero in the final tableau, the solution displayed in

that tableau is an optimal set partition for the problem.
(ii) If one or more artificial variables have value one in the final tableau, the problem has

no feasible set partition.

Proof:

(i) Under the stated assumption, by Property 1(b) every other feasible partition has a cost
greater than or equal to that of the solution shown in T . Since the displayed solution is
feasible it therefore is globally optimal.

(ii) Under the stated assumptions it follows from Property 1(b) that the objective function
is greater or equal to M , and by Property 1(a), all other solutions have objective value
greater than or equal to M . Since M can be arbitrarily large, and since feasible solutions
have finite values, it follows that there is no feasible partition.
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Theorem 4. For any set partitioning problem the global integral simplex method will
either find a globally optimal integral set partition, or else prove that no such feasible
partition exists.

Proof: The convergence of LISM when used to solve subproblems can be proved as in the
simplex method by using the well known properties of the RULE in figure 2. By Theorem 2,
either the set partition which appears in the final tableau of the first subproblem solved, or
one of the set partitions whose flag variable appears in the tableau at a local optimum of
one of the subproblems, is a globally optimal solution. Since the global integral simplex
method finds an optimal solution for every subproblem corresponding to negative indicators
in the final tableau, the subproblem yielding the best locally optimal solution is therefore
globally optimal. If that solution does not contain any artificial variable with value one
then it is a globally optimal set partition. If that solution does contain one or more artificial
variables with value one, then by Theorem 3(b) the original problem does not have any
feasible partition.

The next theorem is not needed for later developments in this paper. However it is included
because it settles an important question.

Theorem 5. A set partitioning problem has an optimal integral dual solution if and only
if the linear programming relaxation of the original problem has an optimal integral primal
solution.

Proof: Assume that the linear programming relaxation of the original problem has an
optimal integral primal solution. Then applying GLISM to that problem such an optimal
solution whose dual is also optimal and integral will be found.

If the linear programming relaxation does not have an optimal integral primal solution
then there is a gap between the integral optimal solution and the linear programming solution.
Moreover the latter solution must be fractional by the assumption of the theorem. Let X
be the optimal integral primal solution found by GLISM. Because the LP relaxation is a
fractional solution having a lower cost objective function, the final tableau for X will have
at least one negative indicator, indicating that there is no feasible dual solution for X .

5. Computational complexity of the algorithms

In this section it is shown that both LISM and GLISM can be solved in a finite number of
pivots when used to solve set partitioning problems having a fixed number m of rows, by
showing that the maximum number of pivots required to solve either of them is bounded
by a polynomial function of n.

Theorem 6. The maximum number of pivots needed by LISM to find a locally optimal
solution to a set partitioning problem having m rows and n columns is at most (n + 1)m.
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Proof: At each pivot LISM moves from one feasible basis having m columns to another.
Let S be the set, having m + n elements, that consists of the m artificial column vectors
together with the n column vectors of A. Then the maximum number of pivots required for
LISM to converge to a local optimum is less than or equal to the maximum number of m
element subsets of S, which is the combinatorial coefficient

(
n + m

m

)
= (n + m)!/(m! n!) = (n + 1) · (n + 2) . . . (n + m)/m!

< (n + 1) · ((n/2) + 1) . . . ((n/m) + 1)

< (n + 1)m

which gives the upper bound asserted in the theorem.

Theorem 7. If n ≥ 2 the total number of pivots required by the GLISM to solve an m × n
set partitioning problem is less than 2(n2 + n)m.

Proof: The original problem at level 0 of the subproblem search tree has at most n
negative indicators, and hence it creates at most n subproblems at level 1 of the search
tree. Each of these subproblems is of size at most (m − 1) × (n − 1), and hence creates at
most n(n − 1) < n2 subproblems. Similarly, the size of subproblems on the kth level of the
tree is at most (m − k) × (n − k) and hence they create at most n(n − 1) . . . (n − k) < nk

subproblems. The deepest level of the tree is (m − 1), since “subproblems” on the level m
would have no rows. Hence the number of subproblems on the deepest possible level is at
most n(n − 1) . . . (n − m + 1) < nm . Adding these together, and using the fact that n ≥ 2
implies n/(n − 1) ≤ 2, gives the total number of subproblems that must be solved as

n + n2 + · · · + nm = n(nm − 1)/(n − 1) < 2nm .

Multiplying this result by the result of Theorem 6 gives the bound stated in the theorem.

6. Numerical examples

Consider the 3 × 4 problem shown in figures 4 and 5. In the final tableau of the problem
shown in figure 1(b) note that the variable x4 is the only flag variable. Observe that the fourth
column in the A matrix is non-orthogonal with each of the other columns of the A matrix.
Hence the subproblem created by setting x4 = 0 consists of only the fourth column plus
the artificial variables. Since the fourth column in A has a zero row entry, this subproblem
has no finite solution. Therefore the solution shown in figure 1(b) is the optimal solution
for the problem in figure 5.

Figure 6 contains the data for a 5 × 11 numerical example. In order to solve the problem
using LISM, five artificial vectors are added, and a phase I start is made to get an initial
feasible basis. After pivoting seven times and eliminating the artificial vectors the final
compact tableau shown in figure 8 is obtained. The set partitioning solution shown in
figure 8 is x1 = x7 = 1 with objective value z = 149.
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Figure 8. Local optimum for the 5 × 11 example found by LISM.

We see from the figure that there are three flag variables, x3, x4, and x5 each of which
defines a subproblem, as follows:

(i) Setting x3 = 1 in the original problem data in figure 6 gives the 2 × 3 subproblem
with rows 1 and 2, and columns 2, 9, and 11. The optimal integral solution to this
subproblem (together with x3 = 1) is: x3 = x9 = 1 and z = 124.

(ii) Setting x4 = 1 gives the 3 × 5 problem with rows 1, 2, and 3, and columns 2, 8, 9,
10, and 11. The optimal integral solution to this subproblem (together with x4 = 1) is:
x4 = x8 = x9 = 1 and z = 132. There is another nonoptimal solution to this problem,
namely, x4 = x10 = 1 and z = 140 which was not found by LISM since it found the best
one first. Both of these solutions had x4 as an integral set partition flag variable.

(iii) Setting x5 = 1 gives a 1 × 1 problem with row 1 and column 2. The optimal integral
solution to this subproblem (together with x5 = 1) is: x2 = x5 = 1 and z = 104.

Since all three subproblems yielded optimal integral solutions there were no more subprob-
lems to be solved, and the best of the solutions, given in (iii), is optimal for the problem in
figure 8.

7. Certificate of optimality

In ordinary linear programming theory the optimal dual solution gives a certificate of
optimality in the form of a bounding hyperplane P , the direction of whose normal is given
by the optimal dual solution. This hyperplane contains at least one point of the convex set
of feasible primal solutions X , namely, the optimal solution found by solving the linear
programming problem, and all of the other feasible solutions in X lie either on the same
side of P or actually on the hyperplane P .

It is possible to find something similar here, but not by using a dual solution to the
problem, because, as indicated in Theorem 5, there is usually no feasible dual problem in
the case of set partitioning. Suppose that we somehow knew of the feasible solution for
figure 6, x2 = x5 = 1 and z = 104, and wanted to see if it were optimal. We start with the
original problem in figure 8, add the artificial vectors and perform the Phase I step; then
we pivot to bring into the basis the columns of the known solution, namely, the columns
labeled x2 and x5. After that is necessary to pivot several more times to arrive at the locally
optimal solution shown in the full tableau of figure 9.
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Figure 9. Final tableau after pivoting in the columns labeled x2 and x5 and reoptimizing.

Note that in that figure the optimum solution is as found in (iii) above; however there is
a negative indicator with label x6. As usual we set x6 = 1 and find that the corresponding
subproblem has no columns since x6 is not orthogonal with any other column in figure 6.
Hence this subproblem does not have any finite integral solution which provides a second
proof that the solution x2 = x5 = 1 and z = 104 is optimal. (The first proof was given by
finding the solutions to the three subproblems in (i), (ii) and (iii) above.)

This is the certificate of optimality for the problem at hand. In the general case the
procedure for finding the certificate of optimality is the same once an optimal solution is
found by the GLISM. In order to find a certificate of optimality, set up the original tableau,
and pivot on ones until the variables in the optimal solution become basic, then continue
pivoting until a local optimal solution for the tableau is obtained. Then show that, for each
negative indicator in the final tableau, the corresponding subproblems do not have better
integral solutions. Note that here the certificate of optimality is not obtained as an automatic
by product of finding an optimal solution to a linear program. It requires additional optional
computations which should be done only if it is felt that the results might be useful, for
instance, in interpreting the optimal solution.

In order to find the solution that corresponds to the flag variable x6 in figure 9 we
temporarily drop the pivot on one rule in order to return to ordinary linear programming,
and pivot on the 2 entry in row 4 and column 6 in figure 9. We obtain the optimal fractional
solution x5 = x6 = x7 = 1/2 and z = 91. This is the LP relaxation solution of the problem
shown in figure 6. What this means is that the flag variable x5 back in figure 6 was both
an integral flag variable for the optimal solution found in (iii), and also a fractional flag
variable for the LP relaxation solution just found. When x5 became basic with value one in
figure 9 it could no longer be a flag variable for the fractional solution of the LP relaxation,
so that role was taken over by x6.

8. Computational experience

Preliminary computations were performed with a PC running at 33 megaherz. Table 1 con-
tains numerical data from the solutions of 25 problems. Each row in the table is the average
of solution times, densities and other data for 5 instances of randomly generated problems
having 15 rows and 150 columns. Notice that the solution times decrease rapidly as the den-
sity of the problems decrease from 0.20 to 0.40. Similarly the numbers of subproblems and
pivots also decrease rapidly. However the maximum length of the current subproblem queue
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Table 1. Data from the solutions of 25 problems of size 15 × 150 having varying densities.

Density Objective Seconds Sub-probs. Pivots Max Q Depth

0.20 3.60 203.20 11,010 94,389 118.40 8.00

0.25 6.75 83.80 4,807 35,892 126.25 7.25

0.30 9.80 16.60 747 4,816 111.60 6.00

0.35 9.60 7.00 259 1,547 109.00 4.80

0.40 26.80 3.40 91 469 109.00 3.40

Table 2. Average solution times for a series of 160 randomly generated problems each having density of 0.3.

n m = 10 m = 15 m = 20 m = 25

50 0 0 0 0

100 1.2 3.4 2.2 0

150 5.4 20.2 13.4 5.4

200 8.2 49.8 47.2 21.8

250 19.8 114.6 126.6 49.0

300 19.6 116.8 220.0 111.2

350 38.4 148.1 453.6 194.4

400 42.6 161.8 641.4 305.4

(Max Q) stays almost constant. The maximum depth of the subproblem search tree decreases
slowly with the increase of problem density. Forty percent dense problems are easy to solve
and have large objective functions because each column has only a few columns that are
consistent with it and hence these problems have only a small number of feasible solutions.

Table 2 contains a listing of the run times (on a 33 megaherz PC) for problems having den-
sities of 0.3 and sizes m = 10, 15, 20, 25 and n = 50, 100, 150, 200, 250, 300, 350, 400.
Each entry is the average of 5 run times for each problem size instance. Note that the 20 row
problems usually take the longest. It is not clear why 20 row problems should take longer
than 25 row problems.

In the fall of 1999 T. Smith and the author wrote a new and much improved version of
the GLISM code and used it to solve the practical set covering problems used by Hoffman
and Padberg [4] to test their branch and cut algorithm. These problems were set partitioning
problems having 20 to 35 percent densities arising from actual crew scheduling problems
supplied by several different airlines companies. K. Anderson simplified the data by elim-
inating duplicate columns from the data supplied by Hoffman and Padberg. Some of the
problems were relatively small and others much larger. In Table 4 the problem size data
for 25 of these problems are shown together with solution times (HP) by the Hoffman and
Padberg code and by our 1999 (ST) code. The computer we used for the (ST) times in Table
3 was a PC running at 333 megaherz, which is 10 times faster than the PC times reported in
Tables 1 and 2. The computers used for the (HP) times in Table 3 were of 1992–93 vintage,
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Table 4. Times to solve all of the smaller Hoffman-Padberg (HP) and some of the larger crew scheduling problems
reported in [4] using their 1993 code and the Smith-Thompson (ST) 1999 code.

Problem identity m n HP (sec) ST (sec)

199 17 177 0.06 0.00

294 18 251 0.17 0.01

404 19 336 0.21 0.01

467 29 405 0.10 0.02

577 25 421 0.30 0.01

619 23 521 0.34 0.03

677 25 565 0.19 0.03

685 22 536 0.62 0.02

711 18 423 0.34 0.05

770 19 639 0.19 0.01

771 21 468 0.34 0.02

899 20 718 0.30 0.02

1072 17 982 0.38 0.06

1079 23 795 0.99 0.04

1210 18 582 0.40 0.01

1217 20 844 0.62 0.02

1220 21 723 1.35 0.03

1355 22 817 0.28 0.03

1366 19 926 0.56 0.02

1709 23 1191 0.48 0.05

1783 20 1408 3.68 0.06

2540 18 2034 0.99 0.11

2653 26 1877 0.75 0.08

2662 26 1823 1.43 0.15

3068 23 2415 1.45 0.07

6774 50 5977 10.41 0.83

8820 39 6488 2.08 0.33

16043 51 10950 4.29 1.60

28016 163 6564 11.19 141.65

nw04 35 46189 2,642.00 289.07

and were probably in the 100–200 megaherz range. The run time comparisons between the
two different methods is thus very difficult. The faster time for ISM on the nw04 problem is
probably due to the weakness of the linear cut used by HP. However, it appears that overall
these two methods exhibit competitive performances in solving these problems.

T. Smith and the author are currently preparing a paper that gives a much more detailed
and comprehensive comparison of the two methods on the data in [4].
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The author and T. Smith have also written a version of the GLISM code suitable for
running on parallel computers. At the initial node of the search tree this code assigns
different parts of that search tree to different processors to solve. During the tree search,
each processor broadcasts to each of the other processors, any improvement it finds on
the upper bound to the solution objective function. This knowledge frequently reduces the
overall search time. The parallel code has exhibited superlinear speedups for certain kinds
of such problems; that is, doubling the number of processors used to run the parallel version
of GLISM sometimes more than doubles its solution speed. This will be reported on in the
forthcoming paper referred to above.

We also solved a number of randomly generated problems of the same sizes as those
in Table 4. Surprisingly the run times for those random problems was considerably longer
than for the practical problems in Table 4! This contradicts a commonly held belief that
random problems are always much easier to solve than real life problems.

It is well known that empirically the computational difficulty of solving a linear program
having a fixed number of rows m, is linear in m, e.g. approximately 3m or 4m, and that is
what makes the ordinary simplex method be so successful in solving practical problems. The
computations indicate that, empirically, the time required to solve set partitioning problems
with GLISM is a low degree function of n, so that this code, especially in its parallel
version, can be expected to be quite successful in solving real applied problems. Of course
this assertion must be confirmed by other researchers before a final judgment can be made.

9. Conclusions

In this paper two simple algorithms, which are based on adding the pivot on one rule to the
simplex method together with the creation of a search tree of subproblems, have resulted
in a zero/one integer programming method that, for fixed m, requires only a polynomial
number of pivots either, to find an optimal solution to a given set partitioning problem, or
else to prove that no feasible partition exists for the problem. It was also shown empir-
ically that the method is likely to be successful in practice and offers considerable hope
of being a useful tool for solving a large variety of practical combinatorial optimization
problems.

The author is currently testing the same method for solving other combinatorial problems
such as set covering, set packing, matching, independent set, maximum clique, postman
and other problems.
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