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Abstract

The integral simplex method for set partitioning problems allows only pivots-on-one to be made, which results in a primal all-integer
method. In this technical note we outline how to tailor the column generation principle to this method. Because of the restriction to
pivots-on-one, only local optimality can be guaranteed, and to ensure global optimality we consider the use of implicit enumeration.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

During the past few decades, the column generation principle has gained considerable popularity for solving various
classes of decision problems of practical interest; see for example [12,7] for recent surveys of applications and methodology.
Column generation has become popular within combinatorial optimization, especially in the fields of routing and sched-
uling. Since column generation is a pure linear programming method, it then needs to be complemented with appropriate
integer programming techniques. For example, if it is combined with branch-and-bound, the branch-and-price method is
obtained, see e.g. [3].

In many applications of column generation, the available columns are combined by solving linear programming relax-
ations of set partitioning master problems. A nice example of this is the generalized assignment problem, see [9]. Set par-
titioning problems have the interesting quasi-integrality property, first shown by Trubin [11]; this property implies that it is
possible to move between two bases that are adjacent but associated with different integer vertices, by making a simplex
pivot on a one-entry in the tableau. The integral simplex method, which was briefly described in [11], was named by Yeme-
lichev et al. [13], and recently further developed and also applied by Thompson [10], makes use of this fact for solving the
set partitioning problem.

We outline how to tailor the column generation principle to the integral simplex method for set partitioning problems,
by using a theoretical result derived by Balas and Padberg [1]. Together with implicit enumeration, that assures that an
optimal solution is found, we obtain a novel primal all-integer column generation method for combinatorial optimization
problems with set partitioning master problems.

The remainder of the paper is organized as follows. Some theoretical background concerning the set partitioning prob-
lem is given in Section 1.1. The inclusion of column generation into the integral simplex method, and its combination with
implicit enumeration, is made in Section 2. Concluding remarks are made in Section 3.
0377-2217/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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1.1. Preliminaries

Consider the set partitioning problem
½SPP� z� ¼ min
X
j2N

cjxj

s:t:
X
j2N

ajxj ¼ e; ð1aÞ

xj 2 f0; 1g; j 2 N ; ð1bÞ
where N ¼ f1; . . . ; ng is the set of indices for the variables, aj ¼ ða1j; . . . ; aij; . . . ; amjÞT; j 2 N , are vectors of zeros and ones,
cj; j 2 N , are integers, and e ¼ ð1; . . . ; 1ÞT is an m-vector. The index set for the constraints is M ¼ f1; . . . ;mg. We assume
that n P m and that the problem is feasible. We assume further, without loss of generality, that the matrix ða1; . . . ; anÞ has
no zero row or column (since a zero row would imply infeasibility and a variable associated with a zero column can be
eliminated) and full rank.

Let SPPLP be the linear programming relaxation of the problem SPP, obtained by replacing (1b) with xj P 0; j 2 N . For
any basic feasible solution to SPPLP, we denote the basis by B � fa1; . . . ; ang. Let I and J denote the corresponding sets of
basic and non-basic columns, respectively, and let uT ¼ cT

BB�1, where cB ¼ ðcjÞj2I , be the complementary dual basic solu-
tion. Further let Q � I be the set of basic variables that take the value one. Two bases are called adjacent if they differ in
exactly one column.

In the remainder of this section, we will present a background to the column generation method to be proposed.

Definition 1. Let X be a polytope and X I its set of integer points. The polytope X is called quasi-integral if every edge of the
convex hull of X I is also an edge of X.

This property implies that any two integer points of the polytope can be joined by a path that consists only of such edges
of the polytope that connect integer points. The following result is from Trubin [11]. (He did however not use the term
quasi-integral.)

Theorem 1. The polytope described by the constraints (1a) and xj P 0; j 2 N , is quasi-integral.

See also Yemelichev et al. [13, pp. 189–193], for an introduction to quasi-integrality. Other problems with this property
include the simple plant location problem [13], the uncapacitated network design problem, see [4], and the one and two
facility, one commodity, network design problems, see [8]. The perfect matching and set packing problems also have this
property since they can be stated as set partitioning problems.

The set partitioning problem has the following interesting properties, which are shown by Balas and Padberg [1].

Theorem 2. Let x1 be a feasible and integer solution to SPPLP, associated with the basis B1, and suppose that x1 is not optimal

in SPP. Denote by x2 an optimal solution to SPP, and let B2 be an associated basis in SPPLP. Let J1 and Q2 be the index sets of
the non-basic columns in B1 and the one-valued basic variables in x2, respectively. Then there exists a sequence of adjacent

bases B10;B11;B12; . . . ;B1p in SPPLP, such that B10 ¼ B1;B1p ¼ B2, and (a) the associated vertices x1 ¼
x10; x11; x12; . . . ; x1p ¼ x2, are all feasible and integer, (b) cx10 P cx11 P � � �P cx1p, and (c) p ¼ jJ 1 \ Q2j.

Since any vertex can be made optimal by adjusting the objective function, it follows from the theorem that for any two
integer feasible basic solutions to SPPLP, x1 and x2, there exists a sequence of adjacent bases with length p ¼ jJ 1 \ Q2j, such
that the associated vertices are all feasible and integer.

Theorem 2 however is not useful for the practical solution of the set partitioning problem, since it requires knowledge of
an optimal solution. As remarked by Balas and Padberg [1], the construction of the sequence of adjacent bases may involve
degenerate pivots on negative tableau entries, which is not allowed in the simplex method. Furthermore, the standard anti-
cycling rules are not known to work when negative pivots are performed.

As proposed in Balas and Padberg [2], a possible approach to solve the set partitioning problem would be to repeatedly
find edges connecting the current vertex to an adjacent integer vertex with a better objective value. The movement along an
edge between two integer vertices corresponds algebraically to a non-degenerate simplex pivot on a one entry. Because of
degeneracy it can be hard to find a basis that enables such a pivot. The idea of moving between integer vertices by making
pivots on one-entries was first suggested in [11], and it is the foundation for the integral simplex method.

For future reference, we make the following definition of the pivots used in the integral simplex method. Here, �e ¼ B�1e
and �aj ¼ B�1aj; j 2 N , are the updated right-hand-side and constraint columns, respectively, and �cj ¼ cj � uTaj; j 2 J , are
the reduced costs.

Definition 2. Given a simplex tableau associated with an integer basic feasible solution to SPPLP and an s 2 J such that
�cs < 0.
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(i) A non-degenerate pivot-on-one is a pivot operation on an entry �ars ¼ 1 such that
min
i2M

�ei

�ais

�����ais > 0

� �
¼ �er

�ars
¼ 1:
(ii) A degenerate pivot-on-one is a pivot operation on an entry �ars ¼ 1 such that
min
i2M

�ei

�ais

�����ais > 0

� �
¼ �er

�ars
¼ 0:
Both (i) and (ii) are referred to as a pivot-on-one.

Only making pivots-on-one in the simplex method may be insufficient to reach an optimum, as illustrated by the follow-
ing example.

Example 1. Consider the following set partitioning problem, given in [10].
z� ¼ min ð 72 48 77 44 56 49 77 41 47 96 42 Þx

s:t:

0 1 0 0 0 1 1 0 1 1 0

1 0 0 0 1 1 0 0 1 1 1

1 0 1 0 1 1 0 1 0 1 0

1 0 1 1 1 1 0 0 0 0 0

0 0 1 1 1 0 1 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA

x ¼

1

1

1

1

1

0
BBBBBBBB@

1
CCCCCCCCA
; x 2 f0; 1g11
The following simplex tableau is obtained for I ¼ f1; 6; 7; 8; 11g.
xj 2 I
 0
 71
 �53
 �45
 �116
 0
 0
 0
 28
 36
 0
 �149
x1
 1
 �1
 2
 2
 2
 0
 0
 0
 �1
 �1
 0
 1

x6
 0
 1
 �1
 �1
 �1
 1
 0
 0
 1
 1
 0
 0

x7
 0
 0
 1
 1
 1
 0
 1
 0
 0
 0
 0
 1

x8
 0
 0
 0
 �1
 0
 0
 0
 1
 0
 1
 0
 0

x11
 0
 0
 �1
 �1
 0
 0
 0
 0
 1
 1
 1
 0
This integer solution is not optimal, but it is not possible to make a pivot-on-one.

The situation appearing in the example naturally leads to the following definition.

Definition 3. An integer basic feasible solution to SPPLP is called a local optimum if it is not possible to make a pivot-on-
one.

Note that the local optimality property is associated with the choice of basis at the vertex, and not with the vertex itself.
An optimal solution to SPP is henceforth referred to as a global optimum, and such a point has clearly been found if
�cj P 0; j 2 N , holds.

A way to escape from a local optimum, with the aim to eventually find a global optimum, is to pivot on a negative tab-
leau entry ð�ars < 0Þ in a degenerate row ð�er ¼ 0Þ; cf. the comment after Theorem 2.

Example 1 (continued). By letting variables x5 and x6 become basic and non-basic, respectively, the following tableau is
obtained.
xj 2 I
 0
 �45
 63
 71
 0
 �116
 0
 0
 �88
 �80
 0
 �149
x1
 1
 1
 0
 0
 0
 2
 0
 0
 1
 1
 0
 1

x5
 0
 �1
 1
 1
 1
 �1
 0
 0
 �1
 �1
 0
 0

x7
 0
 1
 0
 0
 0
 1
 1
 0
 1
 1
 0
 1

x8
 0
 0
 0
 �1
 0
 0
 0
 1
 0
 1
 0
 0

x11
 0
 0
 �1
 �1
 0
 0
 0
 0
 1
 1
 1
 0
It is now possible to make a pivot-on-one and even a non-degenerate pivot-on-one, by letting x2 become basic.



Fig. 1. The branching technique in GLISM, as applied to the first tableau in Example 1. Here, the variables with negative reduced costs are x3; x4, and x5.
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Another strategy for handling the existence of local optima is to partition the feasible set by applying a branching tech-
nique, such as in the global integral simplex method (GLISM) developed by Thompson [10]. This method creates a search
tree of subproblems, each of which is solved by the local integral simplex method (LISM). To create an initial integer basic
feasible solution in the LISM, artificial variables with large costs are introduced. Standard techniques for preventing
cycling in the simplex method are used, even though they are not guaranteed to work. (GLISM is outlined below, to sim-
plify for the reader.)

The branching technique used in GLISM leads to fixations of variables, and in every subproblem k of the tree the fol-
lowing steps are performed.

1. Let F 0
k and F 1

k be the sets of variables that shall be set to zero and one, respectively, and reduce the problem according
to the following steps: (i) Let xj ¼ 1; j 2 F 1

k , and form w ¼
P

j2F 1
k
aj. (ii) Let xj ¼ 0 if aij ¼ wi ¼ 1 for some row i 2 M .

(iii) Cross out all rows i 2 M with wi ¼ 1. (iv) Let xj ¼ 0; j 2 F 0
k . (v) Cross out all columns j 2 N with aij ¼ 0 for all

remaining rows i.

2. If the problem is empty or contains zero rows, then go to Step 5.

3. Solve the reduced problem by applying the LISM. If all artificial variables equal zero and the solution is the best one
found this far, then save the solution. If there are no negative reduced costs, then go to Step 5.

4. Branch and create a new subproblem for every variable with negative reduced cost, as illustrated in Fig. 1. Choose a new
branch to examine.

5. Cut the branch. If there is no branch left, then terminate, with the best solution saved being optimal. Otherwise examine
a new branch.

Thompson [10] applies GLISM to randomly generated instances and problems arising in crew scheduling [5] and his
computational experience is promising.

When using LISM, if the number of variables is much larger than the number of constraints ði:e: n� mÞ, then there are
many non-basic variables from among which a new basic variable can be chosen. It is reasonable to assume that this would
increase the possibility of making a pivot-on-one, and the GLISM should then be less likely to get trapped at a local
optimum.

Set partitioning problems with large, or huge, numbers of variables typically arise in a column generation context. This
leads us to study the possibility of incorporating column generation in the integral simplex method, that is, a simplex
method that maintains integrality by making pivots-on-ones only.
2. Column generation and implicit enumeration

Consider the set partitioning problem
½SPPN� z� ¼ min
X
j2N

cjxj

s:t:
X
j2N

ajxj ¼ e; ð3aÞ

xj 2 f0; 1g; j 2N; ð3bÞ
where N is a finite set of indices for the variables, and all other notations are defined as in SPP, with N replacing N.
Assume that the problem is feasible, that the matrix ðajÞj2N has no zero rows or columns, and full rank. Let SPPLP

N be
the linear programming relaxation. The notations B; I ; J ; u, and Q will be used as before.

Further, we introduce the set P ¼ fðcj; ajÞ : j 2Ng � Z � f0; 1gm. In a column generation situation, jNj is typically
huge and the set P is typically described by constraints. In an application there might be columns that are identical except
for their costs, and in such a case, only the cheapest one will be contained in P; hence aj 6¼ ak whenever j 6¼ k. Assume that
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the columns defined by the set N 	N are at hand, and let SPPLP
N denote the linear programming relaxation of the corre-

sponding restriction of SPPN.
In the following, we outline how the problem SPPN can be solved by incorporating column generation in the integral

simplex method. As described above, pivots-on-one are either non-degenerate or degenerate. Therefore, we distinguish
between column generation that leads to non-degenerate and degenerate pivots-on-one.

To guarantee the finding of a global optimum, we consider an implicit enumeration procedure, similar to Thompson’s
GLISM. Our branching strategy is however new, and tailored to the column generation environment in the respect that the
branchings also lead to restrictions on the entries of the columns not already at hand. (Alternative branching strategies may
of course be possible.)
2.1. Column generation in the integral simplex method

At the root of the search tree, an initial set (possibly empty) of columns from the set P is at hand. By adding m artificial
variables with large costs to the problem, we obtain an initial problem, RSPP0. The artificial variables are indexed by the
set S.

At subproblem k of the search tree, we consider the problem SPPNk , which contains the columns corresponding to the set
Nk �N [ S. The branchings leading to this subproblem (see Section 2.2) give rise to fixations of variables, and because of
these fixations the problem can be reduced further, both with respect to variables and constraints. The overall result of
these reductions is represented by the sets N 0

k �N;N 1
k �N, and Mk � M , where the two former define the variables that

are fixed to zero and one, respectively, and the latter denotes the set of constraints that remains in the problem.
The reduced problem is given by
½RSPPk� z�k ¼ min
X
j2Nf

k

cjxj þ
X
j2N1

k

cj

s:t:
X
j2Nf

k

aijxj ¼ 1; i 2 Mk; ð4aÞ

xj 2 f0; 1g; j 2 Nf
k ; ð4bÞ
where N f
k ¼ N k n fN 0

k [ N 1
kg. Its linear programming relaxation is denoted by RSSPLP

k .
The branchings in the tree also impose constraints on the columns to be generated. The branching technique suggested

in Section 2.2 leads to restrictions that prevent any regeneration of columns and zero-fixations of entries in new columns.
We denote by A0

k � M the set of column entries that shall be fixed to zero when new columns are generated. Note that
A0

k 
 fi 2 M j
P

j2N1
k
aij ¼ 1g must hold, since one-fixations of variables eliminate constraints from the problem.

In the integral simplex method with column generation (ISMCG), for solving RSSPk, the following steps are performed.

1. Initialize with a basis consisting of the jMkj artificial columns.

2. Perform as many non-degenerate pivots-on-one as possible.

3. Perform a non-degenerate column generation, that is, a column generation that enables a non-degenerate pivot-on-one
(see Section 2.1.1). If successful, perform the pivot-on-one and go to Step 2.

4. If possible, perform a degenerate pivot-on-one and go to Step 2.

5. Perform a degenerate column generation, that is, a column generation that enables a degenerate pivot-on-one (see Sec-
tion 2.1.2). If successful, perform the pivot-on-one and go to Step 2.

6. The current integral basic feasible solution is a local optimum. Let x�k denote the feasible solution to SPPNk obtained by
augmenting the local optimal solution with the fixations given by N 0

k and N 1
k . Terminate.

Here we prioritize non-degenerate pivots over degenerate, even at the expense of a column generation. This choice is of
course optional, and may depend on the application considered.

It should be noted that all intermediate solutions encountered in ISMCG are integral and, if the artificial variables are
all zero, feasible in the original problem SPPN. Hence, the method is primal all-integer, and, moreover, the sequence of
objective values is non-increasing.

In the following, ðuiÞi2Mk
denotes the current basic dual solution to RSPPLP

k , when a column generation is to be per-
formed according to Step 2 or 4 described above.
2.1.1. Non-degenerate column generation
In order to generate a column that enables a non-degenerate pivot-on-one, we rely on the following result, which is

shown by Balas and Padberg [1].
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Theorem 3. Let �x be an integer basic feasible solution to SPPLP
N , associated with the basis B. Then there exists a basis that is

adjacent to B and associated with an integer basic feasible solution different from �x, if and only if there exists j 2N n I such that
�aij ¼
0 or þ 1 for i 2 M such that �ei ¼ 1;

0 or � 1 for i 2 M such that �ei ¼ 0;

þ1 for at least one i 2 M such that �ei ¼ 1:

8><
>: ð5Þ
The following corollary is an adaptation to our setting.

Corollary 1. Given an integer basic feasible solution to RSPPLP
k , associated with the basis Bk, obtained by making only pivots-

on-one from a purely artificial initial basis, then a column ðcj; ajÞ; j 2N, with aij ¼ 0; i 2 A0
k , enables a non-degenerate pivot-

on-one if and only if
�aij 2
½0; 1� for i 2 M such that �ei ¼ 1;

½�1; 0� for i 2 M such that �ei ¼ 0

�
ð6Þ
holds.

Proof. For the subproblem RSPPLP
k , the discrete choices in the first two cases in (5) can be replaced by the intervals given in

(6), since B�1
k is integral, because of the use of pivots-on-one only, aij 2 f0; 1g; i 2 Mk, and ð�aijÞi2Mk

¼ B�1
k ðaijÞi2Mk

.
If the first two expressions in (5) hold, but the third does not, then the properties of the column would imply that the

problem had an unbounded optimum, which is impossible since SPPLP
N has a bounded optimum and RSPPLP

k is a restriction
thereof.

Hence, the expressions (6) and (5) are equivalent under the given conditions. h

The non-degenerate column generation problem can be stated as follows:
½NDCGk� �cp ¼ min c�
X
i2Mk

�uiai

s:t: ðc; aÞ 2 P; ð7aÞ
ai ¼ 0; i 2 A0

k ; ð7bÞ
ðc; aÞ 6¼ ðcj; ajÞ; j 2 N 0

k ; ð7cÞ

ðB�1aÞi 2
½0; 1� for i 2 M such that �ei ¼ 1;

½�1; 0� for i 2 M such that �ei ¼ 0:

�
ð7dÞ
By assumption the columns are uniquely determined by their constraint coefficients, and therefore (7c) can be stated as
the linear constraints
X

i2M

aijð1� aiÞ þ
X
i2M

ð1� aijÞai P 1; j 2 N 0
k : ð8Þ
If successful, the problem NDCGk yields a feasible column ðcp; apÞ, with �cp < 0, that enables a non-degenerate pivot-
on-one. Note that none of the columns already available in RSPPk has these two properties; hence, such a generated col-
umn is not already at hand. The set Nk is augmented and the problem RSPPk is reoptimized by making a pivot-on-one on
an entry in the new column.

The column generated can of course fulfil the restrictions (7b) and (7c) in other subproblems than the current, and it can
in such a case be added to the set Nk in any such subproblem.

2.1.2. Degenerate column generation
According to Definition 2, a column enables a degenerate pivot-on-one if at least one of the updated entries in the

degenerate rows equals one. The other restrictions on the column to be generated are as in the non-degenerate case.
The degenerate column generation problem thus becomes as follows:
½DCGk� �cp ¼ min c�
X
i2Mk

�uiai

s:t: ð7aÞ–ð7cÞ;
ðB�1aÞi ¼ 1 for some i 2 M such that �ei ¼ 0: ð9Þ
The restriction (9) can be stated as the following linear constraints, with auxiliary binary variables
yi; i 2 Msuch that �ei ¼ 0, and C representing a sufficiently large number.
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1� Cð1� yiÞ 6 ðB�1aÞi 6 1þ Cð1� yiÞ; i 2 M such that �ei ¼ 0; ð10ÞX
i2M :�ei¼0

yi P 1: ð11Þ
If successful, the problem DCGk yields a feasible column ðcp; apÞ, with �cp < 0, that allows a degenerate pivot-on-one. As
in the non-degenerate case, such a column is new, and can be used in any other subproblem where it is feasible.
2.2. Implicit enumeration

The implicit enumeration procedure creates a search tree of subproblems using the branching technique to be described.
(Proper alternative branching techniques can also be used.) Each branch in the search tree is defined by constraints (e.g.
variable fixations), which, because of the special structure of the set partitioning problem, typically leads to a reduction of
the problem, see Section 2.3.

As introduced in Section 2.1, a reduced problem is denoted by RSPPk and associated with four index sets. Fixations of
variables are represented by N 0

k and N 1
k , while zero-fixations of coefficients, in the columns to be generated, are given by A0

k .
The set of rows that remain in the reduced problem is denoted by Mk.

Let L be the set of reduced subproblems of the form RSPPk, not yet solved. Initially L consists of RSPP0 only, for which
N 0

0 ¼ N 1
0 ¼ A0

0 ¼ ; and M0 ¼ M . A reduced subproblem is solved by the method described in Section 2.1. To determine
when it is impossible to find an improved solution to the current subproblem, a standard column generation problem, that
is, NDCGk without constraints (7d), is used. This problem is referred to as CGk.

The implicit enumeration procedure is given by the following steps.

1. If there are no more reduced subproblems RSPPk to solve, that is, if L is empty, then terminate. The best solution saved
is an optimal solution to SPPN. Otherwise choose a problem from L.

2. Apply ISMCG to the subproblem and obtain a local optimal solution, x�k , with objective value z�k . Let Qk be the set of
variables that take the value one in x�k .

3. If all artificial variables are zero, that is, if Qk \ S is empty, and the objective value z�k is the best found this far, then save
the solution x�k .

4. If only artificial variables take the value one in the subproblem, that is, if jQk \ Sj ¼ jMkj, then cut the current branch
and go to Step 1. In this case, Nk is empty and it is not possible to generate any new columns using NDCGk or DCGk,
and therefore there is no feasible solution to this subproblem.

5. If there are no negative reduced costs among the variables at hand in the subproblem, use the column generations prob-
lem CGk to investigate if there are any negative reduced costs among the remaining variables, indexed by N n Nk. If there
are none, then cut the current branch and go to Step 1, because there is no better feasible solution to this subproblem.

6. Perform a branching according to the strategy described in Section 2.3, for example. (In the branching, one needs to be
careful since artificial variables may take the value one in the local optimal solution, see further Section 2.3). Let L0k be
the set of new subproblems, of the form SPPNk , that arise through the branching.

7. For each subproblem in L0k, perform the following steps.

(i) Reduce the subproblem SPPNk according to the steps described in Section 2.3, giving RSPPk, which is represented by
N 0

k ;N
1
k ;A

0
k , and Mk.

(ii) If Mk is empty, cut the current branch, otherwise add RSSPk to L.

Go to Step 1.
This procedure will finitely find a global optimum to SPPN, provided that the branching strategy is well chosen. An exam-
ple of such a strategy is given below. It should be noted that the branching technique used in [10] is not appropriate in our
setting with column generation, since it requires the explicit knowledge of all non-basic variables with negative reduced
costs. Our branching strategy is however related to the one used by Thompson, with zero- and one-fixations of variables
replacing each other.
2.3. A branching technique

In the implicit enumeration procedure, Step 7 should make use of a branching strategy that excludes the local optimum
to the current reduced subproblem, RSPPk, from further consideration. The strategy suggested here does that, and at the
same time, it partitions the remaining feasible set. The branching is first described for the case when there is no artificial
variable that equals one in the local optimum to the subproblem, and it is then modified to suit the general case. To avoid
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introducing much notation and to make the description easy, our branching strategy is mainly explained by applying it to
the local optimum obtained in Example 1. We here assume that the given problem is an initial subproblem, RSPP0, and
that more columns can be generated.

Generally, we consider the variables that take the value one in a local optimum, and for each of these we create a branch
where the variable is set to zero. We thus exclude the local optimum from all the branches. In order to partition the feasible
set, we also make one-fixations of the variables that are set to zero in the branches which have already been created from
this subproblem. At the local optimum in Example 1, the two variables x1 and x7 take the value one. We then create a first
branch with x1 ¼ 0 and a second with x7 ¼ 0 and x1 ¼ 1, thus excluding the local optimum and partitioning the feasible set.

Each of the two branches is split into two sub-branches by using a constraint in RSPPk that contains the variable that is
being fixed to zero. The chosen constraint can then become fulfilled either by one of the variables at hand, which is rep-
resented by the left branch, or by a variable to be generated, which is represented by the right branch. Hence, in a column
to be generated, the entry in this constraint must be zero in the left sub-branch, and zero or one in the right. This sub-
branching thus partitions the feasible set further. In the example, we use the fourth constraint in the first branch, and
the fifth constraint in the second one. The branching is illustrated in Fig. 2.

For each sub-branch in the search tree in Fig. 2, we will now describe the reduction of the corresponding subprob-
lem and form the sets N 0

k ;N
1
k ;A

0
k , and Mk, that represent the fixations arising from the branching constraints and the

reduction.

• Sub-branch 1: The branching constraint x3 þ x4 þ x5 þ x6 ¼ 1 coincides with the fourth original constraint if we fix
x1 ¼ 0 and only generate new columns with a4 ¼ 0. These fixations are represented by N 0

1 ¼ f1g and A0
1 ¼ f4g. No

reduction of the problem is possible, N 1
1 remains empty, and M1 ¼ M .

• Sub-branch 2: To fulfil the branching constraints x1 ¼ 0 and x3 þ x4 þ x5 þ x6 ¼ 0, all the variables involved must be
fixed to zero; this is represented by the set N 0

2 ¼ f1; 3; 4; 5; 6g. No reduction of the problem is possible, N 1
2 and A0

2 remain
empty, and M2 ¼ M .

• Sub-branch 3: Here the fixation x1 ¼ 1 enables a reduction of the problem. All variables at hand that are somewhere
contained in the same constraint as x1 can be removed from the problem, and no new variable that would be contained
in any of these constraints is allowed to be generated. Since also x7 ¼ 0, the zero-fixations of variables are represented by
N 0

3 ¼ f3; 4; 5; 6; 7; 8; 9; 10; 11g. Further, N 1
3 ¼ f1g, and M3 ¼ f1; 5g. Finally, A0

3 ¼ f2; 3; 4; 5g, where a5 ¼ 0 must hold
since the sub-branching is made over the fifth constraint. (Note that in this sub-branch there is no feasible solution.)

• Sub-branch 4: Here the fixation x1 ¼ 1 enables the same reduction of the problem as in the third sub-branch, and there-
fore N 0

4 ¼ f3; 4; 5; 6; 7; 8; 9; 10; 11g. Further, N 1
4 ¼ f1g;M4 ¼ f1; 5g, and A0

4 ¼ f2; 3; 4g.

Note that when the suggested branching is applied repeatedly, the sets N 0
k ;N

1
k , and A0

k are expanded with new elements,
while the set Mk is reduced.

We now consider the case where at least one artificial variable equals one in the local optimum to the subproblem. In
this case it is crucial that the branching is performed so that the first branches correspond to zero-fixations of structural
variables. This can always be accomplished by an appropriate sorting of the variables.

Suppose, for example, that the structural variables x1 and x2 and the artificial variables xa
1 and xa

2 take the value one in a
local optimum. When using the branching strategy that was applied to the local optimum in Example 1, with the variables
properly sorted, we obtain the four branches shown in Fig. 3.

Clearly, any branch where an artificial variable is fixed to one is of no interest, and need not be created. Furthermore,
among the remaining branches there will be exactly one which has a zero-fixation of an artificial variable.

It is however not possible to make an explicit zero-fixation of an artificial variable, since the artificial variables form the
initial basis in the ISMCG when the subproblem is solved. This fixation can instead be made implicitly by instead of
making the zero-fixation, letting the artificial variable under consideration leave the basis in the first pivot in ISMCG
and never let it enter the basis again. Since ISMCG starts from a purely artificial and non-degenerate basis, it is always
Fig. 2. A branching strategy that can be used in Step 7 in the implicit enumeration procedure.



Fig. 3. The branching strategy used in Step 7, adjusted to handle the presence of artificial variables among the one-valued variables in a local optimum.
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possible to make a non-degenerate pivot-on-one with any arbitrary artificial variable leaving the basis in the first iteration.
The artificial variable to be fixated will thus become zero, and it will remain zero since it is forbidden to enter the basis
again.

In order to retain the zero-fixation of an artificial variable in the entire sub-tree that originates from a sub-branch with
this artificial variable fixed to zero, the same small modification of ISMCG is used throughout the sub-tree. This is possible,
since there can in fact never be more than one zero-fixation of an artificial variable in any sub-branch. To explain this, we
first observe that the constraint corresponding to a zero-fixated artificial variable must, in a local optimum, become fulfilled
by a structural variable. Second, due to the special sorting of the one-valued variables, whenever a new artificial variable is
to be fixed to zero, all one-valued structural variables in the local optimum are to be fixed to one. Hence, all previously
zero-fixated artificial variables and their corresponding constraint must have been removed. We conclude that, anywhere
in the search tree, at most one artificial variable is zero-fixated actively.

The branching strategy outlined in this section enables a branching to be performed whenever the local optimum found
has not been identified as a global optimum to the current subproblem, or the subproblem has not been identified as being
infeasible. The branching eliminates the local optimum to the subproblem from further consideration and partitions the
remaining feasible set. These properties are sufficient to guarantee that a global optimum to SPPN will be found finitely,
provided that cycling is prevented in ISMCG.

3. Concluding remarks

We have outlined how to tailor the column generation principle to the integral simplex method for set partitioning prob-
lems. The special properties of the set partitioning polytope makes it possible to generate only columns that will lead to
pivots between integer solutions. By combining our column generation principle with implicit enumeration, we obtain a
novel primal all-integer method.

The properties of the method outlined differs from those of traditional branch-and-price, in which only columns
needed in the process of solving the linear programming relaxation are generated at the root node of the search tree.
These columns may, of course, be of little use for solving the integer problem. Further, down the search tree, all
columns generated are those needed for solving the current linear programming relaxations, although they will
become better suited for the integer problem, and some of them will eventually be those required to solve the integer
problem.

Our main contribution is the adaptation of the column generation principle to the integral simplex method for set par-
titioning problems. A price that has to be paid for preserving integrality is that the column generation is more complex than
in the traditional case, and therefore likely to be computationally more demanding. (Some complex column generation
problems have been solved successfully by constraint programming techniques, see e.g. [6], which could therefore be a via-
ble solution alternative for column generation in the integral simplex method.)

The implicit enumeration and branching strategies presented should be seen only as suggestions for dealing with the
difficulty of local optima that are not global. Another possibility for handling this difficulty could be to allow degenerate
pivots on minus-one-entries. However, there seems to be no known way for preventing cycling in the integral simplex
method, and this could be even more cumbersome if pivots on minus-one-entries are allowed. Our choice of branching
strategy is motivated by the fact that it leads to zero-fixations of entries in columns to be generated. In many applications
of column generation, these fixations should be easy to take into account.

Meta-heuristics are useful in many applications of combinatorial optimization because of their ability to produce
acceptable solutions in reasonable computing times. One may note that the integral simplex method (with column gener-
ation) can be regarded as a local search method, which can be trapped at a local optimum, as given in Definition 3. An
alternative to performing a tree search would thus be to use a meta-heuristic approach, for example, to employ a tabu strat-
egy for escaping from local optima. When employing such a strategy it could also be advantageous to allow variables with
positive reduced costs to enter the basis or to allow degenerate pivots on minus-one-entries. The tabu strategy can then
preferably be designed with the additional purpose of preventing cycling.
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Our intention with this paper was merely to present a new and original approach to column generation for set partition-
ing. There are certainly several opportunities for further research and development into column generation customized to
maintain integrality, along the lines discussed here. One of the questions of interest is to study if the use of pivots-on-one is
useful for solving problems similar to the set partitioning problem, for example if side constraints of special kind are added.
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