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Abstract— The integral simplex method for set partition- We outline how to tailor the column generation prin-
ing problems allows only pivots-on-one to be made, which ciple to the integral simplex method for set partitioning
results in a primal all-integer method. In this technical nate  proplems, by using a theoretical result derived by [1].
we outline how to tailor the column generation principle  Together with implicit enumeration, that assures that
o this method. Because of the restriction to pivots-on- an optimal solution is found, we obtain a novel primal
one, only local optimality can be guaranteed, and to . . . .

all-integer column generation method for combinatorial

ensure global optimality we consider the use of implicit L0 ) e
enumeration. optimization problems with set partitioning master prob-

The content of this paper has been published in the lems.
European Journal of Operational Research, 192:333-342, The remainder of the paper is organized as follows.
2009 under the title Column Generation in the Integral Some theoretical background concerning the set parti-
Simplex Method. tioning problem is given in Section I-A. The inclusion of
Keywords— Integer programming, Set partitioning, Col-  column generation into the integral simplex method, and
umn generation, Implicit enumeration, Quasi-integrality. ~ itS combination with implicit enumeration, is made in
Section Il. Concluding remarks are made in Section IlI.

I. INTRODUCTION oo
A. Preliminaries

During the past few decades, the column generation
principle has gained considerable popularity for solving
various classes of decision problems of practical inter-

Consider the set partitioning problem

est; see for example [12] and [7] for recent surveys[SPP] z* = min Y ¢jz;

of applications and methodology. Column generation JEN

has become popular within combinatorial optimization, st Z AT — e (1a)
e WAl G

especially in the fields of routing and scheduling. Since
column generation is a pure linear programming method,
it then needs to be complemented with appropriate
integer programming techniques. For example, if it vhere N = {1,...,n} is the set of indices for the
combined with branch-and-bound, the branch-and-privariables,a; = (aij,...,aij,...,am;j)*, j € N, are
method is obtained, see e.g. [3]. vectors of zeros and ones;, j € N, are integers, and

In many applications of column generation, the avait = (1,...,1)" is anm-vector. The index set for the
able columns are combined by solving linear prograngonstraints isM = {1,...,m}. We assume that > m
ming relaxations of set partitioning master problemsnd that the problem is feasible. We assume further,
A nice example of this is the generalized assignmewithout loss of generality, that the matrix, ..., a,)
problem, see [9]. Set partitioning problems have theas no zero row or column (since a zero row would
interesting quasi-integrality property, first shown by [L1]imply infeasibility and a variable associated with a zero
this property implies that it is possible to move betweerolumn can be eliminated) and full rank.
two bases that are adjacent but associated with differentet SPPL” be the linear programming relaxation
integer vertices, by making a simplex pivot on a onef the problemSPP, obtained by replacing (1b) with
entry in the tableau. Thmtegral simplex methadvhich z; > 0, j € N. For any basic feasible solution to
was briefly described in [11], was named by [13], andP PP, we denote the basis b§ C {a1,...,a,}. Let
recently further developed and also applied by [10],and.J denote the corresponding sets of basic and non-
makes use of this fact for solving the set partitioningasic columns, respectively, and tet = c5B~1, where
problem. cB = (¢j)jer, be the complementary dual basic solution.

JEN
xzj € {0,1}, j€N, (1b)
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Further let@ C I be the set of basic variables that takesork when negative pivots are performed.
the value one. Two bases are caliljacentif they differ As proposed in [2], a possible approach to solve the
in exactly one column. set partitioning problem would be to repeatedly find
In the remainder of this section, we will presenédges connecting the current vertex to an adjacent integer
a background to the column generation method to bertex with a better objective value. The movement
proposed. along an edge between two integer vertices corresponds
Definition 1.1: Let X be a polytope and; its set of algebraically to a non-degenerate simplex pivot on a one
integer points. The polytop&’ is called quasi-integral entry. Because of degeneracy it can be hard to find a basis
if every edge of the convex hull ak; is also an edge that enables such a pivot. The idea of moving between
of X. integer vertices by making pivots on one-entries was first
This property implies that any two integer points osuggested in [11], and it is the foundation for the integral
the polytope can be joined by a path that consists only simplex method.
such edges of the polytope that connect integer pointsFor future reference, we make the following definition
The following result is from [11]. (He did however notof the pivots used in the integral simplex method. Here,

use the term quasi-integral.) ¢ = B~ le anda; = B~laj, j € N, are the updated
Theorem 1.1:The polytope described by the conright-hand-side and constraint columns, respectivelgl, an
straints (1a) and:; > 0, j € N, is quasi-integral. ¢j =cj —ulaj, j € J, are the reduced costs.

See also [13, pp. 189-193] for an introduction to Definition 1.2: Given a simplex tableau associated
quasi-integrality. Other problems with this property inwith an integer basic feasible solution ®PP~" and
clude the simple plant location problenibi¢l.), the ans e J such thatz, < 0.
uncapacitated network design problem, see [4], and th§) A non-degenerate pivot-on-one a pivot operation
one and two facility, one commodity, network design  on an entrya,, = 1 such that
problems, see [8]. The perfect matching and set packing

problems also have this property since they can be stated min { _ii Qs > 0} = _ir =1.
as set partitioning problems. ieM  Gis Qrs
The set partitioning problem has the following inter{ii) A degenerate pivot-on-onis a pivot operation on
esting properties, which are shown by [1]. an entrya,, = 1 such that
Theorem 1.2:Let 2! be a feasible and integer solution _ _
to SPPLP, associated with the basiB;, and suppose min { f—l Qis > 0} = f—’” =0.
thatz! is not optimal inSPP. Denote byz? an optimal eM Gis Qrs

solution to SPP, and letB; be an associated basis irBoth (i) and (ii) are referred to as ivot-on-one

SPPLP . Let J; and Q, be the index sets of the non- Only making pivots-on-one in the simplex method
basic columns inB; and the one-valued basic variablegnay be insufficient to reach an optimum, as illustrated
in z2, respectively. Then there exists a sequence loy the following example.

adjacent base, Bi1, Bi2, . . ., Bip in SPPLP, such Example 1.1:Consider the set partitioning problem
that Bijp = By, By, = B, and (a) the associatedn Table |, which was first given in [10]. The
verticesz! = 219, 21 212 ... 2P = 22, are all feasible simplex tableau given in Table | is obtained for
and integer, (b)ez'® > cz'' > ... > c2', and (c) I = {1,6,7,8,11}. This integer solution is not optimal,
p=1J1 NQal. but it is not possible to make a pivot-on-one. [

Since any vertex can be made optimal by adjusting
the objective function, it follows from the theorem that The situation appearing in the example naturally leads
for any two integer feasible basic solutions PP, to the following definition.

z! andz?, there exists a sequence of adjacent bases wittDefinition 1.3: An integer basic feasible solution to
lengthp = |.J1 N Q2|, such that the associated vertice§ PP-? is called alocal optimumif it is not possible to
are all feasible and integer. make a pivot-on-one.

Theorem 1.2 however is not useful for the practical Note that the local optimality property is associated
solution of the set partitioning problem, since it requirewith the choice of basis at the vertex, and not with the
knowledge of an optimal solution. As remarked by [1}vertex itself. An optimal solution t& PP is henceforth
the construction of the sequence of adjacent bases meferred to as alobal optimum and such a point has
involve degenerate pivots on negative tableau entrietearly been found i; > 0, j € N, holds.
which is not allowed in the simplex method. Further- A way to escape from a local optimum, with the aim
more, the standard anti-cycling rules are not known to eventually find a global optimum, is to pivot on a
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TABLE |
THE SET PARTITIONING PROBLEM STUDIED INEXAMPLE 1.1

2* = min (72 48 77 44 56 49 77 41 47 96 42) z
0 1 0 0 0 1 1 0 1 1 0 1
1 0 0 0 1 1 0 0 1 1 1 1
st 1 0 1 0 1 1 0 1 0 1 0 |z=| 1
1 0 1 1 1 1 0 0 0 0 0 1
0 0 1 1 1 0 1 0 0 0 0 1
x e {0,1}"
z; el 0 71 -53 -45 -116 0 0 0 28 36 D -149
1 1 1 2 2 2 0 0 0 -1 1 o 1
T6 0 1 -1 1 -1 1 0 0 1 1 o o
x7 0 0 1 1 1 0 1 0 0 0 o 1
T8 0 0 0 1 0 0 0 1 0 1 o o
T11 0 0 -1 1 0 0 0 0 1 1 1 o0
zjel 0 -45 63 71 0 -116 0 0 -88 -80 D -149
71 1 1 0 0 0 2 0 0 1 1 0 1
x5 0 -1 1 1 1 -1 0 0 -1 -1 0 o
27 0 1 0 0 0 1 1 0 1 1 0 1
Ts 0 0 0 -1 0 0 0 1 0 1 0 o
11 0 0 -1 -1 0 0 0 0 1 1 1 o

negative tableau entrya{s < 0) in a degenerate row zj = 0if a;; = w; = 1 for some rowi € M.

(e, = 0); cf. the comment after Theorem 1.2. (iii) Cross out all rowsi € M with w; = 1. (iv) Let
Example 1.1:(continued) By letting variablescs and z; =0, j € FQ. (v) Cross out all columng € N

x¢ become basic and non-basic, respectively, the second with a;; = 0 for all remaining rows:.

tableau in Table I is obtained. 2) If the problem is empty or contains zero-rows, then

It is now possible to make a pivot-on-one and even a go to Step 5.
non-degenerate pivot-on-one, by lettingbecome basic. 3) Solve the reduced problem by applying the LISM.

| If all artificial variables equal zero and the solution

Another strategy for handling the existence of local is the best one found this far, then save the solution.
optima is to partition the feasible set by applying a If there are no negative reduced costs, then go to
branching technique, such as in th®bal integral sim- Step 5.
plex method (GLISM) developed by [10]. This method 4) Branch and create a new subproblem for every
creates a search tree of subproblems, each of which is variable with negative reduced cost, as illustrated
solved by thelocal integral simplex method (LISM). in Figure 1. Choose a new branch to examine.

To create an initial integer basic feasible solution in5) Cut the branch. If there is no branch left, then ter-
the LISM, artificial variables with large costs are in-  minate, with the best solution saved being optimal.
troduced. Standard techniques for preventing cycling in  Otherwise examine a new branch.
the simplex method are used, even though they are10] applies GLISM to randomly generated instances
not guaranteed to work. (GLISM is outlined below, tgng problems arising in crew scheduling [5] and his
simplify for the reader.) computational experience is promising.

The branching technique used in GLISM leads to \when using LISM, if the number of variables is much
fixations of variables, and in every subproblénof the larger than the number of constraints (e3> m), then
tree the following steps are performed. there are many non-basic variables from among which

1) Let ) and F} be the sets of variables that shalh new basic variable can be chosen. It is resonable to

be set to zero and one, respectively, and reduce #gsume that this would increase the possibility of making
problem according to the following steps: (i) Let pivot-on-one, and the GLISM should then be less likely
zj =1, j € F}, and formw = 37, a;. (i) Let  to get trapped at a local optimum.
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To guarantee the finding of a global optimum, we
consider an implicit enumeration procedure, similar to
Thompson’s GLISM. Our branching strategy is however
new, and tailored to the column generation environment
in the respect that the branchings also lead to restrictions
on the entries of the columns not already at hand. (Alter-

native branching strategies may of course be possible.)
Fig. 1. The branching technique in GLISM, as applied to the first
tableau in Example 1.1. Here, the variables with negative reduc&d
costs arers, x4, andzs. ’

Column generation in the integral simplex method

At the root of the search tree, an initial set (possibly
empty) of columns from the sé? is at hand. By adding
m artificial variables with large costs to the problem,

Set partlfuonlng pr(_)blems .W'th large, or huge, num\ive obtain an initial problemRSPP,. The artificial
bers of variables typically arise in a column generation ~. .
context. This leads us to study the possibility of incorp(y-arlables are indexed by the sét .

At subproblemk of the search tree, we consider

rating column generation in the integral simplex metho%e roblemSP Pr. . which contains the columns cor-
that is, a simplex method that maintains integrality blyesp?)nding o th]gk’seN C AN U S. The branchings
k = .

making pivots-on-ones only. leading to this subproblem (see Section 1I-B) give rise
to fixations of variables, and because of these fixations

Il. COLUMN GENERATION AND IMPLICIT the problem can be reduced further, both with respect
ENUMERATION to variables and constraints. The overall result of these
Consider the set partitioning problem reductions is represented by the s8t$ C A/, N} C

and M, C M, where the two former define the variables
that are fixed to zero and one, respectively, and the latter

[SPPy] 2" = min Z R denotes the set of constraints that remains in the problem.
JEN The reduced problem is given by
s.t. Z a;T; = e, (3a)
jeN [RSPP,] =z, = min Z c;iTi + Z c;
) k gt J

r; €{0,1}, jeN, (3b) jEN! JEN,
where\ is a finite set of indices for the variables, and all s.t. Z aijry; =1, i€ My,
other notations are defined asS$t P, with N replacing jEN/
N. Assume that the problem is feasible, that the matrix (4a)

(a;)jen has no zero rows or columns, and full rank. 2 €{0,1}, jen!
Let SPPI’ be the linear programming relaxation. The J i A ’(4b)
notationsB, I, J, u, and@ will be used as before.
Further, we introduce the s&® = {(c¢j,a;) : j € where N/ = N, \ {NP UN}}. Its linear programming
N} C Zx{0,1}™. In a column generation situatiopy’| relaxation is denoted bRSSPEY.
is typically huge and the sé® is typically described by  The branchings in the tree also impose constraints
constraints. In an application there might be columns thain the columns to be generated. The branching tech-
are identical except for their costs, and in such a casggue suggested in Section II-B leads to restrictions that
only the cheapest one will be containedAnhencen; # prevent any regeneration of columns and zero-fixations
ar, wheneverj # k. Assume that the columns define®f entries in new columns. We denote bg@ C M
by the setV C A are at hand, and lePP%4" denote the set of column entries that shall be fixed to zero
the linear programming relaxation of the correspondinghen new columns are generated. Note thatD {i €
restriction of SPPy. M | 3Ny aij = 1} must hold, since one-fixations of
In the following, we outline how the probleiP P\, Vvariables eliminate constraints from the problem.
can be solved by incorporating column generation in the In the integral simplex method with column generation
integral simplex method. As described above, pivots-odSMCG), for solving RSSP;, the following steps are
one are either non-degenerate or degenerate. Therefprgformed.
we distinguish between column generation that leads td) Initialize with a basis consisting of tha/j| artifi-
non-degenerate and degenerate pivots-on-one. cial columns.
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2) Perform as many non-degenerate pivots-on-one @y if

possible.
3) Perform a non-degenerate column generation, that . [0,1], for i € M such thate; = 1, (6)
is, a column generation that enables a non- " [~1,0], fori e M such thate; = 0

degenerate pivot-on-one (see Section 11-A.1). If suc-
cessful, perform the pivot-on-one and go to Step holds.
4) If possible, perform a degenerate pivot-on-one andProof: For the subproblemkSPPLP, the discrete
go to Step 2. choices in the first two cases in (5) can be replaced by
5) Perform a degenerate column generation, that isthg intervals given in (6), sinc&, " is integral, because
column generation that enables a degenerate pivef-the use of pivots-on-one only,; € {0,1}, i € Mj,
on-one (see Section II-A.2). If successful, perforrand (@i;)ierr, = By, ' (aij)ien, -
the pivot-on-one and go to Step 2. If the first two expressions in (5) hold, but the third
6) The current integral basic feasible solution is a locdbes not, then the properties of the column would imply
optimum. Letz} denote the feasible solution tothat the problem had an unbounded optimum, which is
SPPy, obtained by augmenting the local optimaimpossible sinceSPP{” has a bounded optimum and
solution with the fixations given byW? and N!. RSPP[ is a restriction thereof.
Terminate. Hence, the expressions (6) and (5) are equivalent under

Here we prioritize non-degenerate pivots over degef{le given conditions. _ u
erate, even at the expense of a column generation. Thid "€ non-degenerate column generation problem can
choice is of course optional, and may depend on tRé€ Stated as follows.
application considered. . . INDCGy]

It should be noted that all intermediate solutions . B
encountered in ISMCG are integral and, if the artificiglp = 1 ¢ — Z Uil
variables are all zero, feasible in the original problem €M

SPPy. Hence, the method is primal all-integer, and, sit.(c,a) € P, (7a)
moreover, the sequence of objective values is non- a; =0, i€ AY, (7b)
nereasing- (c,a) # (cjr a5), j € N, (7c)

In the following, (u;):cnr, denotes the current basic
dual solution toRSPPL?, when a column generation
is to be performed according to Step 2 or 4 described
above.

1) Non-degenerate column generatiom order to gy assumption the columns are uniquely determined
generate a column that enables a non-degenerate piyRitneir constraint coefficients, and therefore (7c) can be
on-one, we rely on the following result, which is ShOW’%tated as the linear constraints
by [1].

Theorem 2.1:Let z be an integer basic feasible solu-
tion to SPPLP, associated with the basB. Then there Z aij (1—a;) + Z (1-aj)a; >1, je N,S. (8)

1 [0,1], forie M : e; =1,
(B™a), { [~1,0], forie M: & =0.
(7d)

exists a basis that is adjacent ®band associated with /=, e
an integer basic feasible solution different framif and
only if there existsj € N\ I such that If successful, the problerV DCG), yields a feasible
column (¢, ap), With ¢, < 0, that enables a non-
0 or +1, for i € M such thate; = 1, degenerate pivot-on-one. Note that none of the columns
a;;j =<« 0or —1, fori e M such thate; = 0, already available inRSPP, has these two properties;

+1, for at least one € M such thate; = 1.  hence, such a generated column is not already at hand.
(5) The setN, is augmented and the probleRSPP; is
The following corollary is an adaptation to our settingceoptimized by making a pivot-on-one on an entry in
Corollary 2.1: Given an integer basic feasible soluthe new column.
tion to RSPPLY, associated with the basi;, obtained ~ The column generated can of course fulfil the restric-
by making only pivots-on-one from a purely artificiations (7b) and (7c) in other subproblems than the current,
initial basis, then a columfy;, a;), j € NV, witha;; = 0, and it can in such a case be added to theN§etn any
i € A?, enables a non-degenerate pivot-on-one if astich subproblem.
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2) Degenerate column generatioAccording to Def- standard column generation problem, that \sDC Gy,
inition 1.2, a column enables a degenerate pivot-on-onéthout constraints (7d), is used. This problem is referred
if at least one of the updated entries in the degeneraéteasCGy,.
rows equals one. The other restrictions on the columnThe implicit enumeration procedure is given by the
to be generated are as in the non-degenerate case. fbllewing steps.

degenerate column generation problem thus becomes 3§ If there are no more reduced subproblemSP P,

follows. to solve, that is, ifL is empty, then terminate. The
[DCG,] best solution saved is an optimal solutionSt& Py, .
Otherwise choose a problem from
¢p = min c— Z U;a; 2) Apply ISMCG to the subproblem and obtain a local

i€ My,
s.t. (7a)(7b), (7c),
(B~'a), =1 for somei € M : & =0.
(9a)

3)

optimal solution,z;, with objective valuez;. Let

Q. be the set of variables that take the value one
in xy.

If all artificial variables are zero, that is, @, NS is

empty, and the objective valug is the best found
this far, then save the solutiory,.

4) If only artificial variables take the value one in the
subproblem, that is, ifQ;N.S| = | M|, then cut the
current branch and go to Step 1. In this caag,
is empty and it is not possible to generate any new

The restriction (9a) can be stated as the following
linear constraints, with auxiliary binary variablgs i €
M such thate; = 0, and C representing a sufficiently
large number.

1-C1-y) < (B7'a), < colum_ns usingN_DCG;€ or DCGk., and therefore
PN C(ll— b i€ M: E=0 there is no feasible sqlutlon to this subproblem.

- v o ’ 5) If there are no negative reduced costs among the

Z yi = 1. variables at hand in the subproblem, use the column

ieM: ;=0
If successful, the problenDCG), yields a feasible
column (¢, ap), With ¢, < 0, that allows a degenerate
pivot-on-one. As in the non-degenerate case, such a
column is new, and can be used in any other subproblem
where it is feasible.

generations probler@' Gy, to investigate if there are
any negative reduced costs among the remaining
variables, indexed byW \ Nj. If there are none,
then cut the current branch and go to Step 1,
because there is no better feasible solution to this
subproblem.

6) Perform a branching according to the strategy de-
scribed in Section II-C, for example. (In the branch-
ing, one needs to be careful since artificial variables
may take the value one in the local optimal solution,
see further Section II-C). Let; be the set of new
subproblems, of the forr8 P Py, , that arise through
the branching.

For each subproblem i/, perform the following
steps.

(i) Reduce the subproblem§ PPy, according to
the steps described in Section II-C, giving
RSP Py, which is represented byv?, N}, A?,
and M;,.

B. Implicit enumeration

The implicit enumeration procedure creates a search
tree of subproblems using the branching technique to be
described. (Proper alternative branching techniques can
also be used.) Each branch in the search tree is defined by
constraints (e.g. variable fixations), which, because of the,
special structure of the set partitioning problem, tydical
leads to a reduction of the problem, see Section II-C.

As introduced in Section II-A, a reduced problem is
denoted byRS P P, and associated with four index sets.
Fixations of variables are represented by and N/,
while zero—flxatlo_ns of cco)efflments, in the columns to_be (i) If M, is empty, cut the current branch, other-
generated, are given by;. The set of rows that remain . ddRSSP. to I
in the reduced problem is denoted BY,. wise a k10 L

Let L be the set of reduced subproblems of the form GO0 to Step 1.

RS PP, not yet solved. Initially, consists ofRSPF, This procedure will finitely find a global optimum
only, for which NY = N} = A} = 0 and My = M. A to SPP,, provided that the branching strategy is well
reduced subproblem is solved by the method describeltbsen. An example of such a strategy is given below.
in Section II-A. To determine when it is impossible tdt should be noted that the branching technique used
find an improved solution to the current subproblem, ia [10] is not appropriate in our setting with column
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generation, since it requires the explicit knowledge of « Sub-branch 1: The branching constraint; + x4 +
all non-basic variables with negative reduced costs. Our x5 + x¢ = 1 coincides with the fourth original
branching strategy is however related to the one used constraint if we fixz; = 0 and only generate
by Thompson, with zero- and one-fixations of variables new columns witha; = 0. These fixations are
replacing each other. represented byNY = {1} and A} = {4}. No
reduction of the problem is possibl&/{ remains

empty, andM, = M.

« Sub-branch 2: To fulfil the branching constraints
In the implicit enumeration procedure, Step 7 should 3, =0 andzs + 24+ x5 + 26 = 0, all the variables
make use of a branching strategy that excludes the local involved must be fixed to zero; this is represented

optimum to the current reduced subprobleR$ PPy, by the setVy = {1,3,4,5,6}. No reduction of the
from further consideration. The strategy suggested here problem is possibleN] and A9 remain empty, and
does that, and at the same time, it partitions the remain- M/, = M.

ing feasible set. The branching is first described for the. Sub-branch 3: Here the fixationz; = 1 enables
case when there is no artificial variable that equals one a reduction of the problem. All variables at hand
in the local optimum to the subproblem, and it is then that are somewhere contained in the same constraint
modified to suit the general case. To avoid introducing as z; can be removed from the problem, and
much notation and to make the description easy, our no new variable that would be contained in any
branching strategy is mainly explained by applying it  of these constraints is allowed to be generated.
to the local optimum obtained in Example 1.1. We here  Since alsoz; = 0, the zero-fixations of variables
assume that the given problem is an initial subproblem, are represented by = {3,4,5,6,7,8,9,10,11}.

RS PPy, and that more columns can be generated. Further, Ni = {1}, and M3 = {1,5}. Finally,
Generally, we consider the variables that take the value A} = {2,3,4,5}, wherea; = 0 must hold since
one in a local optimum, and for each of these we create a the sub-branching is made over the fifth constraint.
branch where the variable is set to zero. We thus exclude (Note that in this sub-branch there is no feasible

the local optimum from all the branches. In order to  solution.)

partition the feasible set, we also make one-fixations ofe Sub-branch 4: Here the fixationz; = 1 en-

the variables that are set to zero in the branches which ables the same reduction of the problem as
have already been created from this subproblem. At the in the third sub-branch, and therefor&) =
local optimum in Example 1.1, the two variables and {3,4,5,6,7,8,9,10,11}. Further, N} = {1},

x7 take the value one. We then create a first branch with A7, = {1,5}, and A} = {2, 3,4}.

r; = 0 and a second withr; = 0 andz; = 1, thus  Note that when the suggested branching is applied
excluding the local optimum and partitioning the feasiblpeatedly, the se®?, N/, and A} are expanded with
set. new elements, while the sétf;, is reduced.

Each of the two branches is split into two sub- We now consider the case where at least one arti-
branches by using a constraint S PP, that contains ficial variable equals one in the local optimum to the
the variable that is being fixed to zero. The choseubproblem. In this case it is crucial that the branching
constraint can then become fulfilled either by one of thig performed so that the first branches correspond to
variables at hand, which is represented by the left braneiero-fixations of structural variables. This can always be
or by a variable to be generated, which is representadcomplished by an appropriate sorting of the variables.
by the right branch. Hence, in a column to be generated,Suppose, for example, that the structural variables
the entry in this constraint must be zero in the left suby and z, and the artificial variables:{ and z§ take
branch, and zero or one in the right. This sub-branchinige value one in a local optimum. When using the
thus partitions the feasible set further. In the example, iseanching strategy that was applied to the local optimum
use the fourth constraint in the first branch, and the fifih Example 1.1, with the variables properly sorted, we
constraint in the second one. The branching is illustrate@tain the four branches shown in Figure 3.
in Figure 2. Clearly, any branch where an artificial variable is

For each sub-branch in the search tree in Figure fXed to one is of no interest, and need not be created.
we will now describe the reduction of the correspondingurthermore, among the remaining branches there will
subproblem and form the sef§?, N/, A), and M;, be exactly one which has a zero-fixation of an artificial
that represent the fixations arising from the branchingriable.
constraints and the reduction. It is however not possible to make an explicit zero-

C. A branching technique
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T3+ T4+ T5+26 =1 T3+ x4+ x5 +26 =0 T3+ x4+ x5 =1 T3+ x4+ 25 =0

Fig. 3. The branching strategy used in Step 7, before it is adjusted tdehdrel presence of artificial variables among the one-valued
variables in a local optimum.

fixation of an artificial variable, since the artificial vari-one artificial variable is zero-fixated actively.

ables form the initial basis in the ISMCG when the The branching strategy outlined in this section enables
subproblem is solved. This fixation can instead be madéranching to be performed whenever the local optimum
implicitly by instead of making the zero-fixation, lettingfound has not been identified as a global optimum
the artificial variable under consideration leave the bagsis the current subproblem, or the subproblem has not
in the first pivot in ISMCG and never let it enter thebeen identified as being infeasible. The branching elimi-
basis again. Since ISMCG starts from a purely artifici@ates the local optimum to the subproblem from further
and non-degenerate basis, it is always possible to makeoasideration and partitions the remaining feasible set.
non-degenerate pivot-on-one with any arbitrary artificillhese properties are sufficient to guarantee that a global
variable leaving the basis in the first iteration. Theptimum toSP Py will be found finitely, provided that
artificial variable to be fixated will thus become zerogycling is prevented in ISMCG.

and it will remain zero since it is forbidden to enter the

basis again. [1l. CONCLUDING REMARKS

In order to retain the zero-fixation of an artificial We have outlined how to tailor the column gen-
variable in the entire sub-tree that originates from a subration principle to the integral simplex method for
branch with this artificial variable fixed to zero, the samget partitioning problems. The special properties of the
small modification of ISMCG is used throughout theet partitioning polytope makes it possible to generate
sub-tree. This is possible, since there can infact newarly columns that will lead to pivots between integer
be more than one zero-fixation of an artificial variableolutions. By combining our column generation principle
in any sub-branch. To explain this, we first observe thatith implicit enumeration, we obtain a novel primal all-
the constraint corresponding to a zero-fixated artificiziteger method.
variable must, in a local optimum, become fulfilled by The properties of the method outlined differs from
a structural variable. Second, due to the special sortitigpse of traditional branch-and-price, in which only
of the one-valued variables, whenever a new artificiablumns needed in the process of solving the linear
variable is to be fixed to zero, all one-valued structurgrogramming relaxation are generated at the root node
variables in the local optimum are to be fixed to on@&f the search tree. These columns may, of course, be of
Hence, all previously zero-fixated artificial variables anlittle use for solving the integer problem. Further, down
their corresponding constraint must have been removélde search tree, all columns generated are those needed
We conclude that, anywhere in the search tree, at mést solving the current linear programming relaxations,
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Our intention with this paper was merely to present a
new and original approach to column generation for set
partitioning. There are certainly several opportunities fo
further research and development into column generation
customized to maintain integrality, along the lines dis-
cussed here. One of the questions of interest is to study if
the use of pivots-on-one is useful for solving problems
similar to the set partitioning problem, for example if
side constraints of special kind are added.



