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Abstract

Orbital branching is a method for branching on variables in integer programming that reduces the
likelihood of evaluating redundant, isomorphic nodes in the branch-and-bound procedure. In this work,
the orbital branching methodology is extended so that the branching disjunction can be based on an
arbitrary constraint. Many important families of integer programs are structured such that small instances
from the family are embedded in larger instances. This structural information can be exploited to define
a group of strong constraints on which to base the orbital branching disjunction. The symmetric nature
of the problems is further exploited by enumerating non-isomorphic solutions to instances of the small
family and using these solutions to create a collection of typically easy-to-solve integer programs. The
solution of each integer program in the collection is equivalent to solving the original large instance. The
effectiveness of this methodology is demonstrated by computing the optimal incidence width of Steiner
Triple Systems and minimum cardinality covering designs.

Keywords: Integer programming; symmetry; branch-and-bound algorithms; Steiner Triple Systems;
Covering Designs



1 Introduction

Symmetry has long been considered an obstacle to solving integer programs. Recently, there has been sig-
nificant work on combating symmetry in integer programs. A technique used by a variety of authors is to
add inequalities that exclude symmetric feasible solutions [Macambira et al., 2004; Rothberg, 2000; Sherali
and Smith, 2001]. Kaibel and Pfetsch [2007] formalize many of these arguments by defining and studying
the properties of a polyhedron known as an orbitope, the convex hull of lexicographically maximal solutions
with respect to a symmetry group. Kaibel et al. [2007] then use the properties of orbitopes to remove sym-
metry in partitioning problems. Another technique for combating symmetry is to recognize pairs of nodes
of the enumeration tree that will result in symmetric feasible solutions. One of the two nodes may safely be
pruned without excluding all optimal solutions from the search. This isomorphism-free backtracking proce-
dure has long been used in the combinatorics community, e.g. [Read, 1998; Butler and Lam, 1985; McKay,
1998] and was introduced in the integer programming community with the name isomorphism pruning by
Margot [2002]. Ostrowski et al. [2007] introduce a technique related to isomorphism pruning, called orbital
branching. The fundamental idea behind orbital branching is to select a branching variable that is equiva-
lent to other variables with respect to the symmetry remaining in the problem. In this work, we extend the
work of Ostrowski et al. [2007] to the case of branching on disjunctions formed by inequalities—constraint
orbital branching.

Exploiting the symmetry in the problem when branching on more general disjunctions of this form can
often be significantly strengthened by exploiting certain types of embedded subproblem structure. Specifi-
cally, if the disjunction on which the branching is based is such that relatively few non-isomorphic feasible
solutions may satisfy one side of the disjunction, then portions of potential feasible solutions may be enu-
merated. The original problem instance is then partitioned into smaller, more tractable problem instances.
As an added benefit, the smaller instances can then easily be solved in parallel. A similar technique has been
recently employed in an ad-hoc fashion by Linderoth et al. [2007] in a continuing effort to solve an integer
programming formulation for the football pool problem. This work poses a general framework for solving
difficult, symmetric integer programs in this fashion.

The power of the constraint orbital branching is demonstrated by solving to optimality for the first time
a well-known integer program to compute the incidence width of a Steiner Triple System with 135 elements.
Previously, the largest instance in this family that was solved contained 81 elements [Mannino and Sassano,
1995]. The generality of the constraint orbital branching procedure is further illustrated by an application to
the construction of minimum cardinality covering designs. In this case, the previously best known bounds
from the literature are easily reproduced.

The remainder of this section contains some mathematical preliminaries, and the subsequent paper is
divided into four sections. In Section 2, the constraint orbital branching method is presented and proved
to be a valid branching methodology. Section 3 discusses properties of good disjunctions for the constraint
orbital branching method. Section 4 describes our computational experience with the constraint orbital
branching method, and conclusions are given in Section 5.

1.1 Preliminaries

The primary focus of this work is on set covering problems of the form
. T . def n
ml};{e xz}, with F = {z € {0,1}" | Az > e}, (1)
Tre

where A € {0,1}™*™ and e is a vector of ones of conformal size. The restriction of our work to set covering
problems is mainly for notation convenience, but also of practical significance, since many important set
covering problems contain a great deal of symmetry.



Before describing constraint orbital branching, we first define some notation. Let II" be the set of all
permutations of I” = {1,...,n}, so that II"” is the symmetric group of I”. For a vector A € R", the
permutation 7 € II" acts on A by permuting its coordinates, a transformation that we denote as

7(A) = Mrps Amgs - Amy )-

Throughout this paper we display permutations in cycle notation. The expression (a1, ag, ...ay) denotes
a cycle which sends a; to a;41 fort =1, ..., k£ — 1 and sends aj, to a;. Some permutations can be written
as a product of cycles. For example, the expression (a;, az)(as3) denotes a permutation which sends a; to
as, az to a1, and as to itself. We will omit 1-element cycles from our display.

Since all objective function coefficients in (1) are identical, permuting the coordinates of a solution does
not change its objective value, i.e. elx = el (n(x))Vz € F. The symmetry group G of (1) is the set of
permutations of the variables that maps each feasible solution onto a feasible solution of the same value. In

this case,
def

G={rell"|n(x)e F VzeF}
Typically, the symmetry group G of feasible solutions is not known. However, by closely examining the
structure of the problem, many of the permutations making up the group can be found, and this subgroup
of the original group G can be employed in its place. Specifically, given a permutation # € II" and a
permutation o € II™, let A(m, o) be the matrix obtained by permuting the columns of A by 7 and the
rows of A by o, i.e. A(m,0) = P,AP,, where P, and P, are permutation matrices. Consider the set of
permutations

G(A) Y {r e 1" | 3o € I such that A(r, o) = A},

For any m € G(A), if & € F, then 7(&) € F, so G(A) forms a subgroup of G, and the group G(A) is the
group used in our computations. The group G(A) can act on an arbitrary set of points Z, but in our work, it
acts on either R” or {0, 1}".

For a point z € Z, the orbit of z under the action of the group I is the set of all elements of Z to which
z can be sent by permutations in I, i.e.,

orb(I', 2) ¥ {2 € 2| 3r € T such that 2’ = 7(2)} = {r(z) | 7 € T}.
The stabilizer of a set S C I™ in I is the set of permutations in I' that send S to itself.
stab(S,I") = {m € T' | n(S) = S}.

The stabilizer of .S is a subgroup of I".

At node a, the set of feasible solutions to (1) is denoted by F(a), and the value of an optimal solution for
the subtree rooted at node a is denoted by z*(a). Two subproblems a and b are isomorphic if x € F(a) =
dr € G with w(x) € F(b).

2 Constraint Orbital Branching

Constraint orbital branching is based on the following simple observations. If ATz < ) is a valid inequality
for (1) and 7w € G, then W()\)T{L‘ < g is also a valid inequality for (1). In constraint orbital branching, given
an integer vector (X, \g) € Z"*!, we will branch on a base disjunction of the form

Mz <)V ATz > +1),



simultaneously considering all symmetrically equivalent forms of Az < Ag. Specifically, the branching
disjunction is

\/ MT$§)\(] V /\ uTxZ)\0+1
pneorb(G,\) neorb(G,\)

Further, by exploiting the symmetry in the problem, one need only consider one representative problem
for the left portion of this disjunction. That is, either the “equivalent” form of Az < A holds for one
of the members of orb(G, A), or the inequality Az > A¢ + 1 holds for all of them. This is obviously a
feasible division of the search space. Theorem 1 demonstrates that for any vectors i, ;t; € orb(G, \), the
subproblem formed by adding the inequality ,u,iTx < pyg is equivalent to the subproblem formed by adding
the inequality ,u]Tx < uo. Therefore, we need to keep only one of these representative subproblems, pruning
the | orb(G, A)| — 1 equivalent subproblems. The orbital branching (on variables) method of Ostrowski et al.
[2007], is a special case of constraint orbital branching for (A, \g) = (eg, 0).

Theorem 1 Let a be a generic subproblem and ji;, j1; € orb(G, X). Denote by b the subproblem formed by
adding the inequality uiTx < o to a and by c the subproblem formed by adding the inequality MJTQU < o
to a. Then, z*(b) = z*(c).

Proof. Let 2* be an optimal solution of b. WLOG, we can assume that z*(b) < z*(c). Since p; and 1,
are in the same orbit, there exists a permutation o € G such that o(4;) = ;. By definition of G, o(x*) is a
feasible solution to the subproblem with objective value z*(b). For any permutation matrix P we have that
PTP =1. Since z* isin b, ,u;fpm* < po. We can rewrite this as ,LL;TFP;;FPUx* < po, or (Pypi;)T Prx* < pg.
This implies that p1; P,2* < pg, so o(z*) is in ¢. This implies that z*(c¢) < z*(b). By our assumption,
2*(c) = z*(b). O

The basic constraint orbital branching is formalized in Algorithm 1.

Algorithm 1 Constraint Orbital Branching

Input: Subproblem a.
Output: Two child subproblems b and c.

Step 1.  Choose a vector of integers A of size n and an integer \g

Step 2.  Compute the orbit of A\, O = {1, ..., up}-

Step 3.  Choose arbitrary iy, € O. Return subproblems b with F(b) = F(a) N {z € {0,1}" : plx <
Mo} and ¢ with F(c) = F(a)N{zx € {0,1}" : pfx > No+ 1,i =1,...,p}

As for standard branching on constraints, the critical choice in Algorithm 1 is in choosing the inequality
(A, Ao) [Karamanov and Cornuéjols, 2005]. When dealing with symmetric problems, the embedded sub-
problem structure can be exploited to find strong branching disjunctions, as described in the next section.

3 Strong Branching Disjunctions, Subproblem Structure, and Enumeration

Many important families of symmetric integer programs are structured such that small instances from the
family are embedded in larger instances. In this case the problem often shows a block-diagonal structure
with identical blocks and some linking constraints, like expressed in Figure 1.



The subproblem z = min e o1y {e’ x| Az > e},

denoted by P, is often computationally manageable minelat +eTa? + .. +elgm
and can be solved to optimality in reasonable time.
Constraint orbital branching allows us to exploit its
optimal value z. The first step consists in choosing A x!
anindex i € {1,...,r} and enforcing the constraint A x
eTx? > z, which, obviously, does not cut off any . . >e
optimal solution of the whole problem. Then, the ' A '
new constraint is used as branching disjunction by D, Dy ... D,
letting A = [0, ..., Agy ... 0p], A = €, and g =

z. The resulting child subproblems have interesting 2 e{0,1}%i=1,...,r
properties.

S.t.

Figure 1: Block Diagonal IP

Left subproblem In the left child, the constraint

el'z? < zis added. Since also el 2z’ > z holds, this is equivalent to el 2’ = 2. Therefore, the feasible
sub-vectors x for the left subproblem coincides with the set of the solutions of P with objective value equal
to z. Denoting by {z7, 3, ..., z; } the set of such (optimal) solutions, one can solve the left subproblem by
dividing it into [ subproblems, each associated with a solution z7, for j = 1,...,l. Precisely, each child j
is generated by fixing z° = ;. This yields two relevant benefits. First, the resulting integer programs are
easier than the original. Second, these are completely independent and can be solved in parallel. Of course,
this option is viable only if the number of optimal solutions of P is reasonably small. Otherwise, one can
select an index k # 4 and choose egxk > z as a branching disjunction. In §4.1 we show how to address this
“branching or enumerating” decision for well-known difficult set covering problems.

However, a more insightful observation can lessen the number of subproblems to be evaluated as children
of the left subproblem. Suppose to know a symmetry group G(P) C II" with the property that any two
solutions in P which are isomorphic with respect to G(P) generate subproblems in the original problem
which are isomorphic. If such a group exists, then one can limit the search in the left subproblem only to
the children corresponding to solutions x non-isomorphic with respect to G (P).

The group G(P) is created as follows. Let [ = {i-n+ 1, ..., (i + 1)n} be the column indices
representing the elements of x*. First, compute the group stab(I,G). Note that this group is in II"<",
but we are only interested in how each m € stab(I,G) permutes the n elements in . For this reason, we
project stab(I,G) onto I. Every permutation w € stab(I,G) can be expressed as a product of two smaller
permutations, ¢ € II’ and v € II"~/, where ¢ permutes the elements in I and v permutes the elements not
in I. We can write this as m = (¢, ). The projection of stab(I,G) onto I, G |, contains all ¢ such that
there exists a y with (¢,v) € stab(I,G). Note that permutations not in stab(/, G) cannot be projected in
this way, so it is unambiguous to describe this setas G | ;.

Theorem 2 The projection of G onto 1, G |, is a subset of G(P).

Proof. Let ¢ € G |;. Let x be any optimal solution of P. By definition, = and ¢(z) are isomorphic
with respect to G | ;. Consider the subproblems formed by setting 2* = z (subproblem a) and x' = ¢(z)
(subproblem b). By definition, there is a v € II"~! with 7 = (¢,7) € G.

Let x* be any integer feasible solution in a. By definition of permutation, we know that 7 (z*) is
feasible at the root node. Also 7 sends z* to ¢(x?). Since b differs from the root node only by the constraint
x' = ¢(a'), we have that 7(z*) is in b. To conclude, any solutions to P which are isomorphic with respect
to G |1 will generate subproblems which are isomorphic.

0



Corollary 1 The left subproblem can be decomposed into a set of restricted subproblems associated with
the optimal solutions to P which are non-isomorphic with respectto G | ;.

In practice, non-isomorphic optimal solutions of symmetric problems often represent a small portion of
all the optimal solutions. In this cases, enumerating the left subproblem becomes computationally very
efficient, as shown in the case studies of Section 4.1.

Right subproblem In the right branch, the constraints u”z > Ao + 1, for all u € orb(G, \), are added. If
| orb(G, \)| is fairly large, then the LP bound is considerably increased.

The whole branching process can be iterated at the right child. In fact, the constraint el 'z’ > z4-1 can be
exploited as branching disjunction. In this case all the solution to P with value z 4 1 should be enumerated
to solve the new left branch.

Example:  Consider the graph G =
(V, E) of Figure 2 and the associated
vertex cover problem

. T .o
mefg,llr]l»‘v‘ {e'z|ai+z;>1 V(i,j) e E}.
Its optimal solution has value 10 and
it is supposed to be known. The co-
efficient matrix A shows a block diag-
onal structure with three blocks, corre-
sponding to the incidence matrices of the
5-holes induced by vertices {1,...,5},
{6,...,10} and {11,...,15} respec-
tively. Therefore, the i-th subproblem,

i € {0, 1,2}, has the form

P :min w541 + Tsi42 + T5i43 + Toita + Tsigs

S.t.
1 1.0 00 T5i+1 Figure 2: Example Graph
01 1 00 T5i42
00110 Tsivs | =€
00 0 1 1 T5i+4
1 00 01 T5i+5
r€{0,1}°

The group G(A) contains 60 permutations in I1'® and is generated by the following permutations:

= (2, 5)(3, 4)(7, 10)(8, 9)(12, 15)(13, 14) =% = (6, 11)(7, 12)(8, 13)(9, 14)(10, 15)
7 = (1, 2)(3, 5)(6, 7)(8, 10)(11, 12)(13, 15)  «* = (1, 6)(2, 7)(3, 8)(4, 9)(5, 10)

G(P) can be created by projecting G(A) on the variables of the first block (i.e., x1, ..., x5). It consists of
10 permutations in I1°> which are generated by (2, 5)(3, 4), and (1, 2)(3, 5).
The optimal solution to P has value 3 and there is only one non-isomorphic cover of size 3 (for instance,



x1 = 1, xzg = 1 and 4 = 1). At the root node we branch on the disjunction A = (1,1,1,1,1,0,...,0),
Ao = 3. Then, in the left subproblem the constraint 1 + 3 + x3 + x4 + 5 < 3 is added, while in
the right subproblem the constraints 1 + 22 + 3 + x4 + 5 > 4, x¢ + 7 + g + T9 + 10 > 4 and
11 + x12 + T13 + 14 + 15 > 4 are enforced.

Since P has a unique non-isomorphic optimal solution, searching the left child amounts to solve only
one subproblem with 1 = 1, 220 = 1, x3 = 0, z4 = 1 and x5 = 0. Its optimal value is 10 and the
subproblem can be fathomed. On the right branch, the lower bound increases to 12 and also that subproblem
can be fathomed.

If a classical variable-branching dichotomy is applied, it results in a much larger enumeration tree (15
subproblems vs. 3).

In the general case of unstructured problems, finding effective branching disjunctions may be difficult.
Nevertheless, branching on a constraint (A, Ag) such that the number of non-isomorphic optimal solutions
to the left subproblem is fairly small still gives good results, as shown in Section 4.3.

4 Case Studies

4.1 Steiner Triple Systems

A Steiner Triple System of order v, denoted by STS(v), consists of a set S with v elements, and a collection
B of triples of S with the property that every pair of elements in S appears together in a unique triple of
B. Kirkman [1847] showed that STS(v) exists if and only if v = 1 or 3 mod 6. A covering of a STS is a
subset C of the elements of S such that C' N T # () for each triple T' € B. The incidence width of a STS is
its smallest-size covering. Fulkerson et al. [1974] suggested the following integer program to compute the
incidence width of a STS(v):

min {e’z| A,z > 1},
ze{0,1}v

where A, € {0,1}/8*? is the incidence matrix of the STS(v). Fulkerson et al. [1974] created instances
based on STS of orders v € {9, 15,27,45}, and posed these instances as a challenge to the integer program-
ming community. The instance STS(45) was not solved until five years later by H. Ratliff, as reported by
Avis [1980].

The instance of STS(27) was created from STS(9) and STS(45) was created from STS(15) using a
“tripling” procedure described in Hall [1967]. We present the construction here, since the symmetry induced
by the construction is exploited by our method in order to solve larger instances in this family. For ease of
notation, let the elements in STS(v) be {1,2,...v}, with triples B,,. The elements of STS(3v) are the pairs
{(i,7) i € {1,2,...,v},5 € {1,2,3}}, and its collection of triples is denoted as Bs,. Given STS(v), the
Hall construction creates the blocks of STS(3v) in the following manner:

o {(a,k),(bk),(c,k)} € Bs, Y{a,b,c} € B,, Vk € {1,2,3},
o {((,1),(5,2),(i,3)} € By Vi€ {l,... 0}
e {(a,m), (b,m),(c,m3)} € By, V{a,b,c} € B,, ¥Vr € II3.

Feo and Resende [1989] introduced two new instances STS(81) and STS(243) created using this construc-
tion. STS(81) was first solved by Mannino and Sassano [1995] 12 years ago, and it remains the largest
problem instance in this family to be solved. STS(81) is also easily solved by the isomorphism prun-
ing method of Margot [2002] and the orbital branching method of Ostrowski et al. [2007], but neither of
these methods seem capable of solving larger STS(v) instances. Karmarkar et al. [1991] introduced the
instance STS(135) which is built by applying the tripling procedure to the STS(45) instance of Fulkerson



et al. [1974]. Odijk and van Maaren [1998] have reported the best known solutions to both STS(135) and
STS(243), having values 103 and 198 respectively. Using the constraint orbital branching method, we have
been able to solve STS(135) to optimality, establishing that 103 is indeed the incidence width.

The incidence matrix, As,, for an instance of
STS(3v) generated by the Hall construction has the

form shown in Figure 3, where A, is the incidence A, 0 0
matrix of STS(v) and the matrices D; have exactly 0 A, O
one “1” in every row. Note that As, has the block- Asg, = 0o 0 A, |,
diagonal structure discussed in Section 3, so it is a 1 1 1T
natural candidate on which to apply the constraint Dy Dy Ds

orbital branching methodology.

Furthermore, the symmetry group I' of the
instance STS(3v) created in this manner has a
structure that can be exploited. Specifically for
STS(135), let A € R!3% be the vector A\ = (e45,090)” in which the first 45 components of the vector
are 1, and the last 90 components are 0. It is not difficult to see that the following 12 vectors 1, . .. p12 all
share an orbit with the point A. (This fact can also be verified using a computational algebra package such
as GAP [2004]).

Figure 3: Incidence Matrix of As,

1-15 16—-30 31-45 46—-60 61—-75 76—90 91—105 106—120 121 —135

L1 e e e 0 0 0 0 0 0
2 0 0 0 e e e 0 0 0
na 0 0 0 0 0 0 e e e
4 e 0 0 e 0 0 e 0 0
s e 0 0 0 e 0 0 0 e
He = e 0 0 0 0 e 0 e 0
nur 0 e 0 e 0 0 0 e 0
s 0 e 0 0 e 0 0 e 0
i) 0 e 0 0 0 e e 0 0
Hio 0 0 e e 0 0 0 e 0
Hi1 0 0 e 0 e 0 e 0 0
Hi2 0 0 e 0 0 e 0 0 e

As described for the general case in Section 3, to create an effective constraint orbital branching dichotomy,
we will use this orbit and also the fact that branching on the disjunction

Az < K)V (uTz> K +1)Vu € orb(G, \)

allows us to enumerate coverings for STS(v/3) in order to solve the left-branch of the dichotomy.

4.2 Computational Results

In this section, results of the computation proving the optimality of the cardinality 103 covering of STS(135)
are presented. The optimal solution to STS(45) has value 30. Figure 4 shows the branching tree used by the
constraint orbital branching method for solving STS(135). The node E in Figure 4 is pruned by bound, as
the solution of the linear programming relaxation at this node is 103.

A variant of the (variable) orbital branching algorithm of Ostrowski et al. [2007] can be used to ob-
tain a superset of all non-isomorphic solutions to an integer program whose objective value is better than
a prescribed value K. The method works in a fashion similar to that proposed by Danna et al. [2007].
Specifically, branching and pruning operations are performed until all variables are fixed (nodes may not be
pruned by integrality). All leaf nodes of the resulting tree are feasible solutions to the integer program whose



Figure 4: Branching Tree for Solution of STS(135)

px > 32Vp € orb(I', A)

px > 33V € orb(I', X)

\w: >34V € orb(T, A)

D E

@V
\
%

Table 1: Computational Statistics for Solution of STS(135)

(a) Solutions of

value K for STS(45) (b) Statistics for STS(135) IP Computations

(K) #Sol Total CPU Simplex

30 2 K Time (sec) Iterations Nodes

31 246 30 538.01 2,501,377 164,720

32 9497 31 90790.94 255,251,657 13,560,519

33 61539 32 2918630.95 8,375,501,861 306,945,725
71,284 33 6243966.98 25,321,634,244 718,899,460

9.16 x 10°  3.36 x 10 1.04 x 10°

objective value is < K. Using this algorithm, a superset of all non-isomorphic solutions to STS(45) of value
33 or less was enumerated. The enumeration required 10CPU hours on a 1.8GHz AMD Opteron Processor
and resulted in 71,284 solutions. The number of solutions for each value of K is shown in Table 1(a).

For each of the 71,284 enumerated solutions to STS(45), the first 45 variables of the STS(135) integer
programming instance for that particular node were fixed. For example, the node B contains the inequalities
puxr > 31V € orb(T', \), and the bound of the linear programming relaxation is 93. In order to establish
the optimality of the covering of cardinality 103 for STS(135), each of these 71,284 90-variable integer
programs must be solved to establish that no solution of value smaller than 103 exists. The integer programs
are completely independent, so it is natural to consider solving them on a distributed computing platform.
The instances were solved on a collection of over 800 computers running the Windows Operating System
at Lehigh University. The computational grid was created using the Condor High Throughput Computing
software [Livny et al., 1997], so the computations were run on processors that would have otherwise been
idle. The commercial package CPLEX (v10.2) was used to solve all the instances, and an initial upper bound
of value 103.1 was provided to CPLEX as part of the input to all instances. Table 1(b) shows the aggregated
statistics for the computation. The total CPU time required to solve all 71,284 instances was roughly 106
CPU days, and the wall clock time required was less than two days. The best solution found during the
search had value 103!, thus establishing that the incidence-width of STS(135) is 103.

'In fact, two solutions of value 103 were found, but they were isomorphic



4.3 Covering Designs

A (v, k,t)-covering design is a family of subsets of size k, chosen from a ground set V' of cardinality
|V| = v, such that every subset of size ¢ chosen from V' is contained in one of the members of the family
of subsets of size k. The number of members in the family of k-subsets is the covering design’s size. The
covering number C' (v, k, t) is the minimum size of such a covering. Let K be the collection of all k-sets of
V, and let 7 be the collection of all ¢-sets of V. An integer program to compute a (v, k, t)-covering design
can be written as

min {elz | Bz > e}, ()
z€{0,1}IXI

where B € {0, 1}7¥IXl has element b;; = 1if and only if ¢-set 7 is contained in k-set j, and the decision
variable x; = 1 if and only if the jth k-set is chosen in the covering design.

Numerous theorem exist that give bounds on the size of the covering number C(v, k,t). An important
theorem that we need to generate a useful branching disjunction for the constraint orbital branching method
is due to Schonheim [1964]. For some subset of the ground set elements U C V, let K(U) be the collection
of all the k-sets of V' that contain U. Margot [2003a] shows that the following inequality, which he calls a
Schonheim inequality, is valid, provided that |U| = wissuchthat 1 < u <t — 1:

Z z; > Clv—uk—u,t—u). 3)
1€X(U)

The Schonheim inequalities substantially increase the value of the linear programming relaxation of (2).

A second important observation is that the symmetry group G for (2) is such the characteristic vectors
of all u-sets belong to the same orbit: if [U’| = |U|, then xjc(yry € orb(G, xjc(7))- These two observations
taken together indicate that the Schonheim inequalities (3) may be a good candidate for constraint orbital
branching. On the left branch, the constraint

Z z; < Cv—uk—u,t—u)
ieK(U)

is enforced. To solve this node, all non-isomorphic solutions to the (v — u, k — u,t — u)-covering design
problem may be enumerated. For each of these solutions, an integer program in which the corresponding
variables in the (v, k, t)-covering design problem are fixed may be solved.

On the right branch of the constraint-orbital branching method, the constraints

Z x; > Cl—uk—ut—u)+1 YU’ € orb(G, xxw))
iek(U”)

may be imposed. These inequalities can significantly improve the linear programming relaxation.

4.4 Computational Results

We will demonstrate the applicability of constraint orbital branching using the Schonheim inequalities by an
application to the (11, 6, 5)-covering design problem. Nurmela and Ostergérd [1993] report an upper bound
of C(11,6,5) < 100, and Applegate et al. [2003] were able to show that C'(11,6,5) > 96. Using the con-
straint orbital branching technique, we are also easily able to obtain the bound C(11,6,5) > 96, and ongoing
computations are aimed at further sharpening the bound. The covering design numbers C(10,5,4) = 51,
C(9,4,3) = 25,and C(8,3,2) = 11 are all known [Gordon et al., 1995], and this knowledge is used in the
branching scheme.



The branching tree used for the (11,6, 5)-covering design computations is shown in Figure 5. In the
figure, node D is pruned by bound, as the value of its linear programming relaxation is > 100. The nodes A,
B, and C will be solved by enumerating solutions to a (v, k, t)-covering design problem of appropriate size.
For node A, (10, 5, 4)-covering designs of size 51 are enumerated; for node B, (9, 4, 3)-covering designs of
size < 26 are enumerated; and for node C, (8, 3, 2)-covering designs of size < 11 are enumerated. Table 2
shows the number of solutions at each node, as well as the value of the linear programming relaxation z(p)
of the parent node. The size 51 (10, 5,4)-covering designs are taken from the paper of Margot [2003b],
and the other covering designs are enumerated using the variant of the orbital branching method outlined in
Section 4.2.

Figure 5: Branching Tree for C(11,6,5)

ZiGK(vo) x; SV \X:ie’C(v) T, >52VveV
A
D iek (i) Ti S% \Zie/c(U) x; > 2TVU C V,|U| =2
B
D iek(Us) Ti S/ \Z:@'GIC(U) x; > 12VU Cc V,|U| =3
C

Since the value of the linear programming relaxation of the parent of node B is 95.33, if none of the 40
integer programs created by fixing the size 51 (10, 5, 4)-covering design solutions at node A of Figure 5 has
a solution of value 95, then immediately, a lower bound of C'(11,6,5) > 96 is proved. The computation
to improve the lower bound for each of the 40 IPs to 95.1 required only 8789 nodes and 10757.5 CPU
seconds on a single 2.60GHz Intel Pentium 4 CPU. More extensive computations are currently underway
on a Condor-provided computational grid in order to further improve this bound.

It is interesting to note that an attempt to improve the lower
bound of C'(11,6,5) by a straightforward application of the vari-

able orbital branching method of Ostrowski et al. [2007] was un- Table 2: Node Characteristics

able to improve the bound higher than 94, even after running several Node | # Sol z(p)
days and eventually exhausting a 2GB memory limit. An exhaus- A 40 93.5
tive comparison with variable orbital branching will be reported in a B | 782,238 | 95.33
journal version of the paper. However, the results on specific classes c 11 99

of problems show that the generality of constraint orbital branching
does appear to be useful to solve larger symmetric problems.

5 Conclusions

In this work, we generalized a previous work for branching on orbits of variables (orbital branching) to
branching on orbits of constraints (constraint orbital branching). Constraint orbital branching can be es-
pecially powerful if the problem structure is exploited to identify a strong constraint on which to base the
disjunction and by enumerating all partial solutions that might satisfy the constraint. Using this methodol-
ogy, we are for the first time able to establish the optimality of the cardinality 103 covering for STS(135).
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