
Vol.:(0123456789)

EURO J Transp Logist (2019) 8:713–744
https://doi.org/10.1007/s13676-019-00145-6

1 3

RESEARCH PAPER

Integral column generation for the set partitioning
problem

Adil Tahir1 · Guy Desaulniers1 · Issmail El Hallaoui1

Received: 8 July 2018 / Accepted: 19 June 2019 / Published online: 26 June 2019
© The Association of European Operational Research Societies and Springer-Verlag GmbH Berlin Heidelberg
2019

Abstract
The integral simplex using decomposition (ISUD) algorithm was recently developed
to solve efficiently set partitioning problems containing a number of variables that
can all be enumerated a priori. This primal algorithm generates a sequence of inte-
ger solutions with decreasing costs, leading to an optimal or near-optimal solution
depending on the stopping criterion used. In this paper, we develop an integral col-
umn generation (ICG) heuristic that combines ISUD and column generation to solve
set partitioning problems with a very large number of variables. Computational
experiments on instances of the public transit vehicle and crew scheduling problem
and of the airline crew pairing problem involving up to 2000 constraints show that
ICG clearly outperforms two popular column generation heuristics (the restricted
master heuristic and the diving heuristic). ICG can yield optimal or near-optimal
solutions in less than 1 hour of computational time, generating up to 300 integer
solutions during the solution process.

Keywords Discrete optimization · Column generation · Integral simplex using
decomposition · Crew scheduling

1 Introduction

Many complex industrial problems are formulated as a set partitioning problem
(SPP). These problems include, among others, the integrated vehicle and crew-
scheduling problem arising in public transit (VCSP, see Haase et al. 2001) and the

 * Adil Tahir
 adil.tahir@gerad.ca

 Guy Desaulniers
 guy.desaulniers@gerad.ca

 Issmail El Hallaoui
 issmail.elhallaoui@gerad.ca

1 GERAD and Department of Mathematics and Industrial Engineering, Polytechnique Montréal,
Montréal, Canada

http://orcid.org/0000-0002-2295-9795
http://crossmark.crossref.org/dialog/?doi=10.1007/s13676-019-00145-6&domain=pdf

714 A. Tahir et al.

1 3

airline crew pairing problem (CPP, see Desaulniers et al. 1997) which are often
solved by branch-and-price (see Barnhart et al. 1998). The SPP is a combinatorial
optimization problem that can be defined as follows. Let T = {1,… ,m} be a set of
tasks to accomplish exactly once (e.g., flights to operate, customers to visit once
each, etc.). Let N = {1,… , n} be a set of feasible task subsets (e.g., defined by crew
schedules, vehicle routes, etc.). For each task subset j ∈ N , let cj be the least cost to
accomplish these tasks and let aij , i ∈ T , be a binary parameter indicating if task i is
in subset j or not. The SPP consists of selecting subsets in N such that each task in T
belongs to exactly one of the selected subset and the sum of the costs of these sub-
sets is minimized. It can be formulated as the following integer program:

where xj , j ∈ N , is a binary variable equal to 1 if subset j is selected and 0 other-
wise. The objective function (1) aims at minimizing the total cost. The set parti-
tioning constraints (2) ensure that each task is included in a single selected subset.
Finally, binary requirements on the xj variables are expressed by (3). Note that addi-
tional (non-set-partitioning) constraints can be considered to model other aspects of
the problem at hand such as vehicle availability in vehicle-scheduling problems. In
this work, we focus on the pure SPP, i.e., without additional constraints.

In the following, we denote by H the convex hull of the set of the feasible solu-
tions of (1)–(3) and by R the feasible region of the linear relaxation of (1)–(3).
Notice that H and R are convex polytopes if they are non-empty.

Since 1969, researchers have been attracted by the SPP because its polytope R
possesses the quasi-integrality property. This property, which distinguishes the SPP
from most of the other problems, stipulates that every edge of H is also an edge of
R. This implies that every integer solution corresponding to an extreme point of H is
also an extreme point of R and, for every pair of such integer points, there exists on
the boundary of R a path linking them which is composed of edges linking only inte-
ger extreme points. The study of this property has led to the development of several
interesting solution algorithms (see Balas and Padberg 1975; Thompson 2002; Sax-
ena 2003), including the Integral Simplex Using Decomposition (ISUD) algorithm
of Zaghrouti et al. (2014). These algorithms will be reviewed in the next section.

This paper continues these works on the SPP. Indeed, we exploit existing theoret-
ical results to propose a new Integral Column Generation (ICG) algorithm. Starting
from a possibly poor-quality solution that might even be infeasible, this new primal
method finds a sequence of improving feasible integer solutions. At the opposite of
the branch-and-price algorithm which only uses dual information to generate new
variables, the ICG algorithm exploits both primal and dual information to do so. On
the one hand, the current dual solution is used to find new columns (task subsets)

(1)min
x

∑
j∈N

cjxj

(2)s.t.:
∑
j∈N

aijxj = 1, ∀i ∈ T

(3)xj ∈ {0, 1}, ∀j ∈ N,

715

1 3

Integral column generation for the set partitioning problem

that can potentially be part of an improved integer solution. On the other hand,
the primal information corresponding to the current integer solution is exploited
to find descent directions yielding better integer solutions. To increase the number
of descent directions found at each iteration of the ICG algorithm, we have chosen
to generate a very large number of columns each time that the column generation
subproblem is solved. In a traditional column generation algorithm, this strategy is
avoided as it typically increases substantially the time to re-optimize the restricted
master problem (RMP) and, therefore, the total computational time. However, in the
ICG algorithm, it is rather beneficial as it increases the probability of finding several
improved integer solutions. Furthermore, it does not bother the solution of the RMP
because this one is decomposed and the density of the constraint coefficient matrix
of the original problem is reduced as explained in Sect. 3.

In practice, large SPP instances are often solved using a column generation
(CG) heuristic; for example, a diving heuristic (DH) or a restricted master heuristic
(RMH) as briefly described in Sect. 5. Such heuristics usually do not find many inte-
ger solutions (and may even fail to do so). Moreover, when some are found, the good
ones often appear only towards the end of the solution process, leaving no opportu-
nity to the planner to stop prematurely the solution process when he/she is satisfied
with the quality of the incumbent solution. In this paper, we aim at solving large
SPP instances while offering this opportunity to the planner. In this context where
optimality is not necessarily sought, we have designed and implemented a heuris-
tic version of the ICG algorithm although it could have been exact. We have tested
this version on instances of the VCSP and of the CPP, with up to 2000 and 1740
constraints in the master problem, respectively. Our computational results show
the effectiveness of the proposed algorithm compared to two popular CG heuris-
tics, namely, DH and RMH. Indeed, we succeed to compute a better quality solution
(often optimal or near-optimal) in much less computational time for most instances.
This is achieved by performing a small number of column generation iterations (at
most 12 for the VCSP and 23 for the CPP) and finding a large number of integer
solutions throughout the solution process (around 10 solutions per column genera-
tion iteration on average).

This paper is structured as follows. In the next section, we review the literature
on the SPP and on the primal and dual-fractional algorithms that are the most com-
monly used for solving this problem. In Sect. 3, we present the ISUD algorithm and
related concepts which are at the basis of the ICG algorithm. Section 4 describes
this new algorithm. Section 5 reports the results of our computational experiments.
Finally, conclusions are drawn in Sect. 6.

2 Literature review

In the literature on the SPP, there are two main types of solution algorithms, namely,
dual-fractional and primal algorithms. Primal algorithms move from one feasible
(integer) solution to another, whereas dual-fractional algorithms allow infeasible
(non-integer) solutions. In this review, we focus in Sect. 2.1 on a single family of
dual-fractional algorithms, the branch-and-price (BP) algorithms which can handle

716 A. Tahir et al.

1 3

SPP instances with a very large number of variables, and in Sect. 2.2 on two types of
primal algorithms, namely, the integral simplex algorithms and the ISUD algorithm.

2.1 Branch‑and‑price algorithms

Branch-and-price (see Barnhart et al. 1998) is a popular and efficient solution
method for the SPP. It embeds column generation in a branch-and-bound frame-
work, where a linear relaxation of SPP is solved using CG at each node of the search
tree. CG is designed to solve linear programs containing a very large number of var-
iables that are often obtained through Dantzig–Wolfe decomposition (Dantzig and
Wolfe 1960). In this context, the linear program is called the master problem (MP)
and the CG algorithm solves at each iteration the MP restricted to a subset of the
variables, called the RMP, and one or several subproblems. In our case, the MP cor-
responds to the linear relaxation of (1)–(3) and the subproblem is often modeled as a
shortest path problem with resource constraints (SPPRC, see Irnich and Desaulniers
2005). Solving the RMP provides a primal solution but also a dual solution denoted
� ∈ ℝ

m . The subproblem aims at finding new columns associated with variables xj
of negative reduced cost cj = cj −

∑
i∈T �iaij that are added to the RMP before start-

ing a new iteration. If no such columns can be generated, then the CG algorithm
stops and the optimal solution of the current RMP is also optimal for the MP (setting
all unknown variables to 0).

It is well known that the standard CG algorithm may be subject to several con-
vergence issues (see Vanderbeck 2005) which transfer to the branch-and-price
algorithm. In the literature, several dual variable stabilization techniques have been
introduced to improve convergence (see, e.g., Lübbecke and Desrosiers 2005; Van-
derbeck 2005). In 2005, Elhallaoui et al. (2005) have proposed the dynamic con-
straint aggregation (DCA) algorithm for solving the SPP. This algorithm consists of
reducing the number of set partitioning constraints by aggregating some of them as
needed. The aggregation is revised during the solution process to ensure the exact-
ness of the DCA algorithm. The authors report computational results obtained on
randomly generated VCSP instances which show that DCA clearly outperforms
standard CG for solving the linear relaxation of the SPP: computational time reduc-
tions of up to 80% were achieved. An improved variant of the DCA algorithm called
the multi-phase DCA (MPDCA) algorithm was also developed by Elhallaoui et al.
(2010). This variant allows a further reduction of degeneracy and of the number
of fractional-valued variables in the computed MP solutions. Consequently, it often
finds integer solutions. More recently, to alleviate the drawbacks of the standard CG
algorithm, Bouarab et al. (2017) proposed three new decompositions that integrate
the improved primal simplex (IPS) algorithm of Elhallaoui et al. (2011) and either
CG or DCA. The best decomposition combines IPS and DCA and reduces the num-
ber of non-zero elements in the constraint coefficient matrix. This opens up the pos-
sibility to consider more columns in the RMP and, thus, to stabilize the dual vari-
ables. The computational results reported by Bouarab et al. (2017) show that their
IPS/DCA algorithm can be eight times faster than the standard CG algorithm on the
instances tested by Elhallaoui et al. (2005, 2010). These results also show that the

717

1 3

Integral column generation for the set partitioning problem

application of a clever decomposition in a CG framework is a promising research
avenue that is worth exploring to overcome the convergence issues associated with
standard CG.

2.2 Primal algorithms

Here, we review first the integral simplex algorithms without decomposition before
discussing the ISUD algorithm.

2.2.1 Without decomposition

In 1969, Trubin (1969) proved that the SPP polytope has the quasi-integrality prop-
erty: every edge of H is an edge of R. This property implies that, for every pair of
feasible solutions, there exists a path between them that is composed of edges of R,
visits only integer solutions at the edge extremities, and the sequence of the costs
of the visited solutions is decreasing (see Balas and Padberg 1972). These authors
also showed that an optimal solution can be reached in at most m pivots from any
initial feasible solution. This result is, however, impractical because it requires the
knowledge of this optimal solution. Based on these results, Thompson (2002) intro-
duced in 2002 the integral simplex algorithm, which proceeds in two phases. The
first phase (local method) consists of performing, as long as possible, non-degener-
ate pivots to reach a local optimum. All these pivots are performed on a coefficient
(that of the entering variable in the row associated with the leaving variable) equal
to 1. The second phase (global method) builds a tree, where each node corresponds
to a subproblem that is solved using the local method. An optimal solution to SPP is
given by the best solution found in the nodes explored in the tree. Soon after, Saxena
(2003) proposed an improvement to Thompson’s algorithm that allows pivoting on
a −1 coefficient and relies on anti-cycling rules. The great advantage of these inte-
gral simplex algorithms is that they always have a feasible integer solution at hand.
However, these algorithms suffer from degeneracy and might struggle to find a non-
degenerate pivot.

Rönnberg and Larsson (2009, 2014) have developed combined CG/integral sim-
plex algorithms, called all-integer column generation algorithms. They first adapted
the necessary and sufficient condition on the columns yielding non-degenerate piv-
ots proposed by Balas and Padberg (1972) and derived from it a condition to iden-
tify columns yielding degenerate pivots. Depending on the type of columns to be
generated, one of these conditions is integrated in the column generation subprob-
lem to restrict the set of columns that can be generated. The local method of the
integral simplex algorithm iterates between performing non-degenerate pivots in the
RMP, generating columns yielding non-degenerate pivots, performing degenerate
pivots in the RMP, and generating columns yielding degenerate pivots, until reach-
ing a stopping criterion. Then, the global method of the integral simplex algorithm
which explores a search tree is applied to complete the solution process. The authors
have described academic examples to illustrate the unfolding of this algorithm but
no extensive computational experiments were conducted. Tests on small-sized

718 A. Tahir et al.

1 3

instances of the generalized assignment problem show that degeneracy remains an
issue.

Note that these algorithms generate sequences of improving integer solutions. To
move from one solution to the next, they perform a (possibly empty) sequence of
degenerate pivots followed by a non-degenerate pivot. The selection of the degen-
erate pivots in each sequence is somewhat arbitrary and, thus, may yield long
sequences and waste substantial computational time.

2.2.2 With decomposition

In 2011, Elhallaoui et al. (2011) introduced the improved primal simplex (IPS) algo-
rithm for solving efficiently linear programs subject to high degeneracy. The suc-
cess of this algorithm has motivated an attempt to adapt it to an integer program,
namely, the SPP. In 2014, Zaghrouti et al. (2014) realized this IPS adaptation by
introducing a new algorithm called the ISUD algorithm. As in the IPS algorithm,
the ISUD algorithm relies on a decomposition concept specialized for degenerate
problems. Indeed, it decomposes the SPP in a reduced problem (RP) and a comple-
mentary problem (CP) that searches for descent directions that can improve the cur-
rent integer solution. The definitions of RP and CP as well as the ISUD algorithm
will be given in Sect. 3. Compared to the algorithms described in Sect. 2.2.1, the
ISUD algorithm finds at each iteration a combination of columns to pivot into the
basis. This combination ensures a decrease in the objective function and is mini-
mal in the sense that, if one of the columns it contains is not pivoted into the basis,
then no improvement can be achieved. The computational experiments performed
by Zaghrouti et al. (2014) on instances of the VCSP and of the CPP involving up to
1600 constraints and 500,000 variables showed the effectiveness of the ISUD algo-
rithm to find optimal or near-optimal solutions much more rapidly than the CPLEX
mixed-integer programming (MIP) solver for the 90 tested instances. Note, however,
that, in these instances, all columns are known a priori.

To improve the ISUD algorithm, further research has been realized by Rosat
et al. (2016, 2017) and Zaghrouti et al. (2018). These works focused on a weak-
ness of the ISUD algorithm, namely, solving the CP may sometimes require some
kind of branching to ensure finding a descent direction leading to an integer solu-
tion, called hereafter an integer direction. Rosat et al. (2017) have proposed cuts
to avoid branching. These cuts are, however, costly to separate and several of them
might be needed to find an integer direction. Alternatively, Rosat et al. (2016) stud-
ied the role of the normalization constraint added to the CP to bound it. The left-
hand side of this constraint is defined as a weighted sum of variables. The authors
showed the existence of a weight vector that enables finding only integer directions
until reaching optimality. Unfortunately, no procedure for building this vector is pro-
posed. Finally, Zaghrouti et al. (2018) developed a variant of the ISUD algorithm
called the zooming algorithm. When it is not possible to find an integer direction
without branching, the CP provides a non-integer descent direction that can be used
to define a neighborhood around the current integer solution. This neighborhood is
of small size and can, thus, be explored efficiently using a MIP solver to find an inte-
ger direction.

719

1 3

Integral column generation for the set partitioning problem

From this literature review, we observe that the best primal algorithm for the SPP,
namely, the ISUD algorithm, has not been adapted to the CG context. Consequently,
this paper constitutes the first attempt at combining CG and ISUD to compute effi-
ciently sequences of improving integer solutions for large-scale SPP instances.

3 The ISUD algorithm

In this section, we describe the ISUD algorithm of Zaghrouti et al. (2014) which is
needed to understand the proposed ICG algorithm and apply it to a small example. In
the following, we use bold characters to denote vectors and matrices.

3.1 Description of the ISUD algorithm

As mentioned above, the ISUD algorithm is based on a decomposition of the problem
into a RP and a CP. Therefore, before describing this algorithm, we introduce the RP
and the CP whose definitions rely on a compatibility criterion which is presented first.

Let � be a feasible solution to SPP (1)–(3) and S = {j | xj = 1} the set of the indices
of the task subsets selected in this solution. Let � =

(
aij
)
i∈T ,j∈N

 be the constraint coef-
ficient matrix and denote by �j its column associated with variable xj , j ∈ N . By breach
of terminology, we say that S is the solution � and that the columns �j , j ∈ S , are in the
solution � or in S. The other columns �j , j ∈ N ⧵ S , are either compatible or incompat-
ible with the columns in S according to the following definition.

Definition 1 An arbitrary column in {0, 1}m (not necessarily a column of �) is said
to be compatible with the columns in S (or, simply, compatible with S) if it can be
written as a linear combination of these columns.

Let �U =
(
�j

)
j∈U

 be a submatrix of � . We denote by �1

U
 the submatrix of �U com-

posed of its first |U| linearly independent rows and all its columns and by �2

U
 the sub-

matrix of �U containing the remaining rows. Furthermore, let CS be the index set of the
columns �j , j ∈ N , that are compatible with S and let IS = N ⧵ CS be the index set of
the incompatible columns. Observe that S ⊆ CS and that �1

CS
 contains |S| rows, namely,

one for the first task covered by each column �j , j ∈ S . As mentioned in the previous
section, the SPP is decomposed in two problems: a RP built from the compatible col-
umns and a CP containing the incompatible ones.

The RP is given by

(4)min
�CS

�
⊤

CS
�CS

(5)s.t.: �
1

CS
�CS

= �

(6)�CS
∈ {0, 1}|CS|

720 A. Tahir et al.

1 3

where �CS
 is the subvector of the variables associated with the columns compatible

with S, �CS
 is the subvector of the cost coefficients associated with these variables,

and � ∈ {1}|S| is a vector of ones. In RP, the current solution S is associated with a
basis corresponding to the identity matrix. Consequently, pivoting into the basis any
compatible column that has a negative reduced cost results in an improved integer
solution S′ (the entering column replaces two or more columns in the solution). This
first pivot is, thus, non-degenerate. One can then redefine RP with respect to the new
solution S′ and search for a new negative reduced cost column in CS′ that is compat-
ible with S′ . This process can be repeated until no such column is found.

The incompatible columns �j , j ∈ IS , are used in the CP to find an integer
descent direction. This direction is obtained by finding a linear combination of
the incompatible columns that is compatible with S and composed of disjoint col-
umns according to the following definition.

Definition 2 Let U ⊆ N be a subset of column indices. The columns �j , j ∈ U , are
said to be disjoint if and only if �⊤

j1
�j2

= 0 for all j1, j2 ∈ U such that j1 ≠ j2.

Let vj , j ∈ IS , be the weight variables defining the linear combination of the
incompatible columns; �l , l ∈ S , the weight variables defining the linear combina-
tion of the columns in the solution S; and wj , j ∈ IS , nonnegative weights used in the
normalization constraint. Furthermore, denote by FS = {(j1, j2) ∈ IS × IS |�⊤

j1
�j2

≠ 0}
the set of index pairs of non-disjoint incompatible columns. The CP can be formu-
lated as follows:

The objective function (7) searches for a direction that will incur a cost decrease.
Constraint (8) ensures that the linear combination of the incompatible columns is
compatible with S. The normalization constraint (9) simply bounds the feasible
region. Nonnegativity constraints on the vj variables are enforced through (10).
Given these nonnegativity requirements and the facts that the elements of � are
binary and the columns in S are disjoint, the �l variables are also nonnegative.
Finally, the disjunctive constraints (11) impose the selection of disjoint columns in
the linear combination of the incompatible variables, ensuring an integer direction.

(7)zCP = min
�,�

∑
j∈IS

cjvj −
∑
l∈S

cl�l

(8)s.t.:
∑
j∈IS

vj�j −
∑
l∈S

�l�l = 0

(9)
∑
j∈IS

wjvj = 1

(10)vj ≥ 0, ∀j ∈ IS

(11)vj1vj2 = 0, ∀(j1, j2) ∈ FS.

721

1 3

Integral column generation for the set partitioning problem

If zCP < 0 , then an integer descent direction � =
(
dj
)
j∈N

 is identified by the posi-
tive-valued vj and �l variables as follows:

Fixing the step length to 1, an improved integer solution is obtained by replacing the
columns �l , l ∈ S , with 𝜆l > 0 by the incompatible columns �j , j ∈ IS , with vj > 0 .
This corresponds to entering the latter columns into the basis, while removing the
former from it. On the other hand, if zCP ≥ 0 , then no integer descent direction can
be found and solution S is, therefore, optimal.

In practice, constraints (11) are relaxed from the initial CP, yielding the relaxed
CP which can then be solved by a linear programming solver. As empirically
shown by Zaghrouti et al. (2014), the selected columns in the linear combination of
incompatible columns are often disjoint and the computed solution is thus feasible
with respect to the relaxed constraints (11). When this is not the case, branching
can be performed to enforce these constraints. For example, for each column �j ,
j ∈ IS , with vj > 0 in the solution of the relaxed CP, one can create a child node that
imposes vj = 0.

The main steps of the ISUD algorithm described above are summarized in Algo-
rithm 1. The performance of this algorithm mainly depends on the effectiveness at
solving the CP in Step 3. Below, we discuss different avenues that have been studied
to ease its solution.

Observe that the density of the constraint coefficient matrix in the relaxed CP
is very similar to that of the original SPP. To reduce this density, one can reformu-
late the CP by performing a variable substitution and eliminating a number of con-
straints. Several reformulations are possible as discussed in Appendix A. We have
chosen the one based on matrix �2 that was proposed by Bouarab et al. (2017).
Another option to reduce the matrix density is to apply the multi-phase acceleration
strategy devised by Zaghrouti et al. (2014) and presented in Appendix B. It consists
of solving a sequence of CPs by considering in phase k a CP that contains only the
incompatible columns which have an incompatibility degree less than or equal to k.

(12)dj =

⎧
⎪⎨⎪⎩

1 if j ∈ IS and vj > 0

−1 if j ∈ S and 𝜆j > 0

0 otherwise,

∀j ∈ N.

722 A. Tahir et al.

1 3

When matrix �2 is used to define it, the degree of incompatibility �j of a column �j ,
j ∈ Is , indicates the minimum number of times that task subsets in the current solu-
tion S must be divided to ensure that �j becomes compatible with the resulting task
subsets. For example, if the current solution S contains the two task subsets {1, 2, 3}
and {4, 5} , then the degree of incompatibility of a column �j covering the task sub-
set {1, 2, 5} is equal to 2 because to make it compatible both subsets {1, 2, 3} and
{4, 5} need to be split up. It was shown by Bouarab et al. (2017) that, in phase k, any
column in the coefficient matrix of the CP has at most k + 1 non-zero coefficients.

In a CG context like in the proposed ICG algorithm, a complete dual solution
� =

(
�i

)
i∈T

∈ ℝ
m of the MP [i.e., the linear relaxation of (1)–(3)] is required to gen-

erate negative reduced cost columns. One drawback of using a reformulation of the
CP is that no such dual solution is available. Appendix C discusses how one can be
retrieved from the dual solution of the relaxed CP. The proposed technique ensures
that the reduced cost of every column in the current solution S with respect to this
dual solution � is equal to zero. In this case, we say that the dual solution corre-
sponds to solution S.

Finally, note that, for our tests, we have chosen to set wj = �j for all j ∈ IS . Rosat
et al. (2016) showed that using these weights in the normalization constraint (9)
favors finding integer directions in the relaxed CP.

3.2 A small example

To illustrate the ISUD algorithm, we apply it to a small example, namely, to the fol-
lowing set partitioning model:

To solve this example using the ISUD algorithm, we proceed through the following
steps.

1. Let x1 = x2 = x3 = x4 = 1, x5 = ⋯ = x11 = 0 be an initial solution with cost
17. Therefore, S = {1, 2, 3, 4} , CS = S ∪ {5, 11} (because �5 = �1 + �2 and
�11 = �3 + �4) and IS = {6, 7, 8, 9, 10}.

2. The corresponding RP is built as:

min
�

5x1 + 5x2 + 5x3 + 2x4 + 9x5 + 6x6 + 6x7 + 5x8 + 5x9 + 5x10 + 9x11

x1 + x5 + x6 + x8 + x10 = 1

x1 + x5 + x6 + x8 + x10 = 1

x2 + x5 + x6 + x8 + x9 = 1

x2 + x5 + x7 + x8 + x10 = 1

x3 + x7 + x8 + x9 + x11 = 1

x3 + x7 + x9 + x10 + x11 = 1

x4 + x11 = 1

x4 + x11 = 1

� ∈ {0, 1}11

723

1 3

Integral column generation for the set partitioning problem

 which contains a representative constraint for each task subset in the current
solution S and only the variables that are compatible with S.

3. Solving this RP yields an improved solution S = {3, 4, 5} (with cost 16), from
which we compute the index sets CS = S ∪ {11} and IS = {1, 2, 6, 7, 8, 9, 10}.

4. The ensuing relaxed CP is as follows:

 Observe that the coefficient of v10 in the normalization constraint is 2 because
the degree of incompatibility of �10 is �10 = 2 , i.e., two task subsets of the cur-
rent solution S need to be divided to make v10 compatible (see Zaghrouti et al.
2014). This coefficient is equal to 1 for all the other incompatible variables.

5. Solving this CP gives the optimal solution �3 = �5 = 2∕3 , v8 = v9 = v10 = 1∕3 ,
vj = 0 , j ∈ {1, 2, 6, 7} , with a cost of zCP = −13∕3 . Since (8, 9) ∈ FS , i.e., the
columns �8 and �9 are not disjoint, and v8v9 ≠ 0 , this solution does not yield an
integer direction and branching is required to solve the non-relaxed CP.

6. Imposing v8 = 0 as a first branching decision and re-optimizing the relaxed
CP gives the optimal solution �3 = �5 = 1∕2 , v6 = v7 = 1∕2 , vj = 0 ,
j ∈ {1, 2, 8, 9, 10} , with a cost of zCP = −1 , which induces an integer descent
direction � = (0, 0, 0,−1,−1, 1, 1, 0, 0, 0, 0)⊤ . This direction corresponds to replac-
ing the columns �3 and �5 in the current solution by the columns �6 and �7 ,
yielding a cost reduction of 2.

7. Updating the solution yields S = {4, 6, 7} , CS = � , and IS = {1, 2, 3, 5, 8, 9, 10, 11}

.
8. Since CS = � , the corresponding RP is trivial and the current solution cannot be

improved by considering only the compatible variables.

min
�CS

5x1 + 5x2 + 5x3 + 2x4 + 9x5 + 9x11

x1 + x5 = 1

x2 + x5 = 1

x3 + x11 = 1

x4 + x11 = 1

�CS
∈ {0, 1}6,

zCP = min
�,�

5v1 + 5v2 + 6v6 + 6v7 + 5v8 + 5v9 + 5v10 − 5�3 − 2�4 − 9�5

v1 + v6 + v8 + v10 − �5 = 0

v1 + v6 + v8 + v10 − �5 = 0

v2 + v6 + v8 + v9 − �5 = 0

v2 + v7 + v8 + v10 − �5 = 0

+ v7 + v8 + v9 − �3 = 0

+ v7 + v9 + v10 − �3 = 0

− �4 = 0

− �4 = 0

v1 + v2 + v6 + v7 + v8 + v9 + 2v10 = 1

� ≥ 0.

724 A. Tahir et al.

1 3

9. The relaxed CP associated with S is built (not shown here) and solved. Its
optimal solution is given by �6 = �7 = 2∕3 , v8 = v9 = v10 = 1∕3 , vj = 0 ,
j ∈ {1, 2, 3, 5, 11} , with a cost of zCP = −3 . However, this solution does not cor-
respond to an integer direction and imposing separately the branching decisions
v8 = 0 , v9 = 0 , and v10 = 0 indicates that there are no integer descent directions
(i.e., zCP ≥ 0 for all three decisions). Consequently, the algorithm stops with S as
an optimal solution.

4 Methodology

In this section, we start by describing the ICG algorithm before presenting an accel-
eration strategy. In the rest of the text, the words variable and column are used
interchangeably.

4.1 The ICG algorithm

The ICG algorithm is based on the three-level decomposition illustrated in Fig. 1.
The first two levels correspond to the RMP in a column generation algorithm except
that this RMP is an integer linear program, not a continuous linear program. The
RMP is decomposed into a RP and a CP, and solved using the ISUD algorithm. The
third level of the decomposition contains the column generation subproblem which
generates negative reduced cost columns that are added to the pool of columns avail-
able for the RMP.

In our tests, the subproblem can be separated into several subproblems, which are
SPPRCs defined on application-specific networks. In a SPPRC, resource constraints
are used to enforce path feasibility rules such as a maximum flying time per day for

Columns

Complementary
Problem (CP)

Reduced Problem
(RP)

Subproblem

Dual Variables

Pool of
Columns

RMP

Fig. 1 The three-level decomposition of the ICG algorithm

725

1 3

Integral column generation for the set partitioning problem

an aircraft pilot or a minimum working time before a break for a bus driver. Typi-
cally, there is one constrained resource for each rule handled by such constraints.
The subproblems are solved by a labeling algorithm. This algorithm represents a
partial path from the source node of the network to any node by a label, i.e., a multi-
dimensional vector with one component providing the (reduced) cost of the partial
path and one component for each resource indicating the amount of this resource
consumed along the path. It proceeds as follows (see Irnich and Desaulniers 2005
for details). Starting from an initial label at the source node, it extends labels using
resource extension functions in the network to generate partial paths. After each
extension, the resulting path is checked for feasibility, i.e., its label resource compo-
nents must fall within predefined resource windows. Labels corresponding to infea-
sible paths are discarded. Labels can also be eliminated if they are dominated by
other labels, i.e., if it can be proven that they cannot yield a Pareto-optimal path. The
label extension process continues until all labels have been extended or discarded.
Labels at the sink node(s) that have a negative cost can then be considered by the
RMP as discussed below.

A pseudo-code of the ICG algorithm is given in Algorithm 2. It starts by comput-
ing an initial primal solution and an initial dual solution. In Sect. 5, we will describe
how these solutions are computed for our test problems. It then initializes an itera-
tion counter r, a current upper bound � on the degree of incompatibility, and the
number consFail of consecutive iterations in which the cost improvement (compared
to the previous iteration) is not considered sufficient. As in the ISUD algorithm,
the ICG algorithm applies a multi-phase strategy when generating the columns.
In fact, the subproblem includes an additional resource constraint which imposes
that the degree of incompatibility of the feasible columns be less than or equal to
� . In the associated resource extension functions, the consumption of this resource
is increased by one each time that a new task j ∈ T is covered, the last task previ-
ously covered by the extended path is i ∈ T and i is not followed by j in the current
solution S. Note that this multi-phase strategy is independent of the one used in the
ISUD algorithm when solving the RMP (Steps 12 and 17).

726 A. Tahir et al.

1 3

The main loop (Steps 3–21) starts by solving the subproblem denoted SP(�r,�)
taking into account the current dual solution �r and the current limit on the degree
of incompatibility � . The negative reduced cost columns generated by the subprob-
lem, if any, are stored in set N′ . If no columns are generated, � is increased by one
and the subproblem is solved again. This process is repeated until finding negative
reduced cost columns or until � exceeds a predefined value maxDegree. In the latter
case, the algorithm stops and outputs (in Step 9) the current solution xr as the best
solution found. Note that, in practice, we try to generate a large number of columns
at each iteration. Given that a multi-phase strategy is used in ISUD when solving the
RMP, this large number of columns does not hinder the solution process.

When columns are found (N′ ≠ ∅), they are added to the pool of columns N avail-
able to the RMP. The RMP is then solved by the ISUD algorithm which returns the
current solution �r , its cost zr and a dual solution �r corresponding to this current
solution. This dual solution is computed as described in Sect. 3. In the ISUD algo-
rithm, a multi-phase strategy is applied and a relaxed CP [without constraints (20)]
is always solved, i.e., branching is never performed to obtain an integer solution.
In practice, the ISUD algorithm often terminates because the direction found when
solving the last relaxed CP is not integer.

If the cost of the solution returned by ISUD does not yield a sufficiently large
improvement compared to the cost achieved at the previous iteration, i.e., if
(zr−1−zr)

zr−1
< minImp , where minImp is a predefined parameter value, then a small-

727

1 3

Integral column generation for the set partitioning problem

sized mixed integer program, denoted MIP(�r) , is solved by a commercial MIP
solver in Step 14. This program is defined as the current RP augmented by all
columns in N that have a relatively small degree of incompatibility (e.g., smaller
than 7). Notice that solving this program can yield an improved solution only if
the ISUD algorithm stops with a non-integer direction in Step 12. Otherwise,
solving MIP(�r) is useless and can be omitted. If the computed solution �̄r of
MIP(�r) differs from the current solution �r , then �̄r becomes the current solution
and ISUD is applied again in Step 17 to try to improve this new solution consid-
ering all columns in N and not only a subset of it like in MIP(�r) . The cost
improvement realized in this iteration is again checked in Step 18. If this improve-
ment is deemed insufficient, the number of consecutive iterations where the algo-
rithm failed to yield a sufficiently large cost improvement is incremented by one,
as well as the upper bound on the degree of incompatibility � , before starting a
new iteration or ending the whole solution process if consFail becomes equal to
maxConsFail, a predefined parameter value. Otherwise, the number of consecu-
tive failures is reset to zero.

The ICG Algorithm 2 is heuristic for two reasons. First, the stopping criterion
may be too restrictive. The parameters maxDegree and maxConsFail should be set
to large unrestrictive values in an exact algorithm. Second, the disjunctive con-
straints (20) are always relaxed from the CP and solving it might not return an inte-
ger descent direction even if one exists. Consequently, in an exact algorithm, these
constraints should be considered by the algorithm solving the CP.

Note that the procedure used to compute a complete dual solution � is valid to
ensure the exactness of the ICG algorithm. Indeed, as shown by the next proposi-
tion, at least one variable xj has a negative reduced cost with respect to � if the cur-
rent solution is not optimal.

Proposition 1 Let � ∈ ℝ
m be a dual solution corresponding to a solution S with

cost
∑

j∈S cj. Let S′ be an improved solution (
∑

j∈S� cj <
∑

j∈S cj). Then, there exists at
least one variable xj, j ∈ S� ⧵ S, that has a negative reduced cost cj −

∑
i∈T aij�i with

respect to the dual solution �.

Proof (by contradiction). Assume that all variables xj , j ∈ S� ⧵ S , have a nonnega-
tive reduced cost. In this case, we have

Given that the sum of the columns in S′ ⧵ S is compatible with the columns in S ⧵ S′ ,
it ensues that

(13)cj ≥
∑
i∈T

aij�i, ∀j ∈ S� ⧵ S ⇒

∑
j∈S�⧵S

cj ≥
∑
i∈T

∑
j∈S�⧵S

aij�i

(14)cj =
∑
i∈T

aij�i, ∀j ∈ S ⧵ S� ⇒
∑
j∈S⧵S�

cj =
∑
i∈T

∑
j∈S⧵S�

aij�i.

(15)
∑
i∈T

∑
j∈S�⧵S

aij�i =
∑
i∈T

∑
j∈S⧵S�

aij�i.

728 A. Tahir et al.

1 3

From (13)–(15), we deduce that
∑

j∈S�⧵S cj ≥
∑

j∈S⧵S� cj , which contradicts the fact
that S′ is a better solution than S. Hence, there must exist a variable xj , j ∈ S� ⧵ S ,
with a negative reduced cost. ◻

Let us highlight the differences between the ICG algorithm and the standard
CG algorithm. The main one is that, in the ICG algorithm, the RMP is solved at
each iteration by ISUD to find an integer solution while, in the CG algorithm,
the RMP is a linear program that is solved by a linear programming solver. The
CG algorithm yields a lower bound and needs to be embedded in a branch-and-
cut framework to derive integer solutions. In both algorithms, the subproblem
generates negative reduced cost columns that have the potential to improve the
current RMP solution. To do so, it requires a complete dual solution to the RMP,
i.e., with a dual value for each task in T. Since decomposition is used to solve
the RMP in the ICG algorithm, such a dual solution is not directly available as
in the standard CG algorithm. It is rather computed by solving a linear system
of equations that exploits the current solution S. Finally, the proposed ICG algo-
rithm relies on two heuristic stopping criteria, while standard CG stops when no
more negative reduced cost columns can be generated.

The main advantage of the ICG algorithm is to benefit from the strengths of
the ISUD algorithm for solving the RMP, namely, (i) to exploit the RMP degen-
eracy in order to easily find integer descent directions and ii) to compute at
almost every iteration an improved solution even if the CP is not solved at opti-
mality at each iteration. This allows to compute a sequence of improving integer
solutions and stop the algorithm whenever the quality of the current solution is
satisfactory (assuming that a lower bound is previously computed to assess this
quality).

In the ICG algorithm, CG is applied to generate the variables of the SPP
model (1)–(3). Standard CG uses the dual solution of the current RMP to gener-
ate negative reduced cost variables that can improve the current objective value,
converging towards a lower bound. No effort is made to improve the current
upper bound on the optimal value of the SPP. The proposed ICG algorithm is
designed to do so. Indeed, it relies on a dual solution corresponding to the cur-
rent integer solution which favors the generation of columns that can improve
this integer solution.

Finally, note that the columns accumulated while solving the subproblem
with different dual solutions lead to an optimal solution even if these dual solu-
tions are not necessarily of good quality. It is well known that poor-quality dual
solutions have a negative impact on the convergence of standard CG algorithms.
Given that the ICG algorithm can handle a very large number of columns in the
RMP through the column pool and the multi-phase strategy, the quality of the
dual solution has less impact on the algorithm convergence when a large number
of columns is generated at each iteration. A possibility (not implemented) to fur-
ther restrict the impact of the dual solution quality would be to solve in parallel
several subproblems defined with different dual solutions.

729

1 3

Integral column generation for the set partitioning problem

4.2 An acceleration strategy

To speed up the solution process, we propose to generate whenever possible more
than one integer descent direction each time that the CP is solved in Step 3 of Algo-
rithm 1 when called from Steps 12 and 17 of Algorithm 2. Multiple directions can
easily be handled in the RP if they are orthogonal. Therefore, after finding a first
integer descent direction �1 defined according to (12), all variables �

�
 , � ∈ S , tak-

ing a positive value in the current solution of the CP is removed from the CP as
well as all variables vj , j ∈ IS , such that 𝜆

�
�

⊤

�
�j ≠ 0 for at least one � ∈ S . In this

way, any new solution to the CP gives a new direction that is orthogonal to �1 . The
updated CP is then solved. If it returns another integer descent direction �2 , further
variables are removed from the CP before solving it again, ensuring that only direc-
tions orthogonal to �1 and �2 can be generated. This process repeats until no integer
descent direction can be found. When all directions are found, the current integer
solution to the RP is updated before starting a new ISUD iteration. Generating mul-
tiple directions when solving a CP reduces the total number of ISUD iterations and,
therefore, the total time to compute the degree of incompatibility of the generated
columns and to build the CP at each iteration. Furthermore, given that variables are
removed from the CP when each direction is found, the updated CP can be solved
more rapidly. Computational results reported in the next section will show the effec-
tiveness of this strategy that we call the Multi-Direction in the CP (MDCP) strategy.

5 Computational results

In this section, we report computational results obtained by the ICG algorithm on
VCSP and CPP instances (Sects. 5.1, 5.2 , respectively). These two problems are
modeled as SPPs that are subject to high degeneracy. The ICG algorithm is com-
pared to two well-known dual-fractional heuristics (see, e.g., Joncour et al. 2010)
that are based on CG, namely, a diving heuristic (DH) and a restricted master heu-
ristic (RMH). DH is a branch-and-price heuristic that explores a single branch of
the search tree. At each node where solving the MP results in a fractional-valued
solution, it fixes to one the variable with the largest fractional value. The process
stops when the solution of the MP is integer. RMH consists of solving by column
generation the MP at the root node. Integrality requirements are then added on the
variables contained in the last RMP. This integer RMP is then solved by a com-
mercial MIP solver. It should be noted that DH and RMH do not guarantee find-
ing an integer solution. Indeed, as there is no backtrack in the search tree with DH,
the algorithm may end up with an infeasible problem at the bottom of the branch
explored. However, this situation did not occur in our computational experiments.
For RMH, the subset of columns generated in the root node may simply not contain
any feasible integer solution. This case was encountered for some of the large VCSP
instances.

Based on preliminary experiments, we set the parameter values of the ICG Algo-
rithm 2 as follows: minImp = 0.0025 , maxConsFail = 9 , and maxDegree = 7 . Fur-
thermore, the multi-phase strategy invoked in the ISUD Algorithm 1 executed the

730 A. Tahir et al.

1 3

sequence of phases k ∈ {1, 2,… , 5} , stopping thus before proving optimality. A sen-
sitivity analysis on the values of these parameters is conducted in Sect. 5.3.

All our tests were performed on a Linux machine equipped with four Intel Xeon
E3-1226 processors clocked at 3.3GHz. All CPs, RMPs and mixed integer programs
are solved by the IBM CPLEX commercial solver (version 12.4) using up to four
threads. For both VCSP and CPP, there are multiple column generation subproblems
that are SPPRCs. They are solved by dynamic programming using the Boost library,
version 1.54.

5.1 VCSP results

The VCSP is one of the important planning problems faced by transit companies. It
consists of assigning simultaneously buses to bus trips and drivers to tasks which are
defined by dividing each bus trip into segments linking consecutive possible driver
relief points. In fact, for each bus trip, there is one task for each segment it contains,
one task ensuring that a bus reaches the beginning of the trip and another ensuring
that a bus leaves after the end of the trip. Traditionally, for large-sized instances,
the problem has been tackled in two steps, assigning the buses first and the drivers
afterwards. Several exact and heuristic algorithms have been developed to solve dif-
ferent variants (one or several depots, homogeneous or heterogeneous fleet, various
driver schedule types, etc.) of the integrated problem (see Ibarra-Rojas et al. 2015).
We consider the single-depot, homogenous-fleet variant addressed by Haase et al.
(2001) who devised the first branch-and-price algorithm for the VCSP. We use their
model, except that we omit the non-set partitioning constraints which are necessary
to count the number of buses used. In the resulting SPP model, each variable is asso-
ciated with a feasible driver schedule that specifies the sequence of tasks performed
(driving along a trip segment, driving toward the beginning of a trip, or driving
away from the end of a trip). Given a solution composed of driver schedules, one
can easily retrieved optimal bus schedules in a post-processing step. To generate the
driver schedules, there is one SPPRC subproblem for each of the two driver sched-
ule types. The networks underlying these subproblems and their seven resources are
described in details in Haase et al. (2001).

The random instance generator of Haase et al. (2001) was used to generate the
test instances. The size of an instance (number of tasks) is defined by the number
of bus itineraries (B) and the number of relief points considered along each itiner-
ary (R). It is equal to B(R + 1) . For each pair (B, R), we generated three different
instances using different seed numbers. Notice that, for the same instance number,
the instances for a pair (B1,R1) and those for a pair (B2,R2) with B1 = B2 differ only
by the number of relief points considered. Given that the number of reliefs in the
middle of a bus trip tends to be minimized in an optimal solution, the optimal solu-
tions of these instances are often the same. Nevertheless, the model contains a dif-
ferent number of constraints and the solution process varies. The set of instances is
divided in two classes: small (800 tasks or less) and large (between 960 and 2000
tasks). Note that real-life instances typically include between 1000 and 2000 tasks,
but may involve up to 3000 tasks.

731

1 3

Integral column generation for the set partitioning problem

For these instances, the initial solution �0 was defined in Step 1 of the ICG Algo-
rithm 2 as an artificial one, where each task associated with a bus trip is covered by
an artificial column bearing a large cost. In the initial dual solution �0 , each dual
value associated with these tasks was then set to this large value divided by the num-
ber of tasks in the bus trip.

The computational results of some tests are reported in Tables 1 and 3 for the
small and the large VCSP instances, respectively. For these first tests, the ICG algo-
rithm did not use the MDCP strategy. In these tables, the first three columns describe
the instance, namely, the number of tasks it contains (Tasks), the pair (B, R) defining
it, and the instance number (No). Then, for each tested algorithm, they report the
total computational time in seconds, the optimality gap in percentage between the
cost of the best solution found and the linear relaxation optimal value, the number of
column generation iterations (Itr), the total number of columns generated (Col), and
the time spent solving the subproblems (SpT). For the RMH and ICG algorithms,
the total number of integer solutions found (IntS) is also indicated. This number
is not reported for DH because it is always equal to 1. Finally, the number of times
that a mixed integer program was solved in Step 14 of Algorithm 2 (Mip) and the
time (in seconds) spent solving these programs (MipT) are also specified for the
ICG algorithm. Note that the linear relaxation optimal values are only computed for
reporting the optimality gaps. The time required to compute them is not included in
the total time. Note also that, for ICG, the number of columns generated does not
include those that were added to the pool of columns but never considered in the RP
or the CP because their degree of incompatibility remained too high.

From Table 1, we observe that ICG finds the optimal solution for all instances
in faster computational times than the other two heuristics. For the largest of these
small instances, ICG can be as up to 7.3 times faster than DH and RMH. This is due
to the small number of iterations performed by ICG (at most 7) compared to DH
and the relatively large number of integer solutions found per iteration (on average,
close to 5). Given that solving the subproblems is quite time-consuming as shown
by the large proportion of the total computational time they take in DH and RMH,
reducing the number of iterations in ICG significantly reduces the time spent solv-
ing subproblems and, therefore, the total computational time. RMH and DH also
find an optimal solution for most instances. They fail to do so for 3 and 1 instances,
respectively. It, thus, seems that omitting the non-set partitioning constraints from
the VCSP model of Haase et al. (2001) makes the problem much easier to solve.
Nevertheless, we observe that, for the largest of these small instances, the compu-
tational time required by RMH may be quite large (almost up to one hour). Finally,
notice that, for these instances, ICG rarely needs to solve a mixed integer program to
get a larger improvement of the objective value at a given iteration. This is also the
case for the large VCSP instances as reported below.

One can remark that ICG uses much more columns than RMH and DH. To ver-
ify if this observation can explain the difference in the computational times, we
ran additional tests with RMH and DH, increasing the number of columns gener-
ated at each iteration. This increase was achieved by not applying the dominance
rule at the sink node of the networks and selecting a large number of the result-
ing columns based on their reduced cost. The results of these tests are reported

732 A. Tahir et al.

1 3

Ta
bl

e
1

 R
es

ul
ts

 fo
r t

he
 sm

al
l V

C
SP

 in
st

an
ce

s

†
A

ll
ga

ps
 a

re
 in

 p
er

ce
nt

ag
e;

 a
ll

tim
es

 a
re

 in
 se

co
nd

s

In
st

an
ce

R
M

H
D

H
IC

G

Ta
sk

s
(�

,
�
)

N
o.

Ti
m

e†
G

ap
†

Itr
.

C
ol

.
Sp

T
In

tS
Ti

m
e

G
ap

Itr
.

C
ol

.
Sp

T
Ti

m
e

G
ap

Itr
.

C
ol

.
Sp

T
In

tS
M

ip
M

ip
T

24
0

(4
0,

 5
)

1
0.

9
0.

0
12

21
71

0.
6

1
1.

0
0.

0
25

27
14

0.
8

0.
7

0.
0

6
99

84
0.

1
16

0
0.

0
2

0.
6

0.
0

16
13

96
0.

4
2

0.
7

0.
0

29
15

82
0.

6
0.

3
0.

0
5

75
83

0.
1

12
0

0.
0

3
1.

0
0.

0
10

13
89

0.
4

1
0.

8
0.

0
30

18
86

0.
7

0.
6

0.
0

6
88

06
0.

1
13

0
0.

0
32

0
(8

0,
 3

)
1

1.
2

0.
0

11
26

99
0.

9
1

3.
6

0.
0

70
47

66
2.

9
1.

1
0.

0
6

99
35

0.
2

29
0

0.
0

2
1.

1
0.

0
12

23
48

0.
7

1
1.

4
0.

0
32

26
58

1.
2

0.
7

0.
0

7
85

61
0.

2
25

0
0.

0
3

1.
4

0.
0

14
26

73
1.

1
1

3.
1

0.
0

58
42

84
2.

5
1.

2
0.

0
7

10
10

1
0.

3
39

0
0.

0
40

0
(4

0,
 9

)
1

6.
8

0.
0

12
48

27
4.

6
3

11
.5

0.
0

83
78

04
9.

9
4.

5
0.

0
6

35
25

0
1.

0
16

0
0.

0
2

5.
8

0.
0

16
37

98
3.

0
3

8.
5

0.
0

68
59

12
7.

0
2.

8
0.

0
5

24
03

2
0.

5
13

0
0.

0
3

30
.8

0.
0

14
32

29
3.

1
4

7.
3

0.
0

62
50

22
6.

3
3.

8
0.

0
5

27
71

0
0.

8
13

0
0.

0
48

0
(8

0,
 5

)
1

5.
9

0.
0

15
42

01
4.

7
1

13
.9

0.
0

87
75

45
11

.6
4.

5
0.

0
7

21
43

1
1.

0
28

0
0.

0
2

5.
2

0.
0

16
37

48
3.

9
3

11
.9

0.
0

77
64

21
10

.0
2.

6
0.

0
6

17
65

7
0.

6
29

0
0.

0
3

6.
9

0.
0

18
38

06
5.

0
2

11
.0

0.
0

66
55

27
9.

5
6.

1
0.

0
8

64
83

9
0.

7
40

1
0.

9
64

0
(8

0,
 7

)
1

16
.5

0.
0

17
62

04
13

.3
2

38
.8

0.
0

94
12

03
6

33
.6

14
.5

0.
0

6
33

82
4

2.
6

30
0

0.
0

2
15

.3
0.

0
20

53
14

11
.6

0
39

.3
0.

0
12

8
10

25
5

33
.2

9.
7

0.
0

6
37

87
1

1.
8

30
0

0.
0

3
38

.5
0.

0
20

62
34

15
.1

6
27

.5
0.

0
61

91
47

24
.2

10
.9

0.
0

6
43

89
9

2.
2

42
0

0.
0

72
0

(1
20

, 5
)

1
34

50
.5

0.
7

21
83

77
22

.3
5

58
.5

0.
0

11
4

15
91

8
46

.5
16

.8
0.

0
7

44
95

5
2.

6
63

0
0.

0
2

40
5.

9
1.

2
20

56
75

12
.1

4
39

.8
0.

0
10

2
10

46
1

33
.3

7.
4

0.
0

6
28

79
0

1.
3

40
0

0.
0

3
20

.9
0.

0
21

76
74

16
.2

1
45

.7
0.

0
11

4
12

67
1

38
.8

14
.4

0.
0

7
36

47
9

1.
7

62
0

0.
0

80
0

(8
0,

 9
)

1
36

1.
7

0.
4

18
74

70
27

.9
5

16
8.

2
0.

0
21

4
25

27
3

14
0.

1
25

.0
0.

0
7

56
14

3
5.

7
29

0
0.

0
2

40
.2

0.
0

22
79

72
28

.8
2

13
1.

0
0.

0
16

6
20

91
8

96
.1

20
.4

0.
0

6
47

68
2

4.
3

30
1

1.
2

3
69

4.
7

0.
0

19
80

79
32

.6
4

15
2.

9
0.

0
17

4
25

63
2

11
6.

4
20

.9
0.

0
6

65
41

7
3.

5
40

0
0.

0

733

1 3

Integral column generation for the set partitioning problem

in Table 2. They show that, when a larger number of columns is generated (on
average, the number of columns generated for DH is 1.2 times larger than the
number used by ICG), RMH and DH become slower, and thus ICG remains the
fastest algorithm. Notice that, in this case, an optimal solution can be found for
all instances by both RMH and DH. In the following, the results for RMH and
DH were obtained by generating a relatively small number of columns per itera-
tion (as for the results in Table 1).

For all the large VCSP instances, RMH was not able to find a feasible solution
within a 1-hour time limit. Therefore, we report no results for RMH in Table 3.
The results in this table confirm the superiority of ICG over DH. Indeed, one can
observe that ICG is always faster and can yield remarkable time reductions of up
to 97% for the largest tested instances (besides finding an optimal solution for all
tested instances). The number of iterations performed by ICG (at most 8) is neg-
ligible compared to that achieved by DH (between 123 and 990), indicating that
the large number of columns generated at each iteration is fully exploited by the
ISUD algorithm when solving the RMP. This shows that strategies which aim at
speeding up the ISUD algorithm and, in particular, the time required to solve the

Table 2 RMH and DH results for small VCSP instances when generating many columns

†All gaps are in percentage; all times are in seconds

Instance RMH DH

Tasks (�,�) No Time† Gap† Itr Col IntS Time Gap Itr Col

240 (40, 5) 1 2.6 0.0 9 4767 1 1.7 0.0 12 6131
2 0.6 0.0 10 5141 6 0.6 0.0 10 5141
3 1.2 0.0 6 3600 2 1.0 0.0 8 4664

320 (80, 3) 1 2.7 0.0 15 9000 1 2.8 0.0 15 9000
2 1.6 0.0 10 5713 1 2.8 0.0 15 7828
3 7.8 0.0 10 6000 2 4.7 0.0 14 8039

400 (40, 9) 1 242.7 0.0 15 9000 3 21.8 0.0 45 25210
2 48.4 0.0 17 9901 2 12.2 0.0 39 21240
3 6.4 0.0 15 8296 1 13.3 0.0 35 18391

480 (80, 5) 1 79.2 0.0 23 13470 1 30.8 0.0 51 28390
2 35.1 0.0 17 10200 2 17.5 0.0 38 21916
3 46.8 0.0 16 9600 2 27.8 0.0 46 26658

640 (80, 7) 1 4033.4 0.0 34 20400 3 143.2 0.0 135 77243
2 2077.7 0.0 31 18517 3 70.1 0.0 77 43927
3 4026.0 0.0 25 15000 5 82.1 0.0 77 42651

720 (120, 5) 1 54.5 0.0 40 23782 1 144.8 0.0 160 93565
2 990.8 0.0 34 20228 3 129.0 0.0 99 57308
3 4035.4 0.0 31 18600 3 123.0 0.0 111 60795

800 (80, 9) 1 3070.8 0.0 38 22800 1 363.3 0.0 159 90212
2 4051.2 0.0 38 22800 3 380.4 0.0 111 64339
3 4093.6 0.0 27 16200 2 249.3 0.0 109 64084

734 A. Tahir et al.

1 3

Ta
bl

e
3

 R
es

ul
ts

 fo
r t

he
 la

rg
e

V
C

SP
 in

st
an

ce
s

†
A

ll
ga

ps
 a

re
 in

 p
er

ce
nt

ag
e;

 a
ll

tim
es

 a
re

 in
 se

co
nd

s

In
st

an
ce

D
H

IC
G

Ta
sk

s
(�
,
�
)

N
o.

Ti
m

e†
G

ap
†

Itr
.

C
ol

.
Sp

T
Ti

m
e

G
ap

Itr
.

C
ol

.
Sp

T
In

tS
M

ip
M

ip
T

96
0

(1
60

, 5
)

1
15

0.
4

0.
0

15
8

23
97

8
12

9.
6

26
.6

0.
0

6
48

43
7

6.
4

92
0

0.
0

2
11

4.
5

0.
0

14
3

16
77

8
92

.6
24

.9
0.

0
7

50
74

0
7.

6
67

0
0.

0
3

11
0.

0
0.

0
12

3
18

96
4

95
.9

22
.9

0.
0

6
38

64
7

6.
8

75
0

0.
0

12
00

(2
00

, 5
)

1
34

7.
4

0.
0

22
0

34
39

7
30

4.
0

44
.7

0.
0

7
65

95
5

13
.7

10
3

0
0.

0
2

18
4.

7
0.

0
12

6
20

98
5

16
2.

3
52

.1
0.

0
8

19
04

31
10

.1
10

1
1

4.
4

3
24

2.
8

0.
0

18
3

27
34

4
21

2.
6

42
.0

0.
0

6
64

57
8

9.
5

10
5

0
0.

0
12

00
(1

20
, 9

)
1

10
63

.9
0.

0
41

1
73

73
6

78
4.

4
10

1.
4

0.
0

6
12

12
66

16
.9

65
0

0.
0

2
74

8.
6

0.
0

33
4

48
25

2
54

8.
1

49
.9

0.
0

7
26

44
12

10
.6

40
1

8.
5

3
10

15
.5

0.
0

35
4

53
99

2
59

1.
5

84
.0

0.
0

6
12

41
71

15
.0

58
0

0.
0

16
00

(1
60

, 9
)

1
23

30
.9

3.
5

41
9

76
46

3
10

75
.1

17
0.

6
0.

0
6

14
02

79
25

.8
89

0
0.

0
2

17
03

.1
0.

0
33

1
31

95
5

78
5.

5
15

0.
6

0.
0

7
12

09
79

28
.1

71
0

0.
0

3
28

31
.5

0.
0

46
7

57
71

9
13

06
.0

14
4.

2
0.

0
7

11
79

10
25

.8
75

0
0.

0
20

00
(2

00
, 9

)
1

10
08

1.
6

0.
0

96
8

29
64

99
46

50
.1

26
3.

8
0.

0
7

15
98

91
61

.1
10

7
0

0.
0

2
93

45
.0

0.
0

87
3

15
59

80
43

10
.3

29
5.

3
0.

0
7

53
99

11
55

.9
10

0
1

20
.5

3
91

69
.6

0.
0

99
0

19
20

90
50

04
.7

28
7.

2
0.

0
7

16
08

04
42

.9
11

2
1

18
.3

735

1 3

Integral column generation for the set partitioning problem

CP such as the MDCP strategy can be useful to increase the efficiency of ICG. To
support this assertion, we conducted another series of experiments that consisted
of solving the large VCSP instances with the ICG algorithm, but this time, apply-
ing the MDCP strategy. The results of these experiments are reported in Table 4.
The last column in this table specifies the relative gain in computational time
obtained by applying the MDCP strategy. We observe that the MDCP strategy
yields substantial time reductions varying between 14.5% and 47.3%.

5.2 CPP results

The CPP consists of finding least-cost crew pairings such that each flight of a given
schedule is actively covered by a single pairing. A pairing is a sequence of flights
performed by a crew that starts and ends at the crew base. For some of these flights,
the crew may be deadheading, i.e., the crew members travel as passengers. To be
feasible, a pairing must satisfy a variety of safety regulations and labor agreement
rules. The CPP is usually modeled as a SPP (each variable is associated with a fea-
sible pairing) and solved by branch-and-price (see Desaulniers et al. 1997), where
the pairings are generated by solving subproblems that can be modeled as SPPRCs.
More details on the subproblems can be found in Saddoune et al. (2013).

For our tests, we used five real-life CPP instances (without additional con-
straints) obtained from the datasets proposed by Kasirzadeh et al. (2017). Each
instance is defined for a single aircraft fleet (D94, D95, 757, 319, or 320) and

Table 4 Results of ICG with the MDCP strategy on the large VCSP instances

†All gaps and gains are in percentage; all times are in seconds

Instance ICG

Tasks (�,�) No. Time† Gap† Itr. Col. SpT IntS Mip MipT Gain†

960 (160, 5) 1 14.5 0.0 6 51040 3.7 92 0 0.0 45.5
2 17.9 0.0 8 146408 5.1 49 1 3.0 28.1
3 14.1 0.0 7 42520 3.4 74 0 0.0 38.4

1200 (200, 5) 1 38.2 0.0 8 77915 8.3 105 0 0.0 14.5
2 31.8 0.0 7 143415 8.8 106 1 3.4 39.0
3 26.4 0.0 6 62009 6.9 111 0 0.0 37.1

1200 (120, 9) 1 53.4 0.0 6 107706 13.4 66 0 0.0 47.3
2 28.2 0.0 6 83243 9.2 41 0 0.0 43.5
3 60.1 0.0 6 124428 15.9 60 0 0.0 28.5

1600 (160, 9) 1 99.7 0.0 6 160164 31.1 92 0 0.0 41.6
2 92.8 0.0 7 123600 25.5 72 0 0.0 38.4
3 95.7 0.0 7 134650 27.6 77 0 0.0 33.6

2000 (200, 9) 1 216.7 0.0 8 540545 57.5 110 1 24.8 17.9
2 201.4 0.0 7 500187 58.5 100 1 20.3 31.8
3 170.5 0.0 7 197081 44.6 117 0 0.0 40.6

736 A. Tahir et al.

1 3

spans a single week. To model the cost function and the pairing feasibility rules,
nine resources are required in the SPPRC subproblems. For the ICG Algorithm 2,
an artificial solution was built as an initial solution �0 in Step 1: each task is cov-
ered by a single-task column that bears a very large cost. In the initial dual solu-
tion �0 , each dual value was set to this large cost.

Table 5 provides the computational results obtained on the CPP instances by
the three heuristics, namely, RMH, DH, and ICG with the MDCP strategy. Its
first two columns identify the instance by its name and the number of tasks it
contains. Then, for each heuristic, it reports the same information as in Table 1.

Notice that, as for the VCSP instances, the number of column generation itera-
tions executed by ICG is very small compared to DH. This can be explained by
the large number of columns generated in each iteration. These columns are effi-
ciently handled in the RMP through the multi-phase strategy used by the ISUD
algorithm. Furthermore, the multi-phase strategy applied at the subproblem level
is useful to generate columns with a low incompatibility degree, yielding a low-
density coefficient matrix in the CP.

One remarkable characteristic of the ICG algorithm is the large number of dif-
ferent integer solutions found throughout the solution process (more than 10 per
iteration for the largest instances). This feature is highly desirable in the industry
because it allows to stop the solution process at any time after finding a first satis-
factory solution. To determine the quality of a solution, one may compute a lower
bound in parallel. For the tested instances, this requires less than 50% of the time
required by the ICG algorithm.

Finally, we observe that the number of times that a mixed integer program was
solved in Step 14 of Algorithm 2 is small and the time devoted to solving these
programs varied between 15% and 44% of the total time. Despite the large pro-
portion of time that it may consume, this step has proven to be useful to acceler-
ate the solution process.

Figure 2 depicts the cost of the current solution in function of the computa-
tional time for instance 320. Each point corresponds to a solution found dur-
ing the solution process. The blue circles represent those obtained by the ISUD
algorithm while the red plus signs represent those produced by solving a mixed
integer program. We can observe a rapid cost decrease at the beginning of the
solution process. Like traditional column generation methods, the cost decrease
becomes slow towards the end. Notice that the solutions obtained by solving a
mixed integer program (especially the first one) can sometimes yield a large cost
decrease. We would like to point out that, for all instances, the algorithm suc-
ceeded to find a first feasible integer solution within the first few iterations of the
solution process.

To conclude this section, we report in Fig. 3 the number of pairings selected in
the final solution that have already been generated at each iteration of the solution
process for both DH and ICG. We observe that much more selected pairings are
generated per iteration with ICG. This is not surprising given that ICG generates
much more columns per iteration than DH, but also that the dual solutions used to
generate columns in ICG correspond to the current integer solution and increase the
chances of generating columns that can be part of better solutions.

737

1 3

Integral column generation for the set partitioning problem

Ta
bl

e
5

 R
es

ul
ts

 fo
r t

he
 C

PP
 in

st
an

ce
s

†
A

ll
ga

ps
 a

re
 in

 p
er

ce
nt

ag
e;

 a
ll

tim
es

 a
re

 in
 se

co
nd

s

In
st

an
ce

R
M

H
D

H
IC

G

N
o.

Ta
sk

s
Ti

m
e†

G
ap

†
Itr

.
C

ol
.

Sp
T

In
tS

Ti
m

e
G

ap
Itr

.
C

ol
.

Sp
T

Ti
m

e
G

ap
Itr

.
C

ol
.

Sp
T

In
tS

M
ip

M
ip

T

94
42

4
15

.0
0.

05
22

17
11

0
7.

4
1

35
.3

0.
20

76
22

21
7

32
.6

17
.2

0.
14

12
32

04
4

2.
9

21
4

2.
8

D
95

12
55

32
84

.9
1.

13
56

10
08

25
48

1.
8

9
54

11
.4

0.
21

91
4

31
39

89
48

75
.2

21
64

.3
0.

22
20

34
12

46
22

9.
1

28
0

8
81

1.
0

75
7

12
90

41
09

.7
0.

03
74

74
22

1
51

9.
3

4
18

01
9.

0
0.

02
12

03
59

74
69

60
31

.3
21

74
.8

0.
01

15
39

64
80

13
5.

6
21

2
1

32
0.

1
31

9
12

93
60

48
.0

0.
69

97
81

33
5

68
4.

5
8

29
43

.9
0.

29
12

68
30

66
33

23
95

.8
12

18
.2

0.
18

23
28

30
27

16
7.

4
27

8
9

53
0.

5
32

0
17

40
30

66
.6

0.
10

11
0

96
18

8
93

6.
0

5
46

30
.1

0.
10

12
69

36
70

25
37

01
.4

38
06

.4
0.

05
20

32
88

27
19

4.
0

31
3

6
98

7.
2

738 A. Tahir et al.

1 3

5.3 Sensitivity analysis of the ICG parameters

In this section, we provide computational results to assess the sensitivity of the ICG
algorithm with respect to the values assigned to three parameters minImp, maxCons-
Fail, and maxDegree. Recall that, for the results reported above, they were set as fol-
lows: minImp = 0.0025 , maxConsFail = 9 , and maxDegree = 7 . We ran new experi-
ments on the CPP instances where the value of a single parameter was changed at
a time. For each parameter, we tested two new values: one smaller and one larger.
These new values are minImp ∈ {0.0015, 0.003} , maxConsFail ∈ {7, 11} , and
maxDegree ∈ {5, 9} . The results of these tests are reported in Table 6. For each of

Fig. 2 Current solution cost in function of the time (instance 320)

Fig. 3 Number of pairings from the final solution already generated at each iteration (instance 320)

739

1 3

Integral column generation for the set partitioning problem

the six new parameter settings and each instance, we report in the top part of this
table the total computational time and the variation (in percentage) with respect to
the results obtained with the default setting. In the bottom part, we report the opti-
mality gaps and the corresponding variations. The last column provides the average
of the variations over all instances.

From these results, we observe that, in general, the computational times are rela-
tively stable. Parameter maxConsFail seems to have the largest impact on the computa-
tional time, which makes sense. Indeed, increasing its value increases the total number
of iterations performed by the ICG algorithm unless the maximum degree of incom-
patibility is reached earlier, which is rarely the case. As for the gaps, we can also say
that they are quite stable with relatively small variations for the instances 94, D95 and
319. Large variations are observed for instances 757 and 320 because the correspond-
ing gaps are very small (0.01 and 0.05, respectively). Not surprisingly, the best gaps
are obtained when increasing the value of maxConsFail, yielding a larger number of

Table 6 Sensitivity analysis results for the CPP instances

†All gaps and variations are in percentage; all times are in seconds

(������,�����������,���������) Instance Average

94 D95 757 319 320

(0.0025, 9, 5) Time† 20 2700 1948 1260 2942
Var.† 17.6 24.8 − 10.4 3.4 − 22.7 2.5

(0.0025, 9, 9) Time 22 2631 2015 1642 3719
Var. 29.4 21.6 − 7.4 34.8 − 2.3 15.2

(0.0025, 7, 7) Time 15 2069 1736 1173 3482
Var. − 11.8 − 4.4 − 20.2 − 3.7 − 8.5 − 9.7

(0.0025, 11, 7) Time 25 3226 2207 1473 4042
Var. 47.1 49.1 1.5 20.9 6.2 24.9

(0.0015, 9, 7) Time 21 2417 2024 1435 3995
Var. 23.5 11.7 − 6.9 17.8 5.0 10.2

(0.003, 9, 7) Time 26 2226 1992 1112 3324
Var. 52.9 2.9 − 8.4 − 8.7 − 12.7 5.2

(0.0025, 9, 5) Gap† 0.14 0.25 0.02 0.17 0.07
Var. 0.0 13.6 100.0 − 5.6 40.0 29.6

(0.0025, 9, 9) Gap 0.14 0.22 0.02 0.19 0.05
Var. 0.0 0.0 100.0 5.6 0.0 21.1

(0.0025, 7, 7) Gap 0.17 0.23 0.03 0.19 0.08
Var. 21.4 4.5 200.0 5.6 60.0 58.3

(0.0025, 11, 7) Gap 0.14 0.2 0.01 0.16 0.04
Var. 0.0 − 9.1 0.0 − 11.1 − 20.0 − 8.0

(0.0015, 9, 7) Gap 0.14 0.23 0.02 0.19 0.07
Var. 0.0 4.5 100.0 5.6 40.0 30.0

(0.003, 9, 7) Gap 0.14 0.22 0.01 0.16 0.05
Var. 0.0 0.0 0.0 − 11.1 0.0 − 2.2

740 A. Tahir et al.

1 3

iterations and more chance to find better solutions. Setting minImp to 0.003 produces a
better gap for instance 319 and the same gap for the others. This may be counterintui-
tive because increasing the value of this parameter increases the number of iterations
that are considered as a failure and may thus reduce the overall number of iterations
performed. On the other hand, this parameter also controls when a mixed integer pro-
gram is solved at Step 14 of the ICG algorithm. When its value is larger, such a pro-
gram is solved more often which may help finding a better solution.

6 Conclusion

In this paper, we introduced the ICG algorithm which combines column generation and
the recent ISUD algorithm for solving SPPs involving a very large number of variables.
This primal algorithm generates a sequence of integer solutions with decreasing costs
until reaching an optimal or near-optimal solution. It benefits from generating a large
number of columns at each column generation iteration and exploits at each iteration a
dual solution that corresponds to the current integer solution and favors the generation
of columns that can be part of improved integer solutions. Our computational experi-
ments on VCSP and CPP instances involving up to 2000 set partitioning constraints
showed that ICG outperforms two popular column generation heuristics, producing for
almost all instances better quality solutions in less computational times. For the largest
VCSP instances, ICG can yield time reductions as large as 97%.

Several research avenues can be explored in the future. One of them consists of
speeding up the proposed ICG algorithm by considering better columns in the CP,
either by influencing the generation of the columns from the subproblems or by bet-
ter selecting them from the pool of columns. Machine learning tools may be helpful to
achieve this goal. Another important research direction is to generalize the ICG algo-
rithm for solving SPPs with additional constraints.

Appendix A: compatibility matrices

Variable substitution can be used to reduce the density of the constraint coefficient
matrix of the CP (7)–(11). A first reformulation, proposed by Zaghrouti et al. (2014),
is obtained by isolating each �l variable in the last constraint (8) in which it appears
before substituting it in the rest of the formulation. This substitution yields the follow-
ing reformulation of the CP:

(16)min
v
(�⊤

IS
− �

⊤

S
(�1

S
)−1�1

IS
)⊤�

(17)s.t.: (�2

S
(�1

S
)−1�1

IS
− �

2

IS
)� = 0

(18)
∑
j∈IS

wjvj = 1

741

1 3

Integral column generation for the set partitioning problem

where, for U ⊂ N , �U is the subvector of the cost coefficient vector in (7) associ-
ated with the variables vj , j ∈ U . Constraint (17) can be written in the form
(�1�IS

)⊤� = 0 , where �1 is a compatibility matrix according to the following
definition.

Definition 3 A matrix � is said to be a compatibility matrix if and only if ��j = 0
for all compatible columns �j , j ∈ CS , and ��j ≠ 0 for all incompatible columns
�j , j ∈ IS.

There exists an infinite number of compatibility matrices that can be used to
define the CP. The choice of this matrix may have a significant impact on the com-
putational times. We have chosen to use the matrix �2 introduced by Bouarab et al.
(2017) that is specialized for vehicle routing and crew-scheduling problems. In these
problems, each column is associated with a route or a crew schedule that performs
a subset of tasks in a given sequence. The �2 matrix allows to measure the devia-
tion of the incompatible columns with respect to the task sequences defined by the
columns in solution S. This matrix is such that, if an incompatible column �j , j ∈ IS ,
does not respect the task ordering in a sequence, �2�j contains a component equal
to -1 each time that �j covers a task but not its predecessor and a component equal
to 1 each time that �j covers a task but not its successor (see Bouarab et al. 2017 for
details).

Appendix B: multi‑phase strategy

Inspired from that developed by Elhallaoui et al. (2010) in the context of DCA,
Zaghrouti et al. (2014) have elaborated a multi-phase acceleration strategy for ISUD
which also aims at reducing the density of the CP constraint coefficient matrix. Each
time that the CP needs to be solved, a sequence of phases can be invoked. Each
phase is defined by a parameter k (a positive integer) which restricts the CP to a
subset Ik

S
⊆ IS of the incompatible columns such that Ik

S
⊆ I�

S
 if k < � . The sequence

of phases is predetermined and corresponds to an increasing sequence k1, k2,… , kp
of values of k with kp = ∞ (for instance, k = 2, 3, 4, 5, 6,∞), where phase kp = ∞
means that I∞

S
= IS . Starting in phase k1 , the CP restricted to the subset Ik1

S
 is solved.

If its optimal value is negative, the process stops and the computed linear combina-
tion of incompatible columns is returned. Otherwise, the next phase is invoked. The
process repeats until obtaining a negative optimal value for the CP or reaching phase
kp = ∞.

The definition of a subset Ik
S
 used in phase k is based on a distance between an

incompatible column and the vector subspace generated by the columns in the solu-
tion. This distance, called the degree of incompatibility, is defined as follows.

(19)vj ≥ 0,∀j ∈ IS

(20)vj1vj2 = 0,∀(j1, j2) ∈ FS,

742 A. Tahir et al.

1 3

Definition 4 The degree of incompatibility �j of an incompatible column �j ,
j ∈ IS , is given by �j = ||��j|| , where � is a compatibility matrix (as defined in
Appendix A).

In phase k of the multi-phase strategy for solving the CP, the index subset of
the incompatible columns considered in the CP is defined by Ik

S
= {j ∈ IS | �j ≤ k} .

Bouarab et al. (2017) has proven the following result.

Proposition 2 In phase k, each incompatible column �j, j ∈ Ik
S
, has at most k + 1

non-zero coefficients in the constraint coefficient matrix of the CP if �2 is used as
the compatibility matrix.

Consequently, for phases with a low k value, the constraint coefficient matrix has
a low density. This helps to reduce the computational effort for solving the CP and
also to produce integer directions without branching. Finally, it may allow to con-
sider a very large number of incompatible columns in the CP if many are available.

Appendix C: computation of a complete dual solution

To compute a complete dual solution � =
(
�i

)
i∈T

∈ ℝ
m to the MP, we use as in

Bouarab et al. (2017) the dual variable values �̂ ∈ ℝ
m−|S| associated with con-

straints (17) that were computed when solving the last relaxed CP (16)–(19) (i.e.,
without constraints (20)). Recall that, for each column index j ∈ S , there are |Tj| − 1
constraints (17) in the CP, where Tj is the subset of tasks covered by �j . These con-
straints are associated with the first |Tj| − 1 tasks of Tj . We denote by 𝜋q

j
 , for all j ∈ S

and q ∈ {1,… , |Tj| − 1} , the component of �̂ associated with the task q covered by
�j . Similarly, we denote by �q

j
 , for all j ∈ S and q ∈ {1,… , |Tj|} , the component of

� associated with the task q covered by �j . To determine values for the �q

j
 variables,

we solve the following linear system of equations:

which can be decomposed by column index j ∈ S . Conditions (21) ensure that the
columns in the current solution of the SPP have a zero reduced cost and all com-
patible columns in the RP have, thus, a nonnegative reduced cost. Furthermore,
conditions (22) ensure that the least value among all weighted reduced costs
c̄j∕wj = (cj − �⊤�j)∕wj , j ∈ IS , of the incompatible columns considered in the CP

(21)
|Tj|∑
i=1

�
i
j
= cj, ∀j ∈ S,

(22)
q∑
i=1

𝛼
i
j
= 𝜋

q

j
, ∀j ∈ S, q ∈ {1,… , |Tj| − 1}

743

1 3

Integral column generation for the set partitioning problem

is maximized. A dual solution � ∈ ℝ
m that satisfies conditions (21) is said to cor-

respond to the current solution S.
Finally, observe that, if (�̂, �̂�) ∈ ℝ

m−|S| ×ℝ is an optimal dual solution to
the relaxed CP (16)–(19), then (�, �̂�) ∈ ℝ

m ×ℝ forms an optimal solution to
the relaxed CP (7)–(10) when � is computed by solving the equation system
(21)–(22). In these solutions, �̂� is the dual value associated with constraints (9)
and (18), which is equal to the optimal value of the relaxed CP.

References

Balas E, Padberg MW (1972) On the set-covering problem. Oper Res 20(6):1152–1161
Balas E, Padberg M (1975) On the set-covering problem: II. An algorithm for set partitioning. Oper

Res 23(1):74–90
Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MW, Vance PH (1998) Branch-and-price: col-

umn generation for solving huge integer programs. Oper Res 46(3):316–329
Bouarab H, Elhallaoui I, Metrane A, Soumis F (2017) Dynamic constraint and variable aggregation in

column generation. Eur J Oper Res 262(3):835–850
Dantzig GB, Wolfe P (1960) Decomposition principle for linear programs. Oper Res 8(1):101–111
Desaulniers G, Desrosiers J, Dumas Y, Marc S, Rioux B, Solomon MM, Soumis F (1997) Crew pair-

ing at Air France. Eur J Oper Res 97(2):245–259
Elhallaoui I, Metrane A, Desaulniers G, Soumis F (2011) An improved primal simplex algorithm for

degenerate linear programs. INFORMS J Comput 23(4):569–577
Elhallaoui I, Villeneuve D, Soumis F, Desaulniers G (2005) Dynamic aggregation of set-partitioning

constraints in column generation. Oper Res 53(4):632–645
Elhallaoui I, Metrane A, Soumis F, Desaulniers G (2010) Multi-phase dynamic constraint aggregation

for set partitioning type problems. Math Program 123(2):345–370
Haase K, Desaulniers G, Desrosiers J (2001) Simultaneous vehicle and crew scheduling in urban mass

transit systems. Trans Sci 35(3):286–303
Ibarra-Rojas O, Delgado F, Giesen R, Muñoz J (2015) Planning, operation, and control of bus trans-

port systems: a literature review. Transp Res Part B 77(1):38–75
Irnich S, Desaulniers G (2005) Shortest path problems with resource constraints. In: Desaulniers G,

Desrosiers J, Solomon MM (eds) Column generation, chapter 2. Springer, New York, pp 33–65
Joncour C, Michel S, Sadykov R, Vanderbeck F (2010) Column generation based primal heuristics.

Electron Not Discrete Math 36:695–702
Kasirzadeh A, Saddoune M, Soumis F (2017) Airline crew scheduling: models, algorithms, and data

sets. Eur J Transp Logist 6(2):111–137
Lübbecke ME, Desrosiers J (2005) Selected topics in column generation. Oper Res 53(6):1007–1023
Rönnberg E, Larsson T (2009) Column generation in the integral simplex method. Eur J Oper Res

192(1):333–342
Rönnberg E, Larsson T (2014) All-integer column generation for set partitioning: basic principles and

extensions. Eur J Oper Res 233(3):529–538
Rosat S, Elhallaoui I, Soumis F, Chakour D (2016) Influence of the normalization constraint on the

integral simplex using decomposition. Discrete Appl Math 217(1):53–70
Rosat S, Elhallaoui I, Soumis F, Lodi A (2017) Integral simplex using decomposition with primal cut-

ting planes. Math Program. https ://doi.org/10.1007/s1010 7-017-1123-x
Saddoune M, Desaulniers G, Soumis F (2013) Aircrew pairings with possible repetitions of the same

flight number. Comput Oper Res 40(3):805–814
Saxena A (2003) Set-partitioning via integral simplex method. Carnegie Mellon University, Pittsburgh
Thompson GL (2002) An integral simplex algorithm for solving combinatorial optimization prob-

lems. Comput Optim Appl 22(3):351–367
Trubin VA (1969) On a method of solution of integer linear programming problems of a special kind.

Sov Math Doklady 10:1544–1546
Vanderbeck F (2005) Implementing mixed integer column generation. In: Desaulniers G, Desrosiers J,

Solomon MM (eds) Column generation, chapter 12. Springer, New York, pp 331–358

https://doi.org/10.1007/s10107-017-1123-x

744 A. Tahir et al.

1 3

Zaghrouti A, Soumis F, El Hallaoui I (2014) Integral simplex using decomposition for the set partitioning
problem. Oper Res 62(2):435–449

Zaghrouti A, Soumis F, El Hallaoui I (2018) Improving set partitioning problem solutions by zooming
around an improving direction. Ann Oper Res. https ://doi.org/10.1007/s1047 9-018-2868-1

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.1007/s10479-018-2868-1

	Integral column generation for the set partitioning problem
	Abstract
	1 Introduction
	2 Literature review
	2.1 Branch-and-price algorithms
	2.2 Primal algorithms
	2.2.1 Without decomposition
	2.2.2 With decomposition

	3 The ISUD algorithm
	3.1 Description of the ISUD algorithm
	3.2 A small example

	4 Methodology
	4.1 The ICG algorithm
	4.2 An acceleration strategy

	5 Computational results
	5.1 VCSP results
	5.2 CPP results
	5.3 Sensitivity analysis of the ICG parameters

	6 Conclusion
	References

