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Dynamic Programming and Strong Bounds
for the 0-1 Knapsack Problem

Silvano Martello • David Pisinger • Paolo Toth
DEIS, University of Bologna, Viale Risorgimento 2, Bologna, Italy

DIKU, University of Copenhagen, Univ.parken 1, Copenhagen, Denmark
DEIS, University of Bologna, Viale Risorgimento 2, Bologna, Italy

Two new algorithms recently proved to outperform all previous methods for the exact
solution of the 0-1 Knapsack Problem. This paper presents a combination of such

approaches, where, in addition, valid inequalities are generated and surrogate relaxed, and a
new initial core problem is adopted. The algorithm is able to solve all classical test instances,
with up to 10,000 variables, in less than 0.2 seconds on a HP9000-735/99 computer. The C
language implementation of the algorithm is available on the internet.
(Knapsack Problem; Dynamic Programming; Branch-and-Bound; Surrogate Relaxation)

1. Introduction
We consider the classical 0-1 Knapsack Problem (KP)
where a subset of n items has to be packed into a
knapsack of capacity c. Each item j has a profit p j and
a weight w j, and the problem is to maximize the profit
sum of the chosen items without exceeding the capac-
ity c. Thus, we have the integer linear programming
(ILP) model:

maximize z 5 O
j51

n

pjxj

subject to O
j51

n

wjxj # c

xj [ $0, 1%, j [ $1, . . . , n%

(1)

where x j takes the value 1 iff item j is packed. Without
loss of generality, all coefficients p j, w j and c are
assumed to be positive integers. To avoid trivial cases
we assume that w j # c for all j 5 1, . . . , n and that
¥ j51

n w j . c.
This NP-hard problem has important managerial

applications, especially in the cutting and packing
area and in loading contexts, and it frequently arises

as a subproblem in the solution of more complex
optimization problems. As a consequence, it has
aroused great interest during the last two decades,
and several effective algorithms have emerged for its
solution (see Martello and Toth (1990) for a compre-
hensive survey).

As a state of the art, we can mention the following.
Instances where a loose correlation, or no correlation
at all, exists among the profit and weight of each item
(weakly correlated and uncorrelated instances) can be
easily solved to optimality even for large values of n,
while strongly correlated instances, as well as instances
involving very large profit and weight values, may be
very difficult. Much effort has been made recently to
solve the latter category of instances. Martello and
Toth (1997) presented a new branch-and-bound
scheme where additional cardinality constraints are
generated from extended covers and relaxed in a
Lagrangian way. This approach seems to be efficient
to close the gap between the LP and ILP optimum, but
the bounds are relatively expensive to derive. Pisinger
(1997), on the other hand, used simple LP bounds in
the dynamic programming enumeration, but, due to a
new method of initializing and expanding the core
problem, he was able to limit the enumeration consid-
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erably. Pisinger (1996) also proposed a new approach
for closing the gap between the LP and ILP, which is
extremely efficient for strongly correlated instances
but cannot solve general knapsack problems.

In this paper we investigate a combination of the
above approaches and introduce new upper bounds
obtained from the surrogate relaxation of cardinality
constraints, as well as a new way to generate an initial
core. Other hybrid algorithms for knapsack and sub-
set-sum problems have been presented by Martello
and Toth (1984) and Plateau and Elkihel (1985).

A general framework of the new algorithm is given
in §2, while the detailed description of its components
is presented in §§3–5. Extensive computational exper-
iments are presented and discussed in §6. The C
language implementation of the algorithm is avail-
able on the Internet at http://www.diku.dk/˜
pisinger/codes.html.

In the following, given an array q (q [ { p, w, x}),
we sometimes use, for the sake of brevity, the notation
Q(k) 5 ¥ j51

k q j.

2. General Outline of the
Algorithm

The LP relaxation of (1) can be solved by the greedy
algorithm. Assume that the items are ordered by non-
increasing profit-to-weight ratios p j/w j, and fill the
knapsack until the first item which does not fit is
found. The decision variable corresponding to this
break item, b,

b 5 min$h : W~h! . c% (2)

is set to x b 5 (c 2 W(b 2 1))/w b, while all items
before b are chosen ( x j 5 1, for j 5 1, . . . , b 2 1) and
no item after b is chosen ( x j 5 0 for j 5 b 1 1, . . . ,
n). The corresponding objective value, rounded down
to the closest integer, is known as the Dantzig upper
bound U D 5 P(b 2 1) 1 (c 2 W(b 2 1)) p b/w b,
while P(b 2 1) is the value of a feasible solution,
known as the break solution.

Balas and Zemel (1980) presented an effective algo-
rithm for large sized easy knapsack problems, which
determines the break item (and hence the Dantzig
solution) in O(n) time, and restricts the enumeration
to a small subset C of items having profit-to-weight

ratios close to that of the break item (the core problem).
Our initial core, instead, contains items whose profit-
to-weight ratio is not related, in general, to that of the
break item. The core is enumerated through dynamic
programming, introducing new items when needed.

The basic recursion (for which the reader is referred
to algorithm minknap in Pisinger (1997)) has O(nc)
time complexity and generates, at most, 2c undomi-
nated states. It is well suited for solving easy prob-
lems, so its main structure is unchanged until difficult
instances are met. Chvátal (1980) has considered a
family of algorithms classified according to the use of
dominance relations, rudimentary divisibility proper-
ties, or bounding rules. Difficult instances can be
constructed depending on how many of the three
techniques are used in an algorithm. We use all three
techniques in order to obtain a very tight model and
characterize difficult instances by the fact that the
number of dynamic programming states grows be-
yond given threshold values. Our overall approach is
outlined below. Steps 1, 3 and 4 are discussed in detail
in the following sections.

1. We start the dynamic programming recursion
with a core different from the one used by Pisinger
(1997) (see §3), which is likely to produce a well-filled
knapsack.

2. If the number of states grows beyond a given
value M 1, we derive the greatest common divisor d of
the weights: if d Þ 1, we decrease the capacity to c
5 dc/d. We compute d in O(n log max{w j}) time
through Euclid’s algorithm.

3. If the number of states exceeds a given value M 2

. M 1, we derive a minimum or maximum cardinality
constraint, surrogate relax it with the original weight
constraint, and solve the relaxed problem to optimal-
ity by means of the same knapsack algorithm. This
yields a good upper bound and, in many cases, even
an optimal solution to the original problem (see §4).
This approach is interesting, since we transform a
difficult problem into an easier one which has the
same structure but can be solved in reasonable time.
The solution of the transformed problem yields
enough information about the original problem to
considerably speed up the solution process.

4. If the number of states exceeds a given value M 3
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. M 2, we try to improve the current lower bound by
pairing dynamic programming states with items out-
side the core (see §5). This frequently gives a lower
bound equal to the upper bound.

5. If the previous attempts fail, we have good upper
and lower bounds. The algorithm continues as the
minknap algorithm (Pisinger 1997), but with upper
and lower bounds better than those of minknap, thus
speeding up the solution process.

The values of M 1, M 2, and M 3 have experimentally
been set to 1000, 2000, and 10000, respectively. How-
ever these values are not critical: Easy instances (or
instances which become easy after scaling) are usually
solved far before the M 1 (or M 2) limit is reached, while
for difficult instances the number of preliminar itera-
tions is inessential.

The break item b is found through partial sorting in
O(n) time, using the technique by Pisinger (1997). The
algorithm also returns some partially sorted intervals
which can be used later for expanding the core with-
out complete sorting of the items.

3. The Initial Core
Recently Pisinger (1998) showed that solving the clas-
sical core problem (Balas and Zemel 1980, Martello
and Toth 1988, 1990) can require, in some specific
situations, very high solution times due to degenera-
tion: If the item weights in the core are close to each
other, it is very difficult to obtain a well filled knap-
sack. For the strongly correlated instances, a core of
450 items is often necessary to find an optimal solu-
tion, while uncorrelated and weakly correlated in-
stances can be solved with a core of size 30. Difficult
knapsack instances are frequently characterized by
optimal solutions having a number of chosen items
very close to b. For example, as observed by Pisinger
(1996), an optimal solution to any strongly correlated
instance includes exactly b 2 1 items. Hence we
construct an initial core by first selecting items {b, b
2 1}, and adding items which fit well together,
allowing a good knapsack filling with a number of
items close to b.

The first two additional items, g and g9, are found
by using the forward and backward greedy algo-
rithms from Pisinger (1995): g is the item of highest

profit which can be added to the break solution once
item b 2 1 has been removed, while g9 is the item of
lowest profit which has to be removed from the break
solution so that item b can be added.

In order to handle other difficult instances, where an
optimal solution consists of b items, two more items, b

and b9, obtained through variants of the above heu-
ristics, are inserted into the core: b is the item of
highest profit which can be added to the break solu-
tion, while b9 is the item of lowest profit which has to
be removed from the break solution so that items b
and b 1 1 can be added.

We complete the initial core with the two items r

and r9 having the smallest and largest weight, in order
to ensure some variation in the weights. The eight or
less items of the resulting core C (note that some of the
additional items could not exist) are sorted according
to nonincreasing profit-to-weight ratios, and the dy-
namic programming enumeration is performed on C,
by assuming that x j 5 1 (resp. x j 5 0) for each item j
¸ C that precedes (resp. follows) b in the profit-to-
weight ordering. The initial lower bound z is set to the
highest profit of a feasible state, and the upper bound
U to the Dantzig bound U D.

A relevant difference between our core and that
used by Pisinger (1997) is that the latter is initialized to
{b, b 2 1} and consists of consecutive items [s, s
1 1, . . . , b, . . . , t 2 1, t] (with respect to the
profit-to-weight ordering), while C generally contains
nonconsecutive items. The original dynamic program-
ming recursion is modified accordingly.

4. Bounds from Cardinality
When the LP solution is far from the ILP solution it
may be useful to add some additional constraints
derived from considerations on the minimum or max-
imum cardinality of an optimal solution. Such con-
straints do not exclude any integer solution, but they
tighten the LP model so that the LP solution comes
closer to the ILP solution. Cardinality bounds as
presented by Martello and Toth (1997) are derived as
follows: assume the items are ordered by non-decreas-
ing weight, and let k 5 min{h : W(h) . c} 2 1. Then
a maximum cardinality constraint of the form
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O
j51

n

xj # k (3)

can be added to problem (1) without excluding any
feasible solution.

However, adding a constraint which is not violated
in the LP solution does not tighten the formulation,
thus we add a maximum cardinality constraint only if
k 5 b 2 1. In addition, if an optimal solution to the
problem given by (1) with the capacity constraint
replaced by (3) (easily obtained by taking the k items
of highest profit, breaking ties by lowest weight)
satisfies the capacity constraint, then this solution is
also optimal for (1).

In a similar way we can define a minimum cardinality
constraint (see Martello and Toth 1997). Assume that
the current lower bound is given by z and that the
items are ordered according to non-increasing profit.
We set k 5 max{h : P(h) # z} 1 1, and thus have the
constraint

O
j51

n

xj $ k, (4)

for any solution with objective value larger than z.
As before, there is no reason to add this constraint to
(1) if it is not violated, thus we will only use it when
k 5 b. In addition, if no feasible solution to (1)
satisfies (4) (i.e., if the sum of the k smallest weights
exceeds c) then we know that the solution produc-
ing z is optimal.

Adding constraint (3) or (4) to our model leads to a
two-constraint knapsack problem which may be diffi-
cult to solve. Thus we surrogate relax the cardinality
constraint with the original weight constraint using
surrogate multiplier values S and 1, respectively. For
the maximum (resp. minimum) cardinality constraint
we use S $ 0 (resp. S # 0). In both cases the
relaxation leads to the KP (1) with capacity constraint
replaced by

subject to O
j51

n

~wj 1 S!xj # c 1 Sk. (5)

Let SKP denote the resulting problem, and LSKP its

LP relaxation. A negative multiplier value S can result
in a nonpositive weight. However, for each item j of
the relaxed problem with nonpositive weight, we can
set x j 5 1 and increase the capacity by |w j|.

We are of course interested in the surrogate multi-
plier value which leads to the best upper bound for
(1). The optimal surrogate multiplier for SKP could be
determined, in nonpolynomial time, through the
method of Freville and Plateau (1993). In the next
section we show that, for the LP relaxation LSKP, an
optimal surrogate multiplier value can be found in
O(n 2) time, due to the monotonicity of the left-hand
side of the cardinality constraint as a function of S.

4.1. Binary Search for the Multiplier Value
We will show that an optimal multiplier value of
LSKP can be derived through binary search in a way
similar to that proposed by Martello and Toth (1997)
for the Lagrangian relaxation of the cardinality con-
straints. We describe the resulting methodology for
the case of maximum cardinality. A similar approach
can be easily derived for the case of minimum cardi-
nality. Let x(S) be an optimal solution to LSKP for a
given multiplier value S $ 0, and let G(S)
5 ¥ j51

n x j(S). Assume that the items have been sorted
according to nonincreasing p j/(w j 1 S) values, break-
ing ties by decreasing w j values, so that G(S) is
uniquely defined at breakpoints. We show that G(S) is
a monotonous function.

Theorem 1. G(S) is monotonically nonincreasing
when S increases.

Proof. We will show that if S increases and two
items change place in the profit-to-weight ordering,
then the item with larger weight moves to the front.
Consider two items r and s, and two values S9, S0
(with S9 , S0), such that p r/(w r 1 S9) $ p s/(w s 1 S9)
and p r/(w r 1 S0) # p s/(w s 1 S0). By subtracting
( p r(w s 1 S9) $ p s(w r 1 S9)) from ( p r(w s 1 S0)
# p s(w r 1 S0)), we get p r(S0 2 S9) # p s(S0 2 S9);
hence p r # p s. By observing that an item s having a
higher profit and a lower weight than an item r will
always precede r in the profit-to-weight sorting (for
any nonnegative value of S), we also see that w r # w s,
since otherwise r and s would violate the given
conditions. It follows that r and s satisfy p r # p s and
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w r # w s, from which we can conclude that, as S
increases, in the sequence sorted according to nonin-
creasing p j/(w j 1 S) ratios, the items with larger
weights move to the first positions. Hence G(S) never
increases with S. h

Thus an optimal multiplier value S* (i.e., from
complementary slackness, the one for which G(S*)
5 k) can be determined through binary search: At
each iteration the current value of S is increased if G(S)
. k, or decreased if G(S) , k. The procedure can be
accelerated as follows. Given the current S value,
assume that the items are sorted according to nonin-
creasing p j/(w j 1 S) ratios and let b(S) be the
corresponding break item. We first consider the case
G(S) . k: a higher value S9 giving the same solution
as S (i.e., requiring no search for a new break item), is
given by the maximum value for which: (i) no item
currently preceding b(S) moves to the right of b(S); (ii)
no item currently following b(S) moves to the left of
b(S). From the first part of the proof of Theorem 1 we
know that condition (i) (resp. (ii)) holds if p j $ p b(S)

(resp. p j # p b(S)). Thus

S9 5 minHpjwb~S! 2 pb~S!wj

pb~S! 2 pj
: ~j , b~S! and pj , pb~S!!

or ~j . b~S! and pj . pb~S!!J (6)

If instead we obtain G(S) , k, a similar argument
leads to a smaller S9 producing the same solution as S.
The result is given by (6) with “min” replaced by
“max”, and conditions “j , b(S)”, “j . b(S)” inter-
changed.

Theorem 2. Let U(S*) be the value of the final solution
x(S*). Then x(S*) gives an optimal solution to the LP
relaxation of (1), (3), and the resulting upper bound
U(S*) dominates the Dantzig upper bound U D.

Proof. The solution x(S*) satisfies ¥ j51
n (w j

1 S*) x j(S*) # c 1 S*k. Note that G(S*) 5 k. Hence
¥ j51

n w jx j(S*) # c and ¥ j51
n x j(S*) # k. It follows that

x(S*) satisfies the relaxed constraints, hence it is
optimal for the LP relaxation of (1), (3). In addition,
since x(S*) is feasible for the LP relaxation of (1), the
corresponding upper bound dominates U D. h

From (6) we know that the number of distinct

multiplier values to be considered is bounded by
n(n 2 1): each resulting problem is solvable in O(n)
time, so a straightforward computation of U(S*) can
be done in O(n 3) time. A theoretically faster method
could perform the binary search over the n(n 2 1)
possible multiplier values, by determining, at each
iteration, the median of the current subset: It is easily
seen that the resulting time complexity would be
O(n 2). We have used a different polynomial algo-
rithm, for which the computational experiments
showed a much better average performance, although
its complexity is bounded in the logarithm of the
coefficients.

There are at most n(n 2 1) distinct multiplier values
S, each defined by a pair of items (i, j) through S
5 ( p jw i 2 p iw j)/( p i 2 p j). Computational experi-
ments however showed that the objective value of
LSKP as a function of S has a wide interval of
multiplier values for which U(S*) is obtained, thus in
practice only integer values of S need be considered. It
is easily seen that the largest value of S we need to
consider is S max 5 p maxw max 2 1 where p max 5
max j51, . . . ,np j and w max 5 max j51, . . . ,nw j.

Thus, starting with S 1 5 0 and S 2 5 S max, we
repeatedly derive S9 5 (S 1 1 S 2)/ 2: if G(S9) . k we
set S 1 5 S9, and if G(S9) , k we set S 2 5 S9. This
binary search is continued until S 1 5 S 2 or G(S9) 5 k.
Since for each value of S9 the resulting problem can be
solved in O(n) time, we obtain an algorithm running
in O(n log(S max)) 5 O(n log max{ p max, w max}).

4.2. Improvement of the Upper Bound
In some difficult instances it is not possible to impose
an additional constraint from minimum or maximum
cardinality (i.e., we obtain k $ b for the maximum
cardinality and k , b for the minimum cardinality). In
these situations we force the cardinality by partition-
ing the feasible solution set into two subsets. This is
obtained by generating two subproblems P 1 and P 2,
given by the original problem (1) with the additional
constraint ¥ j51

n x j # b 2 1 (resp. ¥ j51
n x j $ b), and

determining the corresponding upper bounds U 1, U 2.
A valid upper bound for (1) is then U 5 max{U 1, U 2}.

Having found an optimal S* value for LSKP, if
U(S*) is greater than the incumbent solution value, we
solve SKP with S 5 S*. This is convenient for two
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reasons: (i) the bound given by the resulting integer
solution x# (S*) may be better than the bound U(S*)
given by the LP solution x(S*); (ii) x# (S*) may be
feasible (hence optimal) for the original problem (1).
Computational experiments have shown that cases (i)
and (ii) occur frequently. As seen in §4.1, we consider
integer multiplier values, thus obtaining an ordinary
KP. Hence the resulting instance is solved through a
special call to our overall algorithm (see §2): in this
case we set M 2 5 1`, so as to avoid loops.

5. Improvement of the Lower
Bound

The upper bounds of the previous section are gener-
ally very good and usually equal the optimal solution
value. However, for highly degenerate problems in
which the items in the core C have weights very close
to each other, it may be difficult to obtain a good lower
bound in acceptable time. Indeed for such instances,
when the residual capacity of the break solution is
large, it is very difficult to obtain a solution filling the
knapsack.

In such situations an improved lower bound can be
obtained by finding optimal pairs consisting of an
item and one of the states generated by the dynamic
programming recursion. Let p i and m i be the total
profit and weight of state i. For each item j ¸ C that
precedes b in the profit-to-weight ordering, we find
the state i with largest m i (hence also largest p i, since
dominated states are removed) such that m i # c 1 w j:
the corresponding objective value is z j 5 p i 2 p j.
Similarly, for each item j ¸ C that follows b, we find
the state i with the largest m i such that m i # c 2 w j:
the corresponding objective value is z j 5 p i 1 p j. The
best z j ( j ¸ C) is then selected for the lower bound
improvement.

Since the states are ordered by increasing weights
(and profits), we can find the required m i through
binary search, in O(log M 3) time, where (see §2) M 3

# 2c is the number of states. This gives a total time of
O(n log M 3) for the lower bound improvement.

6. Computational Experiments
The algorithm described in the previous sections was
coded in C language, and we refer to it as combo. We

examine its behavior for different problem sizes, in-
stance types, and data ranges. Nine types of randomly
generated data instances from the literature were
considered. Each type but the last one was tested with
two data ranges: R 5 1000, R 5 10,000 (smaller R
values produced very easy instances). The instance
types are:

• Uncorrelated: w j and p j uniformly random in
[1, R].

• Weakly correlated: w j uniformly random in [1, R],
p j uniformly random in [w j 2 R/10, w j 1 R/10] so
that p j $ 1.

• Strongly correlated: w j uniformly random in [1, R],
p j 5 w j 1 R/10.

• Inverse strongly correlated: p j uniformly random in
[1, R], w j 5 p j 1 R/10.

• Almost strongly correlated: w j uniformly random in
[1, R], p j uniformly random in [w j 1 R/10 2 R/500,
w j 1 R/10 1 R/500].

• Subset-sum: w j uniformly random in [1, R], p j

5 w j.
• Even-odd subset-sum: w j uniformly random in [1,

R] but even, p j 5 w j, c odd.
• Even-odd strongly correlated: w j uniformly random

in [1, R] but even, p j 5 w j 1 R/10, c odd.
• Uncorrelated with similar weights: w j uniformly

random in [105, 105 1 100], p j uniformly random in [1,
1000].
For each instance type, data range and value of n
(ranging from 50 to 10,000), we generated 100 in-
stances, with c 5 (h/101) W(n) for instance number
h. In the even-odd instances, the capacity was how-
ever rounded up to the nearest odd number. All tests
were run on a HP9000-735/99, and a time limit of five
hours was put on each series of 100 instances.

Tables 1 to 4 compare the average solution times of
algorithms mt2 (Martello and Toth 1990), minknap
(Pisinger 1997), mth (Martello and Toth 1997) and
combo. The oldest of the codes, mt2, is not able to
solve the “hard” instances, but it performs well for
uncorrelated, weakly correlated and subset-sum in-
stances. The minknap algorithm has an overall stable
behavior due to the pseudo-polynomial time bound,
but mth can in most cases solve the instances faster
due to the better upper bounds. For the even-odd
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instances minknap is able to solve reasonably large
problems where mth can only solve tiny instances.
The combined approach in combo is however clearly
superior to the previous approaches, being able to
solve all the instances with average times smaller than
1
8 seconds.

6.1. A Closer Study of combo
Dynamic programming algorithms often demand
much memory. Table 5 shows the maximum number
of states needed by the combo algorithm: it never
generates more than 140,000 states, using less than 2
Mb of memory. There are three reasons for this
agreeable behavior: i) the dynamic programming re-
cursion starts in the middle of the instance (see Pis-
inger 1997), so it does not need enumerate all items; ii)

a forward dynamic programming recursion is used, so
a large amount of dominated states can be fathomed;
iii) in many cases the bounds make it possible to
terminate the enumeration with a small core. The
average core size is given in Table 6. For most in-
stances the enumerated core is less than 50 items,
although some difficult problems may demand a core
of size up to 500 items.

Finally Table 7 shows how many surrogate relax-
ations were solved in order to derive a better upper
bound. With the chosen value of M 2 (M 2 5 2000),
very few of the easy instances require the relaxed
problem to be solved, which is desirable since the
continuous bound is sufficient for solving uncorre-
lated and weakly correlated instances. For the difficult

Table 2 Average Solution Times in Seconds for minknap, HP9000-735/99

n\ R

Uncorrelated
Weakly

Correlated
Strongly

Correlated
Inverse

Strongly Corr.
Almost

Strongly Corr. Subset-Sum
Even-Odd

Subset-Sum
Even-Odd
Knapsack Uncorrelated

Sim. Weights
105103 104 103 104 103 104 103 104 103 104 103 104 103 104 103 104

50 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.03 0.09 1.19 0.00 0.01 0.00
100 0.00 0.00 0.00 0.00 0.02 0.17 0.01 0.18 0.01 0.03 0.00 0.03 0.46 6.11 0.01 0.09 0.00
200 0.00 0.00 0.00 0.00 0.05 0.82 0.04 0.65 0.04 0.15 0.00 0.03 2.14 26.67 0.03 0.38 0.01
500 0.00 0.00 0.00 0.00 0.20 2.52 0.19 2.80 0.16 0.88 0.00 0.03 15.42 – 0.09 1.12 0.03

1000 0.00 0.00 0.00 0.01 0.48 8.30 0.45 7.59 0.37 3.18 0.00 0.03 65.08 – 0.24 3.65 0.10
2000 0.00 0.00 0.00 0.01 0.96 13.17 1.09 14.16 0.72 8.57 0.00 0.03 – – 0.54 6.02 0.35
5000 0.00 0.01 0.01 0.02 3.73 54.11 3.20 54.66 1.63 26.57 0.01 0.04 – – 1.51 25.72 1.32

10000 0.01 0.01 0.01 0.03 8.18 115.41 6.57 122.84 1.83 48.33 0.01 0.04 – – 4.11 60.82 1.57

Table 1 Average Solution Times in Seconds for mt2, HP9000-735/99

n\ R

Uncorrelated
Weakly

Correlated
Strongly

Correlated

Inverse
Strongly

Corr.
Almost

Strongly Corr. Subset-Sum

Even-Odd
Subset-

Sum
Even-Odd
Knapsack Uncorrelated

Sim. Weights
105103 104 103 104 103 104 103 104 103 104 103 104 103 104 103 104

50 0.00 0.00 0.00 0.00 0.06 0.04 0.01 0.02 0.03 0.03 0.00 0.01 – – 0.07 0.04 0.02
100 0.00 0.00 0.00 0.00 26.26 24.78 4.44 – 5.90 16.02 0.00 0.01 – – 28.28 30.13 3.28
200 0.00 0.00 0.00 0.00 – – – – – – 0.00 0.02 – – – – –
500 0.00 0.00 0.01 0.01 – – – – – – 0.00 0.02 – – – – –

1000 0.00 0.01 0.01 0.02 – – – – – – 0.00 0.02 – – – – –
2000 0.01 0.01 0.01 0.04 – – – – – – 0.00 0.02 – – – – –
5000 0.01 0.02 0.01 0.08 – – – – – – 0.01 0.02 – – – – –

10000 0.02 0.05 0.02 0.13 – – – – – – 0.01 0.03 – – – – –
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instance types, nearly all the instances benefit from the
better bounds. Additional experiments showed that
the SKP solution is an optimal solution to the original
KP in 80–95% of the (large sized) almost strongly
correlated instances, while for the other instances only
a couple of the relaxed solutions had the right cardi-
nality.

6.2. Classes of Hard Problems
The combo algorithm solves all classes of instances
from the KP literature, so we have tried to identify
instance types which cannot be handled so easily.
Chvátal (1980) showed that very difficult instances can
be constructed by using very large weights. However,

in practical applications one always has a bound on
the sizes, if not for other reasons, because of the
word-length of an integer. Thus we tried instances
which are difficult to solve even with weights in a
limited range. If nothing else is stated, the capacity c
was chosen as previously:

• Avis subset-sum (see Chvátal 1980: here we use
weights of magnitude O(n2)). We have pj 5 wj 5 n(n 1 1)
1 j, c 5 n(n 1 1)(n 2 1)/2 1 n(n 2 1)/2. No subset of
items meets the capacity constraint with equality, and no
common divisor larger than one exists. The order of the
items was randomly permuted to obtain 100 “different”
instances.

Table 4 Average Solution Times in Seconds for combo, HP9000-735/99

n\ R

Uncorrelated
Weakly

Correlated
Strongly

Correlated

Inverse
Strongly

Corr.

Almost
Strongly

Corr. Subset-Sum
Even-Odd

Subset-Sum
Even-Odd
Knapsack Uncorrelated

Sim. Weights
105103 104 103 104 103 104 103 104 103 104 103 104 103 104 103 104

50 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.03 0.01 0.01 0.00 0.01 0.00
100 0.00 0.00 0.00 0.00 0.01 0.03 0.01 0.03 0.01 0.02 0.00 0.02 0.01 0.01 0.01 0.02 0.00
200 0.00 0.00 0.00 0.00 0.02 0.04 0.02 0.04 0.02 0.04 0.00 0.03 0.01 0.01 0.02 0.03 0.01
500 0.00 0.00 0.00 0.00 0.02 0.05 0.02 0.04 0.02 0.02 0.00 0.03 0.00 0.02 0.03 0.03 0.03

1000 0.00 0.00 0.00 0.01 0.02 0.06 0.03 0.05 0.03 0.02 0.00 0.02 0.01 0.01 0.04 0.03 0.06
2000 0.00 0.00 0.00 0.01 0.03 0.04 0.04 0.05 0.03 0.02 0.00 0.03 0.01 0.02 0.05 0.03 0.07
5000 0.01 0.01 0.01 0.03 0.04 0.05 0.04 0.06 0.04 0.04 0.00 0.03 0.01 0.02 0.07 0.04 0.12

10000 0.01 0.02 0.01 0.04 0.08 0.07 0.08 0.09 0.07 0.08 0.01 0.02 0.02 0.02 0.10 0.08 0.12

Table 3 Average Solution Times in Seconds for mth, HP9000-735/99

n\ R

Uncorrelated
Weakly

Correlated
Strongly

Correlated

Inverse
Strongly

Corr.

Almost
Strongly

Corr. Subset-Sum
Even-Odd

Subset-Sum
Even-Odd
Knapsack Uncorrelated

Sim. Weights
105103 104 103 104 103 104 103 104 103 104 103 104 103 104 103 104

50 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.03 0.00 0.01 4.13 – 0.02 0.08 0.00
100 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.01 0.03 0.14 0.00 0.01 – – 0.75 5.19 0.01
200 0.00 0.00 0.00 0.00 0.04 0.05 0.03 0.04 0.06 0.36 0.00 0.02 – – – – 0.03
500 0.00 0.00 0.01 0.01 0.09 0.09 0.08 0.09 0.10 0.75 0.00 0.01 – – – – 0.06

1000 0.01 0.01 0.01 0.02 0.15 0.23 0.14 0.16 0.19 1.01 0.00 0.02 – – – – 0.11
2000 0.01 0.02 0.01 0.03 0.17 0.38 0.18 0.23 0.31 0.81 0.00 0.01 – – – – 0.18
5000 0.02 0.04 0.02 0.06 0.17 1.75 0.33 0.66 2.55 1.46 0.00 0.02 – – – – 0.24

10000 0.04 0.08 0.02 0.10 0.28 5.89 0.48 1.64 – – 0.01 0.68 – – – – 0.35
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• Avis knapsack: this is a generalization to knapsack:
we have p j uniformly random in [1, 1000], w j 5 n(n
1 1) 1 j, c 5 n(n 1 1)(n 2 1)/ 2 1 n(n 2 1)/ 2.

• Collapsing knapsack: Pferschy et al. (1997) showed
that the collapsing knapsack problem can be trans-
formed to an equivalent KP which, however, is diffi-
cult to solve, as it contains many additional constraints
“hidden” in the weight inequality. We generate the
instances as in Fayard and Plateau (1994) with profits,
weights and capacities uniformly random in [1, 300],
[1, 1000] and [1, 10000], respectively. Each instance is
then transformed to a KP as shown in Pferschy et al.
(1997).

• Bounded strongly correlated: Pisinger and Toth
(1998) showed that when a bounded knapsack prob-

lem (where x j [ {0, 1} is replaced by x j [ {0, 1, . . . ,
m j}) is transformed to a KP, the cardinality constraints
loose their effect. Thus we generate bounded instances
with w j uniformly random in [1, 1000] and p j 5 w j

1 100. The bounds m j are uniformly random in [1,
10], and we transform the instance to a KP using the
technique described in Martello and Toth (1990), until
n items are present.

• No small weight: the unbounded knapsack prob-
lem becomes difficult when there are no small weights
(see Pisinger and Toth 1998): thus we generate w j

uniformly random in [500, 1000] and p j 5 w j 1 a,
with a uniformly random in [2R/10, 1R/10] such
that p j $ 1.
The average solution times of 100 instances are given

Table 6 Average Core Size for combo

n\ R

Uncorrelated
Weakly

Correlated
Strongly

Correlated

Inverse
Strongly

Corr.

Almost
Strongly

Corr. Subset-Sum
Even-Odd

Subset-Sum
Even-Odd
Knapsack Uncorrelated

Sim. Weights
105103 104 103 104 103 104 103 104 103 104 103 104 103 104 103 104

50 11 10 17 18 26 23 26 23 28 25 12 15 18 16 26 24 23
100 12 13 20 22 37 23 35 24 42 38 11 15 19 15 45 25 50
200 15 16 25 25 55 23 51 24 55 38 11 14 17 14 73 24 90
500 19 20 26 31 58 21 62 22 49 31 10 14 12 13 111 25 200

1000 20 24 25 34 65 24 92 25 52 25 9 13 12 13 151 27 263
2000 23 27 23 36 107 24 120 29 52 26 9 13 12 12 190 30 291
5000 23 30 17 39 118 26 124 27 39 20 9 12 12 12 303 33 451

10000 22 33 15 39 183 29 193 35 35 18 9 10 12 11 296 40 270

Table 5 Maximum Number of States (in Thousands) for combo

n\ R

Uncorrelated
Weakly

Correlated
Strongly

Correlated

Inverse
Strongly

Corr.

Almost
Strongly

Corr. Subset-Sum
Even-Odd

Subset-Sum
Even-Odd
Knapsack Uncorrelated

Sim. Weights
105103 104 103 104 103 104 103 104 103 104 103 104 103 104 103 104

50 0 0 0 0 4 27 3 38 3 6 6 39 2 25 2 22 0
100 0 0 0 0 7 41 5 40 7 10 6 39 3 24 3 26 0
200 0 0 1 1 7 41 8 42 5 16 7 40 2 26 5 29 1
500 0 1 1 2 15 90 18 40 15 12 5 39 2 24 5 44 2

1000 0 1 2 3 8 136 20 39 21 6 5 38 3 23 3 27 2
2000 1 2 2 5 6 39 20 35 13 6 5 40 2 25 3 24 3
5000 3 3 4 10 3 26 2 35 5 5 0 39 2 24 2 18 2

10000 2 4 5 17 2 23 2 37 9 9 0 33 2 5 2 11 2
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in Table 8. The Avis subset-sum instances are solved
up to n 5 200, while specialized algorithms can solve
instances of size up to n 5 1000 (Pisinger and Toth
1998): the performance of combo is not particularly
bad, although the algorithm cannot benefit from the
improvement of bounds nor from rudimentary divis-
ibility. It is however interesting to see that the knap-
sack counterpart is easy, since several items and states
can be fathomed by dominance and reduction. The
collapsing knapsack instances could only be generated
up to n 5 200 on the present computer, and combo
was able to solve them in reasonable time: the solution
times are more or less the same as those reported by
Pferschy et al. (1997), indicating that the better bounds
of combo do not accelerate the solution process. Also
for the instances obtained by transforming bounded

knapsack problems, the cardinality constraints lose
their effect: combo solves the instances in 10 seconds
while similar KP instances are solved 100 times faster,
indicating that specialized algorithms for the bounded
version should be developed in order to fully exploit
the cardinality bounds. Finally, the instances with
no small weight turn out to be extremely easy for
combo.1

1 The authors thank the EC Network DIMANET for supporting this
research by Fellowship No. ERBCHRXCT-94 0429. They also thank
MURST and CNR, Italy, and are grateful to two anonymous referees
for helpful comments that considerably improved the presentation.
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