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Abstract
We propose branch-cut-and-price algorithms for the classic bin packing problem
and also for the following related problems: vector packing, variable sized bin
packing, and variable sized bin packing with optional items. The algorithms are
defined as models for VRPSolver, a generic solver for vehicle routing problems. In
that way, a simple parameterization enables the use of several branch-cut-and-price
advanced elements: automatic stabilization by smoothing, limited-memory rank-1
cuts, enumeration, hierarchical strong branching, and limited discrepancy search div-
ing heuristics. As an original theoretical contribution, we prove that the branching
over accumulated resource consumption (Gélinas et al, Ann Oper Res 61(1):91–
109, 1995) that does not increase the difficulty of the pricing subproblem is sufficient
for those bin packing models. Extensive computational results on instances from the
literature show that the VRPSolver models have a performance that is very robust
over all those problems, being often superior to the existing exact algorithms on the
hardest instances. Several instances could be solved to optimality for the first time.
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1 Introduction

Bin packing problems are among the most classic combinatorial optimization prob-
lems, being discussed since the 1930s [22]. The problems addressed in this paper can
be defined as follows:

– Bin packing problem (BPP) Let I = {1, . . . , I} be a set of I items and assume
an unlimited quantity of identical bins with integer positive capacity Q. Each
i ∈ I has an integer positive weight wi ≤ Q. The goal is finding a packing using
the minimum number of bins, such that the total weight of the items in a bin does
not exceed its capacity.

– Vector packing problem (VPP) Let I = {1, . . . , I} be a set of items and D a
set of dimensions. Assume an unlimited quantity of identical bins with integer
positive weight capacities Qd , d ∈ D. Each i ∈ I has integer non-negative
weights wd

i ≤ Qd , d ∈ D. The goal is to pack all items into the minimum
possible number of bins, such that, for each dimension, the total weight of the
items in a bin does not exceed its capacity.

– Variable sized bin packing problem (VSBPP) Let I = {1, . . . , I} be a set of I
items and K = {1, . . . ,K} a set of K bin types. There are uk bins of type k ∈ K

available, each one having positive integer capacity Qk and positive integer cost
ck . Each i ∈ I has integer positive weight wi ≤ Qmax = maxk∈K Qk . The goal
is to pack all items into a least costly set of bins, considering the availability of
each bin type and such that the total weight of the items in a bin does not exceed
its capacity.

– Variable sized bin packing problem with optional items (VSBPPOI) Same as
before, except that each item i ∈ I is associated to a positive integer penalty pi

for not packing it. The goal is to find a packing minimizing the costs of the used
bins plus the penalties for the non-packed items.

There is a vast literature on those problems, specially for the classic BPP. A com-
prehensive survey on exact methods for BPP, including an original comparative
computational study, was published in 2016 by Delorme et al. [11]. After that, other
exact algorithms for BPP were proposed in [10, 42]. Recent exact algorithms for VPP
were presented in [6, 19, 43]. The best exact algorithms for VSBPP are those in [1,
4, 17, 23]. The VSBPPOI was less studied, and the best exact algorithms for it were
presented in [4].

Big advances in the exact solution of vehicle routing problems (VRPs) by branch-
cut-and-price (BCP) algorithms have been accomplished in recent years, as surveyed
in [9]. A milestone was certainly the branch-cut-and-price (BCP) algorithm of [24]
that could solve capacitated VRP (CVRP) instances with up to 360 customers, a
large improvement upon the previous record of 150 customers. That BCP exploits
many algorithmic elements introduced by several authors, combining and enhancing
them. Improvements of the same magnitude were later obtained for several other
variants, like VRP with time windows (VRPTW) [25] and heterogeneous fleet VRP
(HFVRP) [28]. Unhappily, designing and coding each one of those complex and
sophisticated BCPs have been a highly demanding task, measured on several work-
months of a skilled team. VRPSolver [31] is a software that contains a state-of-the-art
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BCP algorithm for a very generic model that encompasses most VRP variants found
in the literature. Algorithms for particular problems are obtained by defining certain
elements in the generic model (using a Julia language interface), in the so-called
specific problem VRPSolver models. Experiments with VRPSolver models on ten
of the most classic VRP variants, including CVRP, VRPTW, and HFVRP, show a
performance that is competitive or even superior to best specific algorithms for each
one of those variants.

This work proposes VRPSolver models for the abovementioned bin packing vari-
ants and investigates the performance of the resulting BCP algorithms. As will be
shown, even though bin packing problems are not VRPs, VRPSolver can be a quite
effective tool for solving them. This is not completely unexpected. Some of the most
recent algorithms for bin packing problems, like those in Heßler et al. [19] and Wei
et al. [42], are BCP algorithms that clearly borrow ideas from VRP literature. In par-
ticular, those algorithms also solve the pricing subproblem as a resource constrained
shortest paths problem, using a labeling algorithm, as is usual on VRP.

The theoretical novelty of this paper is related to the branching scheme over
accumulated resource consumption by Gélinas et al. [15]. The scheme was origi-
nally proposed in the context of an algorithm for a time constrained VRP, but it can
be applied in any situation where the pricing subproblem is a resource constrained
shortest path and is implemented in VRPSolver. It has the very nice feature of not
increasing the pricing complexity in any child node. So, we adopted it in our bin
packing VRPSolver models. In principle, we believed that an additional branching
scheme, like Ryan and Foster [34] (that makes pricing subproblems harder), would
be needed after all accumulated consumption branching alternatives were exhausted.
Happily, we could prove that this is not necessary.

This paper is organized as follows. Section 2 reviews the generic VRPSolver
model, used to define the specific models given in Section 3. Section 4 contains the
proof that the branching on accumulated resource consumption, used in all models,
is sufficient. Section 5 presents computational results and comparisons with existing
algorithms in the literature. Finally, some additional analyses of the results and future
perspectives are provided in Section 6.

2 Reviewing the Generic VRPSolver Model

The generic VRPSolver model is a special Mixed Integer Program (MIP) that con-
tains variables associated to resource constrained paths over directed, not necessarily
simple, graphs defined by the user. As the number of such variables is usually huge,
they are dynamically priced by solving resource constrained shortest path (RCSP)
problems [20]. Since the integrality of some variables need to be enforced, the MIP is
solved by a branch-and-price (BP) algorithm. If cuts are also separated, the resulting
algorithm becomes a branch-cut-and-price (BCP). In particular, if the so-called pack-
ing sets are defined, Limited-Memory Rank-1 cuts are automatically separated. This
section reviews the VRPSolver model. Some advanced features not used in this paper
are omitted, readers interested in knowing them may refer to this detailed reference
[30].
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2.1 Path Generator Graph

All models in this paper use a single path generator graph. So, we simplify the
explanation by assuming that the user defines a single graph G = (V , A). She/he
should also define: (1) two special vertices in V , vsource and vsink; (2) a set R of
resources, together with their arc consumptions and accumulated consumption inter-
vals. For each r ∈ R and a ∈ A, qa,r is the consumption of resource r in arc a and
[la,r , ua,r ] is its accumulated resource consumption interval. A path p = (vsource =
v0, a1, v1, . . . , an−1, vn−1, an, vn = vsink) in G is said to be resource constrained if,
for every r ∈ R, the accumulated resource consumption S

p
j,r at visit j , 0 ≤ j ≤ n,

where S
p

0,r = 0 and S
p
j,r = max{laj ,r , S

p

j−1,r + qaj ,r}, does not exceed uaj ,r . We
remark that the previous definition allows resources to be disposed in order to satisfy
the lower bounds la,r on accumulated consumption of an arc a; on the other hand,
upper bounds ua,r are strict. An example of a situation where resources can be dis-
posed would be in the VRP with time windows problem, where a vehicle can arrive
early at a customer and wait (i.e., dispose some time resource) until the opening of
its time window. Let P denote the set of all resource constrained paths in G. For all
a ∈ A and p ∈ P , let hp

a indicate how many times arc a appears in path p.

2.2 Formulation andMapping

The MIP model is defined by the user as follows. There are variables xj , 1 ≤ j ≤ n1,
and variables ys , 1 ≤ s ≤ n2. The first n̄1 x variables and the first n̄2 y variables
are defined to be integer. Equations 1a and 1b define a general objective function
and m general constraints over those variables, respectively. For each variable xj ,
1 ≤ j ≤ n1, M(xj ) ⊆ A defines its mapping into a non-empty subset of the arcs.
Mappings do not need to be disjoint; the same arc can mapped to more than one
variable xj . Define M−1(a) as {j |1 ≤ j ≤ n1; a ∈ M(xj )}. As not all arcs need to
belong to some mapping, some M−1 sets may be empty. For each path p ∈ P , let λp

be a non-negative integer variable. The relation between variables x and λ is given
by Eq. 1c. The values L and U are given lower and upper bounds on the number of
paths in a solution.

Min
n1∑

j=1
cj xj +

n2∑

s=1
fsys (1a)

S.t.
n1∑

j=1
αij xj +

n2∑

s=1
βisys ≥ di, i = 1, . . . , m, (1b)

xj = ∑

p∈P

(
∑

a∈M(xj )

h
p
a

)

λp, j = 1 . . . , n1, (1c)

L ≤ ∑

p∈P

λp ≤ U, (1d)

λp ∈ Z+, p ∈ P, (1e)

xj ∈ Z, ys ∈ Z, j = 1, . . . , n̄1, s = 1, . . . , n̄2. (1f)



SN Oper. Res. Forum            (2021) 2:20 Page 5 of 25   20 

A feasible solution to Formulation (1) is composed of a set of paths, each path p ∈
P with multiplicity λp in the solution, and perhaps additional decisions represented
by the values assigned to variables ys , s = 1, . . . , n2. Hence, modelling a problem as
Eq. 1 requires it to contain structures that can be cast into paths in a properly defined
graph. It is preferable that such a graph has polynomial size. Then, resources should
be created to model “intrapath” constraints while global “interpath” constraints, and
the objective function, should be modelled as Eq. 1b and Eq. 1a, respectively. Note
that the values of xj , j = 1, . . . , n1, are completely defined as a function of the path
variables, through the mappings. Thus, these variables are only created for allowing
expressing (1a) and (1b).

Eliminating the x variables and relaxing the integrality constraints, the following
LP, corresponding to the root node of the BP algorithm, is obtained:

Min
∑

p∈P

(
n1∑

j=1
cj

∑

a∈M(xj )

h
p
a

)

λp +
n2∑

s=1
fsys (2a)

S.t.
∑

p∈P

(
n1∑

j=1
αij

∑

a∈M(xj )

h
p
a

)

λp +
n2∑

s=1
βisys ≥ di, i = 1, . . . , m, (2b)

L ≤ ∑

p∈P

λp ≤ U, (2c)

λp ≥ 0, p ∈ P . (2d)

Master LP (2) is solved by column generation. Let πi , 1 ≤ i ≤ m, denote the dual
variables of Constraints (2b), ν+ and ν−, are the dual variables of Constraints (2c).
The reduced cost of an arc a ∈ A is defined as:

c̄a =
∑

j∈M−1(a)

cj −
m∑

i=1

∑

j∈M−1(a)

αijπi .

The reduced cost of a path p = (v0, a1, v1, . . . , an−1, vn−1, an, vn) ∈ P is:

c̄(p) =
n∑

j=1

c̄aj
− ν+ − ν−.

So, the pricing subproblems correspond to finding a path p ∈ P with a minimum
reduced cost. The above scheme assumes that no additional cuts are being added to
the formulation. The interested reader may consult [24] on how cuts can be handled.

2.3 Packing Sets and Some Advanced Algorithmic Elements

Let B ⊂ 2A be a collection of mutually disjoint subsets of A such that the
constraints: ∑

a∈B

∑

p∈P

h
p
a λp ≤ 1, B ∈ B, (3)

are satisfied by at least one optimal solution (x∗, y∗, λ∗) of Formulation (1). This
means that the arcs in each B ∈ B can appear at most once in all paths p ∈ P that are
part of some optimal solution. In those conditions, we say that B defines a collection
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of packing sets. The definition of a proper B should be done by the user as part of the
modeling.

The information given by the packing sets is used by VRPSolver to improve the
solution of Eq. 1, switching from a basic BP algorithm to an advanced BCP. The
following algorithmic elements based on packing sets are used to solve the models
described in this article.

2.3.1 Limited-Memory Rank-1 Cuts

The Rank-1 Cuts (R1Cs) [27] are a generalization of the Subset Row Cuts proposed
by Jepsen et al [21]. In the VRPSolver context, they are further generalized as fol-
lows. Consider a collection of packing sets B and non-negative multipliers ρB for
each B ∈ B. A Chvátal-Gomory rounding of constraints (3) yields:

∑

p∈P

⌊
∑

B∈B
ρB

∑

a∈B

h
p
a

⌋

λp ≤
⌊

∑

B∈B
ρB

⌋

. (4)

R1Cs are potentially strong, but each added cut makes the pricing subproblems sig-
nificantly harder. The limited memory technique [26] is essential for mitigating that
negative impact.

2.3.2 Path Enumeration

The path enumeration technique was proposed by Baldacci et al. [3], and later
improved by Contardo and Martinelli [8]. It consists in trying to enumerate into a
table all paths in P that can possibly be part of an improving solution. After a success-
ful enumeration, the corresponding pricing subproblem can be solved by inspection,
saving time. If the enumeration has already succeeded and the total number of paths
in the tables is not too large (say, less than 10,000), the overall problem may be
finished by a standard MIP solver, which often saves a lot of time.

From time to time, VRPSolver tries to enumerate all paths p without more than
one arc in the same packing set, and with reduced cost c̄(p) smaller than the current
gapUB−LB, whereUB is the best known integer solution cost, andLB the value of
the current linear relaxation. Moreover, if two paths p and p′ lead to variables λp and
λ′

p with identical coefficients in Eq. 2b–2c, the one with the larger cost is dropped.

2.3.3 Branching

Branching over x and y variables (or over linear expressions defined over them) is
simple and does not change the structure of the pricing subproblem. In many models,
this is sufficient for correctness. For example, in a capacitated VRP model where
xij variables indicate whether a vehicle travels from point i to point j (like in [31]),
if all x variables are integer then they correspond to a correct solution, there is no
need to even check the integrality of the λ variables. However, there are models,
including all in this paper, where this does not happen and constraints (1e) need to be
explicitly enforced. Branching over individual λ variables should be avoided due to
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a big negative impact in the pricing and also due to highly unbalanced branch trees
[40].

VRPSolver has the option of branching using a generalization of the Ryan and
Foster rule [34]. Choose two distinct sets B and B ′ in B. Let P(B, B ′) ⊆ P be the
subset of the paths that contain arcs in both B and B ′. The branch is over the value
of

∑
p∈P(B,B ′) λp. The branch trees are much more balanced. However, Ryan and

Foster branching scheme changes the structure of the pricing subproblem, sometimes
increasing a lot of its difficulty.

VRPSolver also implements a branching scheme similar to the one proposed by
Gélinas et al. [15] for time constrained routing problems. It can be described as
follows. Assume that all consumptions and accumulated consumption intervals are
integer. For a chosen B ∈ B, r ∈ R and for a certain threshold value t∗: in the left
child make ua,r = t∗ − 1, for all a ∈ B; in the right child make la,r = t∗, for all
a ∈ B. In other words, the branch is over the accumulated consumption of resource
r on arcs in B. This branching has the nice feature of not increasing the pricing diffi-
culty. However, it is not sufficient for general Formulation (1) since some fractional
λ solutions can not be eliminated by it. The main theoretical contribution of this
paper (in Section 4) is a proof that the branching scheme over accumulated resource
consumption is sufficient for the proposed bin packing models.

3 VRPSolver Models for Bin Packing problems

Now, we present the specific VRPSolver models corresponding to each of the
problems addressed in this paper.

3.1 Vector Packing (VPP)/Bin Packing (BPP)

The following model is valid for the VPP: the classic BPP corresponds to the case
where |D| = 1:

The path generator graph is depicted in Fig. 1. For each item i ∈ I , there is an arc
ai+ with consumptions wd

i , d ∈ D, and another arc ai− with zero consumptions. It
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Fig. 1 Path generator graph for VPP/BPP

can be seen that there is a one-to-one correspondence between resource constrained
paths in P and solutions of the |D|-dimensional binary knapsack problem defined by
{z ∈ {0, 1}I : ∑

i∈I wd
i zd

i ≤ Qd, d ∈ D}, that also correspond to the possible ways
of packing items into a bin. Variables xi , i ∈ I , indicate if item i is packed. As all
items must be packed, they are fixed to 1 in Eq. 5b. Each variable xi is mapped to
arc ai+. So, Constraints (5b) are equivalent to saying that the solution should contain
exactly one path in P passing by each arc ai+. Variable x0 is mapped to both a1+ and
a1−. As every path in P passes by exactly one of those arcs, x0 is put in the objective
function (5a) for counting the number of used paths (bins).

Consider the BPP instance with I = 4, w1 = 7, w2 = 8, w3 = 9, w4 =
11, and Q = 17. The set P has 8 paths: p1 = (a1−, a2−, a3−, a4−), p2 =
(a1+, a2−, a3−, a4−), p3 = (a1−, a2+, a3−, a4−), p4 = (a1−, a2−, a3+, a4−), p5 =
(a1−, a2−, a3−, a4+), p6 = (a1+, a2+, a3−, a4−), p7 = (a1+, a2−, a3+, a4−), p8 =
(a1−, a2+, a3+, a4−). The complete formulation (corresponding to Formulation (1))
for that instance is:

Min x0 (6a)

S.t. x1 = 1, (6b)

x2 = 1, (6c)

x3 = 1, (6d)

x4 = 1, (6e)

x0 = λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8, (6f)

x1 = λ2 + λ6 + λ7, (6g)

x2 = λ3 + λ6 + λ8, (6h)

x3 = λ4 + λ7 + λ8, (6i)

x4 = λ5, (6j)

0 ≤ λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8, (6k)

λ ∈ Z
8+ (6l)

A possible optimal solution to Eq. 6 would have λ4 = λ5 = λ6 = 1 (the cor-
responding paths are depicted in Fig. 2) and the remaining λ variables equal to
zero.
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Eliminating the x variables and relaxing the integrality, the master LP (cor-
responding to Eq. 2) that should be solved by column generation is obtained:

Min λ1 + λ2 + λ3 + λ4 + λ5 + λ6 + λ7 + λ8 (7a)

S.t. λ2 + λ6 + λ7 = 1, (7b)

λ3 + λ6 + λ8 = 1, (7c)

λ4 + λ7 + λ8 = 1, (7d)

λ5 = 1, (7e)

λ ≥ 0 (7f)

3.2 Variable Sized Bin Packing with Optional Items (VSBPPOI)

We present the model for the more general VSBPPOI; the model for the VSBPP
without optional items is easily obtained by setting sufficiently large penalties or by
removing some variables from the model.

The path generator graph is depicted in Fig. 3. The graph differs from that in the
previous BPP/VPP model by having one more vertex and extra arcs ak , k ∈ K . The
paths in P passing by an arc ak are associated to the possible packings in bin type k.
Each variable xi , i ∈ I , mapped to arc ai+, indicates if item i is packed. Unlike in the
previous model, those variables are not fixed to 1. Each variable zk , k ∈ K , mapped
to arc ak , counts how many bins of type k are used in the solution. Variables s are not
mapped.

The expression
∑

i∈I si corresponds to the number of items that are not packed.
Branching on the value of that expression can only be applied on VSBPPOI instances.
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Fig. 2 Paths used on an integer solution of Eq. 3.1. The arc consumptions and the accumulated resource
consumption at the end of each path are also indicated

The expression
∑

k∈K
ck

g
zk is proportional to the total cost of the bins used in the

solution. On VSBPP instances (without optional items), branching down on the value
of this expression yields an infeasible left child node; in the right child the node lower
bound is certainly increased at least to the next multiple of g. The rounding up of
lower bounds to the next multiple of the greatest common divisor of the bin costs is
standard in published VSBPP algorithms. Even on VSBPPOI instances, where the
left child is feasible, this branching is usually quite good in increasing lower bounds.

4 Branching over Accumulated Resource Consumption

The classic lower bound for the BPP by Gilmore and Gomory [16] is obtained by
column generation, solving binary knapsack problems in the pricing. The problem
is (weakly) NP-hard, but there are some advanced knapsack algorithms that perform
very well in practice [32]. However, implementing a BP algorithm over Gilmore and
Gomory can be tricky.

Branching directly over the variables of the model (as done in [5]) leads to very
unbalanced search trees, fixing a variable corresponding to a certain packing of items
to a bin to 1 is strong, but fixing it to 0 is much less likely to move the lower
bounds. Moreover, fixing variables to 0 change the structure of the pricing, each
fixing making it harder.

Another alternative, first used in [39], is to apply Ryan and Foster scheme [34],
choosing a pair of items i and j . In the left child, i and j should be packed in the
same bin. This does not change the pricing structure; the items are simply merged

Fig. 3 Path generator graph for VSBPPOI with three bin types
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into a single item. In the right child, i and j can not be packed in the same bin. This
changes the structure of the pricing that becomes a binary knapsack with conflicts,
which is a strongly NP-hard problem.

The BPP model presented in Section 3.1 is equivalent to Gilmore and Gomory
model; however, VRPSolver uses the resource constrained shortest path problem
as pricing subproblem. RCSPs are solved using a labeling algorithm (see [35] for
details), which is a dynamic programming where reachable states are represented as
labels. The practical efficiency of a labeling algorithm depends on the concept of
dominance. Let L1 and L2 be the labels corresponding to partial paths p1 and p2
in G, starting in vsource and ending at the same vertex v of V . If the accumulated
resource consumption of p1 is not larger than the accumulated resource consump-
tion of p2 (for all r ∈ R) and the reduced cost of p1 is smaller than the reduced cost
of p2, then label L2 is dominated by L1 and can be removed. This dominance rule
is correct because every extension of p2 into a complete path in P , if applied to p1,
would produce a complete path in P with a smaller reduced cost. We remark that
the “smaller-consumption-is-better” rule works because the RCSP definition permits
resources to be disposed, if this is needed to satisfy lower bounds on accumulated
consumption.

A potential advantage of solving the pricing subproblem as a RCSP is that the
branching over accumulated resource consumption, which never changes the pricing
structure, can be used. That branching scheme was proposed by Gélinas et al. [15]
for time constrained routing problems. However, the authors did not prove its suffi-
ciency. In fact, they proposed using a second branching scheme for the cases when
the current fractional solution could not be eliminated by branching over accumu-
lated resource consumption in both children nodes. The main theoretical result of this
work is Theorem 1. For the sake of simplicity, it is stated only for BPP. However, we
will show later that the sufficiency result also holds for all models in Section 3.

Definition 1 A branching is effective if it cuts the current fractional solution in both
child nodes.

Definition 2 A branching scheme is sufficient if, given a fractional solution, it
provides either an effective branching or a polynomial algorithm to convert that
fractional solution into an integer solution with the same cost.

Consider as example the instance described in Section 3.1 and its linear relaxation
(7), having solution λ5 = 1, λ6 = λ7 = λ8 = 0.5, the remaining variables with value
zero. The accumulated resource consumptions for the paths associated to the frac-
tional variables are as follows: S

p6
1,1 = 7, Sp6

2,1 = S
p6
3,1 = S

p6
4,1 = 15, Sp7

1,1 = S
p7
2,1 = 7,

S
p7
3,1 = S

p7
4,1 = 16, Sp8

1,1 = 0, Sp8
2,1 = 8, Sp8

3,1 = S
p8
4,1 = 17. It is not possible to branch

effectively over item 3, corresponding to arc a3+. This arc appears in paths p7 and
p8. Choosing t∗ = 17, we would have intervals [0, 16] and [17, 17] for the accumu-
lated resource consumption of arc a3+ in the left and right child nodes, respectively.
The first interval would indeed eliminate p8, but the second would eliminate nei-
ther p7 (because 1 unit of resource can be dropped to make S

p7
3,1 = 17) nor p8. On
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the other hand, it is possible to branch effectively over item 2. Choosing t∗ = 10
would give intervals [0, 9] and [10, 17] for a2+. The first interval would eliminate p6,
while the second would eliminate p8. So, the fractional solution would be cut in both
branches.

Lemma 1 Suppose that one sets tight intervals on accumulated resource consump-
tion for all items, that is, lai+,1 = uai+,1, i ∈ I . The linear relaxation of the BPP
model (corresponding to Eq. 2) restricted to the paths in P that respect those tight
intervals has an optimal integer solution.

Proof Define the followingMinimum Cost Flow Circulation (MCFC) problem over
graph H = ({0, . . . , 2I + 1}, F ), where F = {(0, 2i − 1), (2i − 1, 2i), (2i, 2I + 1 :
i ∈ I } ∪ {(2i1, 2i2 − 1) : i1, i2 ∈ I, i1 < i2, lai1+ + wi2 ≤ lai2+} ∪ {(2I + 1, 0)}. All
arcs in F cost zero, except by (2I + 1, 0) that costs 1. The flow fa in each arc a ∈ F

can assume any non-negative value, except by arcs in {(2i − 1, 2i) : i ∈ I } where
the flow is fixed to 1. Let z(MCFC) be the optimal solution value of MCFC. Let
BPPLP (P ′) be the linear relaxation of the BPP model restricted to P ′, the subset
of P formed by the paths that respect the tight intervals. Let z(BPPLP (P ′)) be its
optimal solution value.

There is a one-to-one correspondence between paths in P ′ and cycles in F . Let
λ̄ be an optimal solution (integer or fractional) of BPPLP (P ′). Start with zero
flow for all arcs in F . For each p ∈ P ′, add the value λ̄p to the flow of all
arcs of the cycle in F corresponding to p. The resulting flow is a solution of
MCFC with value z(BPPLP (P ′)). Conversely, a cycle decomposition of an opti-
mal solution of MCFC yields a solution of BPPLP (P ′) with value z(MCFC). So,
z(BPPLP (P ′)) = z(MCFC). Moreover, the Flow Integrality Theorem asserts that
MCFC has an optimal solution where all flows are integers. That integer solution
will yield an optimal integer solution for BPPLP (P ′).

In order to exemplify Lemma 1, consider the same BPP instance from Section 3.1
and suppose that intervals are set to [8,8], [8,8], [17,17], and [14,14], for items
1, 2, 3, and 4, respectively. Graph H is depicted in Fig. 4, P ′ = P \ {p6}, and
z(BPPLP (P ′)) = z(MCFC) = 3. A minimum cost integer flow circulation is has
arcs f01, f12, f25, f56, f69, f03, f34, f49, f07, f78, and f89 with value 1 and f90 = 3.
This flow corresponds to an integer solution having λ3 = λ5 = λ7 = 1.

Theorem 1 The branching scheme over accumulated resource consumption is
sufficient for the VRPSolver Model for BPP.

Proof In this context, a branching over an item i ∈ I and threshold value t∗ is
effective if there exists a pair of paths p1 and p2 passing by ai+, where λp1 and λp2

have positive value in the current fractional relaxation, and such that if uai+,1 is set to
t∗ −1 (left child) then p1 remains feasible but p2 not; if lai+,1 is set to t∗ (right child)
then p2 remains feasible but p1 not. Assume that there is no effective branching. This
means for each item i ∈ I and for every threshold t∗, all paths (including, of course,
the paths that do not pass by ai+) with positive fractional variable would remain
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Fig. 4 Example of a network obtained from a BPP instance with tight consumption bounds

feasible either in the left or in the right child. Consider some i ∈ I , and let t∗∗
i be

the maximum threshold such that all those paths would remain feasible in the right
child, threshold t∗∗

i + 1 would make all those paths to be feasible in the left child.
This means that all paths with positive fractional value are feasible for both intervals
[0, t∗∗

i ] and [t∗∗
i , Q] on the accumulated consumption of ai+, so they are all feasible

for tight interval [t∗∗
i , t∗∗

i ]. Repeating the reasoning for each i ∈ I , one at a time, we
can conclude that all paths with positive fractional value would remain feasible even
if all intervals are tightened to [t∗∗

i , t∗∗
i ]. Then, by Lemma 1, the current fractional

solution has the same cost of an optimal integer solution. In fact, in order to obtain
that solution itself it may be necessary to solve (in polynomial time) the MCFC

instance defined in the proof of Lemma 1.

We now sketch how to adapt the above proof for obtaining similar sufficiency
results for the other variants considered.

– The branching scheme over accumulated resource consumption is also sufficient
for the more generic VRPSolver Model for VPP. The reasoning in Lemma 1
and Theorem 1 remains essentially the same, showing that a fractional solution
without an effective branching would also be a solution to a restricted problem
where the intervals on accumulated consumption associated to each item i ∈ I

are tight for each resource d ∈ D.
– The same branching scheme also suffices for the VRPSolver Model for VSBPP.

The proof only differs in Lemma 1, where graph H would have vertex-set
{0, . . . , 2I+K} and arc-set F = {(0, 2i−1), (2i−1, 2i) : i ∈ I }∪{(2i, 2I+k) :
k ∈ K, i ∈ I, lai+,1 ≤ Qk} ∪ {(2i1, 2i2) : i1, i2 ∈ I, i1 < i2, lai1+,1 + wi2 ≤
lai2+,1} ∪ {(2I + k, 0) : k ∈ K}. Arcs (2I + k, 0), k ∈ K would have flow
capacity uk and cost ck .
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– Finally, the branching scheme for the VRPSolver Model for VSBBPOI of
branching over z variables and over accumulated resource consumption is suffi-
cient. This is true because if all z variables are integer, then the same proof used
for the VSBPP guarantees the existence of an effective branching over accumu-
lated resource, unless the current fractional solution can be converted into an
integer solution with the same cost.

5 Computational Experiments

The models presented in Section 3 were implemented on VRPSolver [30, 31], avail-
able for free academic use at https://vrpsolver.math.u-bordeaux.fr. VRPSolver solves
RCSP pricing subproblems with the bucket graph-based labeling algorithm proposed
in [35] and applies automatic dual price smoothing stabilization [29]. The precise
version of VRPSolver used in the experiments was v.0.3, built on top of BapCod
v.047b. CPLEX 12.8 is used for solving linear programs and MIPs. The experiments
were run on a 2 Deca-core Ivy-Bridge Haswell Intel Xeon E5-2680 v3 server run-
ning at 2.50 GHz. The 128 GB of available RAM was shared between 8 copies of the
algorithm running in parallel on the server. Each instance is solved by one copy of
the algorithm using a single thread.

5.1 Bin Packing Problem

For the experiments on the BPP, we use the hardest (according to [11]) classes of
literature instances: “Falkenauer T” [13], “Wäscher” [41], “Hard28” [37], as well as
“AI” and “ANI” instances recently proposed in [11].

The default parameterization of VRPSolver (see [30]) is changed in the following
way:

– The number of buckets per vertex is set to 200, and it is not dynamically adjusted.
– The bidirectional variant of the labeling algorithm is applied when solving the

pricing both heuristically and exactly.
– At most, 100 columns are generated at every iteration of column generation.
– When applying the path enumeration technique, the number of enumerated paths

is limited to 2 · 106, i.e., path enumeration is interrupted if this number is
exceeded.

– The node is finished by the MIP solver if the number of enumeration paths is
less or equal to 105.

– 3- and 4-row limited-memory rank-1 cuts are separated, i.e., they are obtained
by Chvátal-Gomory rounding of 3 and 4 constraints (3), respectively.

– The cut generation tailing-off threshold is set to 5, i.e., the cut generation is
stopped when the primal-dual gap is decreased by less than 2% after 5 cut
separation rounds.

– The safe lower bound technique similar to the one proposed in [18] is applied to
assure the validity of the column generation bound.

– At most, 20 branching candidates are considered during the strong branching.

https://vrpsolver.math.u-bordeaux.fr
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For each instance, we use initial primal bound which is equal to the rounded up value
of the column generation lower bound plus 1 unit. There is a long-standing conjecture
that the optimal solution value of a BPP instance is never larger than this. Solutions
with these objective values are easily obtainable by simple heuristics. The pure diving
heuristic [36] is used to improve initial primal bound. It is executed at every node of
the search tree unless its depth is greater that 10.

We compare the results of VRPSolver with the best approaches in the literature.
These are the following:

BelSch06 Branch-cut-and-price algorithm proposed in [5] and executed at an Intel
Xeon 3.10 GHz processor in [11]

DelIori20 Enhanced pseudo-polynomial formulation proposed in [10], also exe-
cuted at an Intel Xeon 3.10 GHz processor,

WLBL20 Branch-cut-and-price algorithm proposed in [42] and executed at an Intel
Xeon E5-1603 2.80 GHz.

The results are shown in Table 1. In the first column, the name of the dataset is given.
The second column gives the number of items in the instances of this dataset. Then
for each algorithm, we show the number of instances solved within the time limit
and the average solution time. The time limit is 10 min for the first three classes
of instances, and 1 h for instances in classes AI and ANI. For unsolved instances,
the solution time is set to the time limit. We mark in italics the best results for each
dataset, considering first the number of solved instances and then the average time in
case of ties.

Table 1 Comparison of VRPSolver with best approaches from the literature on BPP instances

VRPSolver BelSch06 DelIori20 WLBL20

Data set No. of items Opt. Time Nodes Opt. Time Opt. Time Opt. Time

Falken.T 60–501 80/80 22 1.0 80/80 56 80/80 1 80/80 2

Wäscher 57–239 17/17 91 1.0 17/17 1 17/17 41 17/17 16

Hard28 160–200 28/28 14 1.3 28/28 8 28/28 4 27/28 9

AI 201 50/50 72 3.8 50/50 144 50/50 9 50/50 4

402 47/50 403 14.3 45/50 699 40/50 1205 45/50 398

600 35/50 1458 4.8 21/50 2539 − − 27/50 1760

801 22/50 2918 2.3 0/50 3600 − − 15/50 2766

1002 0/50 3600 1.0 − − − − 2/50 3546

ANI 201 50/50 17 1.3 50/50 144 50/50 50 50/50 14

402 50/50 96 1.3 1/50 3556 47/50 2704 45/50 436

600 1/50 3565 10.8 0/50 3600 − − 0/50 3600

801 0/50 3600 1.8 0/50 3600 − − 0/50 3600

1002 0/50 3600 1.0 − − − − 0/50 3600



   20 Page 16 of 25 SN Oper. Res. Forum            (2021) 2:20 

It can be seen that VRPSolver is able to solve more instances to optimality than
any other algorithm. However, the average solution time is significantly worse than
competitors for the first three classes of instances. For the two most difficult classes
AI and ANI, our approach clearly showed the best results. Algorithm WLBL20 is
close to VRPSolver both in terms of the number of solved instances and the solution
time in seconds. This is not surprising as WLBL20 is a branch-cut-and-price algo-
rithm similar to the one used in VRPSolver, but with a specialized implementation.
The main differences are that VRPSolver (i) uses bi-directional labeling algorithm
for the pricing problem, (ii) employs stabilization and enumeration, and (iii) uses 3-
and 4-row limited-memory rank-1 cuts, whereas WLB uses only 3-row full-memory
cuts, and (iv) uses branching over accumulated resource consumption instead of Ryan
and Foster branching.

The bottleneck of our algorithm for solving instances of classes AI and ANI with
600 items or more is the LP solver numerical tolerance. For such instances, some-
times, a column added to the master problem does not enter in the basis, in spite of
having a negative reduced cost according to the current optimal dual solution pro-
vided by CPLEX. This may happen even if the reduced cost tolerance in CPLEX
is set to its minimum value 10−9. In those cases, the column generation procedure
is stopped and the safe Lagrangean bound is used. The safe bound is only a little
weaker than the potential bound that would be obtained by solving the master LP
to the end. Yet, this may make a lot of difference. It is quite frequent on those hard
BPP instances that the lower bound of a node is very close to be one unit away from
the primal upper bound. The use of a slightly worse lower bound may be enough to
prevent the pruning of that node.

In Table 2, we compare branching over accumulated resource consumption and
Ryan and Foster branching. The comparison is done on classes of instances for which
average number of nodes is greater than 1, i.e., branching is needed for at least one
instance in the class. It can be seen that one can solve more instances when employing

Table 2 Comparison of branching strategies

Res. cons. branching Ryan and Foster branching

Data set No. of items Opt. Time Nodes Opt. Time Nodes

Hard28 160–200 28/28 14 1.3 28/28 15 1.4

AI 201 50/50 72 3.8 50/50 70 2.6

402 47/50 403 14.3 43/50 668 3.0

600 35/50 1458 4.8 34/50 1530 2.9

801 22/50 2918 2.3 21/50 2932 1.5

ANI 201 50/50 17 1.3 50/50 17 1.2

402 50/50 96 1.3 50/50 116 1.7

600 1/50 3565 10.8 1/50 3568 7.9

801 0/50 3600 1.8 0/50 3600 1.6



SN Oper. Res. Forum            (2021) 2:20 Page 17 of 25   20 

the branching over accumulated resource consumption, and the average solution time
is also decreased. The main reason is that Ryan and Foster branching is “non-robust.”
Additional binary resources should be added to the resource constrained shortest path
pricing problem to take into account Ryan and Foster branching constraints. Thus,
the pricing problem takes significantly more time to be solved, and fewer nodes can
be explored within the time limit.

The first linear relaxation of the BPP model (corresponding to Eq. 2), before cuts
are added or branching is performed, is equivalent to Gilmore and Gomory relax-
ation and can be solved using a knapsack algorithm in the pricing. Table 3 presents
a comparison of solving that first relaxation by using the VRPSolver RCSP labeling
algorithm in the pricing with the use of a high-performance specialized algorithm
for the binary knapsack problem. For the latter, we have chosen the algorithm by
Pisinger [33]. We skip instances with 1000 items as for some of these instances, the
column generation algorithm did not converge in 1 h when the pricing is solved by
the labeling algorithm. The first two columns are as in the previous tables. Then in
next columns, for each algorithm, we show the average solution time, average num-
ber column generation iterations, and the average number of generated columns. As
can be seen, using a specialized algorithm for the knapsack problem makes that col-
umn generation procedure two to four times faster. The number of iterations is larger
as at most one column per iteration is generated. When using the labeling algo-
rithm, at most 100 columns are generated on every iteration. However, each iteration,
including the solution of a larger LP, is much more expensive.

In spite of being less efficient for the first column generation, the use of the label-
ing algorithm for the RCSP in the overall branch-cut-and-price algorithm still has
many advantages, allowing the use of important algorithmic elements: rank-1 cuts,
path enumeration, and branching over accumulated resource consumption. However,

Table 3 Comparison of pricing algorithms for solving the first linear relaxation

RCSP pricing Knapsack pricing

Data set No. of items Time Iters. Cols. Time Iters. Cols.

Falken.T 60–501 6 84 7180 2 597 688

Wäscher 57–239 12 87 8045 3 495 519

Hard28 160–200 4 91 7443 2 654 749

AI 201 12 159 14,228 4 979 1061

402 75 319 29,137 33 2227 2397

600 277 561 52,353 117 3313 3564

801 1132 993 94,073 322 4051 4835

ANI 201 13 161 14,023 4 1042 1125

402 76 318 28,582 33 2282 2453

600 286 554 51,049 117 3355 3607

801 1146 993 93,886 322 4550 4884
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a hybrid pricing strategy that uses Pisinger’s code for the first column generation,
while the subproblem structure is still a knapsack, would indeed save some time. In
some cases, the saving would be significant. For example, for the AI instances with
201 items, the average total time would decrease from 17 to 6 s. We preferred not
do that in our main experiments because the publicly available version of the VRP-
Solver does not have the feature of using external algorithms for the pricing, so its
users would not be able to reproduce the reported results.

Another note concerns the set-partitioning constraints (5b) and (8b). It could be
advantageous to define set-covering constraints of format xi ≥ 1 instead, so the dual
variables would never be negative. However, our preliminary experiments showed
that the solution time of the first column generation would be reduced by only 10–
20%, due to the fact that VRPSolver already uses a strong stabilization mechanism.
No gains were observed in the remainder of the algorithm, after cuts, enumeration,
diving heuristics, or branching starts to be performed. Thus, the overall improvements
were not significant. We prefer to keep the set-partitioning constraints because they
are more intuitive to the average VRPSolver user. For similar reasons, the dual cuts
from [38] do not improve results significantly and were not used in the reported
experiments.

A last note concerns the item ordering in the path generator graph (see Fig. 1). In
our tests, the items followed the order in which they appear in the original instance
files, sorted in non-increasing order of weights. We have experimented with two dif-
ferent orders: a random order and the alternating order, in which the first item (the
one with largest weight) goes first in the graph, the second item (the second largest
weight goes last in the graph), the third item goes second in the graph, and so on.
These experiments show that the item ordering does not have any significant impact
on the results. The reason is that the number of non-dominated labels in the exact
labeling algorithm during the first column generation convergence is close to I.Q,
the number of states in the standard dynamic programming algorithm for the binary
knapsack problem. Therefore, there is no sparsity to be explored by changing the
order of items.

5.2 Vector Packing Problem

For the experiments on the VPP, we use classic 2-dimensional instances generated
in [7]. These instances have from 25 to 200 items. We have also used the 20-
dimensional instances obtained in [6] by aggregating ten 2-dimensional ones. The
parameterization of VRPSolver is similar to the one used for the BPP instances except
by the following changes.

– The number of buckets per vertex is set to 2000 in the labeling algorithm.
– A labeling heuristic is used for the heuristic pricing in which each bucket

contains at most 8 non-dominated labels.
– Rank-1 cuts are not generated.
– When applying the path enumeration technique, the number of labels is limited

to 105. If this number is exceeded, the path enumeration is interrupted.



SN Oper. Res. Forum            (2021) 2:20 Page 19 of 25   20 

We do not use initial upper bounds. In order to obtain primal solutions, the diving
heuristic embedded in VRPSolver is used only at the root node, with Limited Dis-
crepancy Search [36] having parameterization χdepth = 2, χdisc = 3, which ensures
that at most 10 dives are performed.

We compare the results of VRPSolver with the best results in the literature. These
are the following:

BraPed16 Graph compression and arc-flow model-based approach proposed in [6]
and executed at a Quad-Core Intel Xeon 2.66 GHz processor,

HesGscIrn18 Stabilized branch-and-price algorithm, using a labeling algorithm for
RCSP in the pricing, proposed in [19] and executed at an Intel i7-5930k 3.5GHz
processor.

WLLH20 Branch-and-price algorithm proposed in [43] only for the 2-dimensional
case, using a specially tailored 2-D binary knapsack algorithm for the pricing
subproblem, executed at an Intel i7-6700 3.40GHz processor.

In Table 4, we present the results for classes of 2-dimensional instances for which
the average VRPSolver solution time was more than 10 s. In the first column, the data
class is given. The second column gives the number of items in the instances. Then,
for each algorithm, we show the number of instances solved within the 1-h time limit
and the average solution time in seconds. For unsolved instances, the solution time is
set to the time limit.

Table 4 Comparison of VRPSolver with best approaches from the literature on the vector packing
instances with 2 dimensions

VRPSolver BraPed16 HesGscIrn18 WLLH20

Class No. of items Opt. Time Nodes Opt. Time Opt. Time Opt. Time

1 100 10/10 29 1.0 10/10 67 10/10 408 10/10 1

1 200 10/10 164 1.0 10/10 7602 3/10 2899 10/10 8

2 200 10/10 72 1.0 10/10 7 10/10 1 10/10 1

4 100 10/10 41 1.0 − − 10/10 305 10/10 1

4 200 10/10 270 1.0 − − 3/10 2973 10/10 5

5 100 10/10 59 1.0 − − 10/10 386 10/10 1

5 200 10/10 785 1.0 − − 7/10 2567 10/10 1

6 100 10/10 28 1.0 10/10 1 10/10 1 10/10 1

6 200 10/10 163 1.0 10/10 5 10/10 15 10/10 1

7 100 10/10 17 1.0 10/10 2 10/10 2 10/10 1

7 200 10/10 113 1.0 10/10 14 10/10 24 10/10 1

8 200 10/10 18 1.0 10/10 1 10/10 1 10/10 1

9 100 10/10 36 1.0 10/10 28 10/10 360 10/10 1

9 200 8/10 961 44.4 − − 0/10 3600 1/10 3541

10 200 10/10 140 1.0 10/10 155 7/10 1675 10/10 18
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VRPSolver clearly outperforms approaches BraPed16 and HesGscIrn18. The
most recent algorithm WLLH20 is by far the fastest in almost all instances. How-
ever, VRPSolver solved the largest number of instances, including 3 open instances
in class 9 with 200 items. In [43], another algorithm could solve 5 instances in class 9
with 200 items. It can be seen in Table 4 that the other classes of instances are “easy,”
in the sense that all their instances are solvable in root node, without need for cutting
or branching.

In Table 5, we present the results for 20-dimensional instances for which the VRP-
Solver solution time was more than 10 s. In the first column, the data class is given.
The second column gives to the number of items. Then, for each algorithm, we give
the solution time. The instance is solved to optimality if the time is less than 3600 s.
VRPSolver is the fastest approach for the instances shown, and it solved the largest
number of instances to optimality, including one open instance. All instances are
solved at the root node without branching. For non-solved instances, the column gen-
eration procedure did not converge in 1 h due to a large difficulty of the pricing
problem.

As for the BPP, we have experimented with different orders of items. Contrary to
the bin packing, item order has an impact on the solution time when solving VPP
instances. However, this impact was not radical during our preliminary experiments.
Moreover, we do not have any good prediction mechanism based on the instance
data to decide which order is better and which one is worse. Therefore, for the final
experiments, we use the same order in which items appear in original instances.

5.3 Variable Sized Bin Packing Problem

For the experiments on the VSBPP, we use classic instances generated according to
the procedure described in Monaci [23]. In addition, we use instances of VSBPPOI
proposed in [4]. These instances are obtained by modification of instances from [23].

Table 5 Comparison of VRPSolver with best approaches from the literature on the vector packing
instances with 20 dimensions

Class No. of items VRPSolver BraPed16 HesGscIrn20

1 100 11 36 39

1 200 510 1374 2142

4 50 1278 3600 3600

4 100 3600 3600 3600

4 200 3600 3600 3600

5 25 28 73 2021

5 50 3600 3600 3600

5 100 3600 3600 3600

5 200 3600 3600 3600

9 200 131 − 3399

10 200 159 14 279
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Table 6 Comparison of VRPSolver with the approach from [4] on the variable size bin packing instances
in classes 0, 1, and 2

VRPSolver BCPT14

Class No. of types No. of items Opt. Time Nodes Opt. Time Nodes

0 3 25 30/30 1 1.5 30/30 1 5.0

50 30/30 3 4.8 30/30 1 26.3

100 30/30 24 11.5 28/30 81 1190.9

200 28/30 268 43.5 19/30 1057 4107.8

500 28/30 454 5.5 13/30 2165 901.7

5 25 30/30 1 1.0 30/30 1 9.9

50 30/30 2 2.3 30/30 1 13.1

100 30/30 6 1.4 29/30 147 776.5

200 30/30 21 1.3 22/30 681 2970.3

500 28/30 395 6.3 16/30 1908 1008.8

1 3 25 30/30 1 1.2 30/30 1 13.8

50 30/30 4 4.7 30/30 22 188.7

100 29/30 152 39.5 19/30 963 3297.9

200 30/30 366 90.9 21/30 1116 3607.3

500 23/30 1101 133.5 10/30 2561 1099.8

5 25 30/30 1 1.4 30/30 9 100.1

50 30/30 3 5.1 30/30 46 429.7

100 30/30 57 45.2 24/30 626 1939.0

200 29/30 327 78.4 18/30 1199 4322.9

500 25/30 927 54.8 14/30 2054 933.5

2 3 25 30/30 1 1.1 30/30 1 13.2

50 30/30 6 5.9 28/30 223 797.3

100 30/30 18 13.5 22/30 745 2246.1

200 29/30 362 85.2 19/30 1209 4593.0

500 22/30 1355 406.9 11/30 2404 1030.8

5 25 30/30 1 1.2 30/30 2 23.1

50 30/30 3 6.3 28/30 107 726.7

100 30/30 35 27.8 23/30 861 1974.0

200 30/30 194 43.1 22/30 1084 3462.6

500 19/30 1614 134.1 16/30 1960 836.5

There are 4 classes of instances: class 0, class 1, class 2, and class 3. In instances in
class 0, all items are compulsory. These instances are generated in the same way as
the original Monaci instances. In instances in classes 1 and 2, all items are optional.
Instances in the first three classes contain from 25 to 500 items. In instances in class
3, there is a mixture of compulsory and optional items. This class contains only
instances with 500 items. All instances have been generated in [4].
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Table 7 Comparison of VRPSolver with the approach from [4] on the variable size bin packing instances
in class 3

VRPSolver BCPT14

Percentage Opt. Time Nodes Opt. Time Nodes

0 6/12 2080 670.7 3/12 2820 1291.3

25 10/12 1033 412.0 4/12 2472 1109.0

50 11/12 945 28.7 4/12 2526 1058.5

75 8/12 1803 93.2 4/12 2750 1080.2

100 10/12 744 11.2 4/12 2627 1234.3

The parameterization of VRPSolver is similar to the one used for the bin packing
instances except the following changes.

– When applying the path enumeration technique, the number of enumerated paths
is limited to 2 · 106, and the number of generated labels is limited to 2 · 105.

– The node is finished by the MIP solver if the number of enumerated paths is less
or equal to 5000.

We do not use initial upper bounds, but feasible solutions are obtained by the heuristic
with Limited Discrepancy Search heuristic [36] with the same parameterization as
for the vector packing instances. We compare the results of VRPSolver with those
obtained by the branch-and-price algorithm proposed in [4], which we denote as
BCPT14, executed at a Pentium IV 3.0 GHz processor.

In Table 6, we present the results for the instance classes 0, 1, and 2. In the first
column, the data class is given. The second and third columns give the number of
bin types and the number of items. Then for each algorithm, we show the number of
instances solved within the 1-h time limit, the average solution time in seconds, and
the average number of nodes. For unsolved instances, the solution time is set to the
time limit.

VRPSolver clearly outperforms the approach BCPT14, both in terms of the solu-
tion time and the number of solved instances. Note that instances in class 0 with only
compulsory items seem to be solved much more efficiently by the older approaches
proposed in [1] (all 300 instances solved, all average times less than 1 s) and
in [17] (only two unsolved instances). We did not include their results in Table 6
because those authors used similarly generated instances, not the original instances
of [23]. Anyway, it seems that the branch-cut-and-price in [1] for the multiple length
(assumes that the cost of a bin type is given by its capacity) cutting stock problem
is particularly better for that kind of instances due to their cutting stock structure.
Monaci’s generation scheme creates instances with only 20 to 100 distinct weights.
Solving such instances using a bin packing code like the one in BCPT14 and in our
VRPSolver model leads to unnecessary large LPs and symmetry in the branching.

In Table 7, we present the results for the instance class 3 with 500 items. In
the first column, the percentage of compulsory items. Other columns are the same
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as in Table 6. One can see again that VRPSolver clearly outperforms the approach
BCPT14.

6 Conclusions

This paper proposes branch-cut-and-price algorithms for the bin packing problem
and for some of its well-studied variants, defined as VRPSolver models. This is quite
convenient, each model is coded in about 50 lines of Julia language using the pack-
age JuMP.jl [12]. Here, we do not count the lines of code for reading the instance data
and for solution output. The bulk of the implementation effort is the tuning of some
VRPSolver parameters (important but not critical, running the proposed model using
VRPSolver default values would still obtain results not much worse than the com-
peting algorithm). As far as we know, that set of models provides the most generic
existing exact code for bin packing variants. Moreover, the code is freely available
for academic purposes.

The computational experiments on the classic BPP indicate that:

– VRPSolver branch-cut-and-price algorithm seems to be an excellent alternative
for instances that are really hard for existing exact methods, either because they
are primal-hard or dual-hard. Primal-hard instances are those where an opti-
mal solution is quite difficult to find, either by combinatorial heuristics (like
[2]), by LP rounding or by diving methods. However, once an optimal solu-
tion is solution found, it is immediately proved to be optimal by Gilmore and
Gomory bound. Those instances have the so-called Integer Round Up Property
(IRUP). For example, AI instances are primal-hard. Dual-hard instances are those
where finding an optimal solution is relatively easy, but Gilmore and Gomory
bound is not enough to prove its optimality, cutting and/or branching is required.
For example, ANI BPP instances are dual-hard. Interestingly, there are no BPP
instances in the literature that are primal-and-dual-hard.

– On the other hand, on instances that are not so difficult, specialized methods
may be faster, sometimes much faster. In fact, Alvim et al. [2] mention that for a
significant number of BPP instances greedy heuristics (like first-fit decreasing or
best-fit decreasing) find solutions that can proven to be optimal using fast lower
bounding procedures (like those in [14])

A similar behavior can be observed in the experiments with the other bin packing
variants: the VRPSolver branch-cut-and-price algorithms are likely to outperform
existing specialized methods on harder instances. This is explained by the fact that
some advanced features in VRPSolver, like limited-memory rank-1 cuts, enumer-
ation, hierarchical strong branching over accumulated resource consumption, and
limited discrepancy search diving heuristics, are more likely to make a difference on
those harder instances.

As a final remark, we believe that the robust results obtained by the VRPSolver
models over all those bin packing variants encourage future attempts of using that
tool for solving other families of problems, not only for vehicle routing.
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