
Traveling Salesman Problem Formulations with N logN

Number of Binary Variables

Thomas A. Pogiatzisa, Vassilios S. Vassiliadisa∗, Raul Conejerosb

aDepartment of Chemical Engineering and Biotechnology, University of
Cambridge, Pembroke Street, Cambridge CB2 3RA, UK.
bEscuela de Ingenieria Bioquimica, Pontificia Universidad Catolica de
Valparaiso, Av. Brasil 2147, Valparaiso, Chile.

Abstract

This paper presents a novel formulation for the Traveling Salesman Problem (TSP), utilizing
a binary list data-structure allocating cities to its leaves to form sequentially the tour of the
problem. The structure allows the elimination of subtours from the formulation and at the same
time reducing the number of binary variables to O(N log2N). The expense is the increase in
the constraint set cardinality measuring at O(N2 log2N), and in the introduction of at most
O(N2 log2N) continuous variables. The value of the proposed original formulation is that for the
first time a minimal number of binary degrees of freedom is recognized for the TSP. Although
computationally the resulting TSP formulation is not competitive, this work presents a new
methodology of structuring the information describing the problem which may lead to future
developments exploiting it. The scheme is equivalent to binary expansion of tour-locations
which may be applicable to other standard TSP formulations, thus allowing there also the same
reduction in the number of binary variables.

Keywords:

Traveling Salesman Problem, mixed integer-linear programming, binary list, subtour
elimination

1 Introduction

The Traveling Salesman Problem is a well-studied central problem in optimization theory.
Mathematical Programming formulations of the problem are among others the following:
Miller et al. (1960), Gavish and Graves (1978)and Claus (1984).

Our formulation is an assignment type one, following the approach of Millar and Cyrus
(2000), admitting only complete tours as solutions.

The rest of our paper is organized as follows. At first, in Section 2 we lay the basics of
the novel formulation and in Section 3 we present the formulation for Manhattan distance

∗Corresponding Author: vsv20@cam.ac.uk

1



2 Basics of the new formulation 2

3 4 7 81 2 65

"Level 0"

Level 1

Level 2

Level 3

0 1

0

0 0

0

00

1

11

1

1 1

Positions in tour 

Fig. 2.1: 8 node tree structure

problems. Moving on, in Section 4 we lay down the problem for the Asymmetric Traveling
Salesman Problem (ATSP) and in Section 5 we present the new formulation. Finally, in
Section 6 we examine the validity of the proposed formulations by solving some small
problems and in Section 7 we present conclusions and proposed future work.

2 Basics of the new formulation

This number of cities, without of loss of generality as demonstrated in a later section, is
assumed to be precisely given by an integer transformation of the form:

N = 2NL (2.1a)

which equivalently is precisely

NL = log2N (2.1b)

In case N is not an exact integer power of 2, NL is computed by:

NL = dlog2Ne (2.2)

NL should thus be replaced appropriately from equation (2.2) in the following sections,
particularly in the calculation of the number of constraints and variables appearing in the
model. Terms containing log2N should be replaced by dlog2Ne .

The ordering of cities is based on a sequencing that places cities at the leaves of a
binary list constructed precisely so that it has equal number of nodes at its last layer
(leaves) to the number of cities.

The above leads naturally to a binary tree representation which for NL = 3 i.e.
N = 23 = 8 objects is shown in Figure 2.1:

Thus for NL Layers, the last layer (l = NL) is the one that contains the raw objects
that are to be linked. It is clear that one should keep track of the left-right direction
from the head of the tree that an object “travels” to be allocated to the appropriate most
elementary pairing node at level NL.

In particular, this scheme is equivalent to repeated partitions of the set of all cities N
into left-right orientation from Level 1 till level NL. The properties of the partition are



2 Basics of the new formulation 3

such that exactly half of the objects are in the left and half in the right orientation. We
begin by allocating a variable ril ∈ {0, 1} such that:

ril =

{
0 if city is left allocated

1 if city is right allocated
(2.3)

l = 1, 2, . . . , NL; i = 1, 2, . . . , N

At each level l of the tree, the group of cities is allocated a left and right orientation.
Only, and exactly, half of the cities are of left routing and half of right routing at each
such level. Hence this leads to the following set of constraints:

N∑
i=1

ril =
N

2
; l = 1, 2, . . . , NL (2.4)

It is noted however that this partitioning is not sufficient to allocate uniquely a binary
string to a city. The nodes have to be examined sequentially and depending on their
parents, sub-allocations have to be made so that nodes emanating from the same parent
must split equally between the value of 0 and 1. A simpler way is adopted in the next
section by introduction of the city to position allocation variables zik. Constraints (2.4)
may still be used to tighten the feasible region of the optimization problems.

In the case that N is not an exact integer power of 2, equations (2.4) need to be
replaced by:

N∑
i=1

ril =
N∑
k=1

tkl; l = 1, 2, . . . , NL (2.5)

Parameters tkl are calculated by Algorithm 1 presented in the next section.
Finally it is noted that the position of city i, designated by variables POSi, is given

by:

POSi = 1 +
NL∑
l=1

2NL−l · ril; i = 1, 2, . . . , N (2.6)

To facilitate allocation of each city to a tour location, new continuous variables zik are
defined such that they are forced-binary by the variables ril. Index i is associated with
the city, and index k with the leaf on the binary tree.

To facilitate notation we introduce the following functions:

α(t) =

{
+1 if t = 0

0 if t = 1
(2.7a)

β(t) =

{
−1 if t = 0

+1 if t = 1
(2.7b)

The binary tree leaves are allocated a binary string describing the routing the ril
variables indicate to reach each one of them. To compare which object i is allocated to



3 The Manhattan distance case formulation 4

Algorithm 1 Nodal binary string analysis

for k = 1 to N do

temp = k − 1
for l = NL to 1 do

tkl = temp mod 2
temp = btemp/2c
end for

end for

which node k through the object i set of variables ril for l = 1, 2, . . . , NL, we define the
following “target” binary strings for each leaf-node according to Algorithm 1.

With the above, the following constraints are written to define the values of the induced
binary variables zik:

zik ≤ α(tkl) + β(tkl) · ril; l = 1, 2, . . . , NL (2.8a)

zik ≥ 1−
NL∑
l=1

(α(1− tkl) + β(1− tkl) · ril) (2.8b)

i = 1, 2, . . . , N ; k = 1, 2, . . . , N

There are (NL+ 1) ·N2 = (log2N + 1) ·N2 constraints in the equations above.
To guarantee uniqueness of the allocation of each position binary string to exactly one

city, similar to the work of Millar and Cyrus (2000), we need to include the uniqueness of
the allocation of each city to each position and vice versa:

N∑
i=1

zik = 1; k = 1, 2, . . . , N (2.8c)

N∑
k=1

zik = 1; i = 1, 2, . . . , N (2.8d)

There are 2N constraints defined in the equations above.

3 The Manhattan distance case formulation

For the Manhattan distance case each city is described by a pair of coordinates:

x
(0)
i , y

(0)
i

Each of the nodes of the last layer (leaves) of the binary tree is allocated accordingly
an (x, y) coordinate pair, depending on which city was routed to that leaf:

xk =
N∑
i=1

x
(0)
i · zik (3.1a)

yk =
N∑
i=1

y
(0)
i · zik (3.1b)



3 The Manhattan distance case formulation 5

k = 1, 2, . . . , N

There are 2 ·N equations in the set above.
The computation of city-to-city distances requires the use of two variables per leaf of

the binary list, namely l
(x)
j and l

(y)
j .

−l(x)k ≤ xk − xk+1 ≤ +l
(x)
k (3.2a)

−l(y)k ≤ yk − yk+1 ≤ +l
(y)
k (3.2b)

k = 1, 2, . . . , (N − 1)

−l(x)N ≤ xN − x1 ≤ +l
(x)
N (3.2c)

−l(y)N ≤ yN − y1 ≤ +l
(y)
N (3.2d)

There are 4 ·N inequalities in the set above.
It is abundantly clear that from the uniqueness of the allocations zij (one-to-one city-

to-node), and from the fact that distances are taken consecutively node-to-node at the
last layer of the binary list, that the above procedure does not permit the existence of
subtours.

3.1 Symmetry breaking

Consider the case where a solution (integer feasible) contains the following tour of cities:

1→ 3→ 4→ 2→ 1

Where it appears that city 1 is the beginning of the route. This is placed readily
on the proposed binary list structure leaves; however there is a problem of alternative
solutions. (1,3,4,2,1) is equivalent in distance in (3,4,2,1,3) etc. To avoid this situation,
and observing that every city is contained precisely once in any tour, the first node (leaf
1) of the binary data-structure is fixed to be pointed to by city 1 (in fact any city would
do):

r1,l = 0, l = 1, 2, . . . , NL (3.3)

There are NL equalities defined above.
Another source of symmetry is the fact that a tour may be traversed either clockwise

or counter-clockwise, even for the fixed first node case. So for example (1,2,3,4,1) is the
same as (1,4,3,2,1). To break this case as well, we enforce that the index of the city
placed in node N − 1 be larger (or smaller) than the index of the city placed in node 2.
To extract such information the following constraint is used:

N∑
i=1

i · zi,2 ≤
N∑
i=1

i · zi,(N−1) (3.4)

This is a single inequality constraint, using the object indices as weights for discrimi-
nation.



4 The general Asymmetric Traveling Salesman Problem (ATSP) 6

3.2 Objective function

The objective function is the last and simplest item to add to our formulation.

min L =
N∑
k=1

(
l
(x)
k + l

(y)
k

)
(3.5)

3.3 Additional tightening constraints

Additional tightening constraints, particularly for the case where N is not an exact power
of 2 are introduced by limiting the number of the position allocated to each city i as
follows:

1 ≤
NL∑
l=1

2NL−l · ril ≤ N − 1; i = 2, 3, . . . , N (3.6)

These arise from the restriction that the position of a city can range from 2 to N
(since city 1 is fixed to position 1), such that 2 ≤ POSi ≤ N . There are 2(N − 1) such
constraints.

4 The general Asymmetric Traveling Salesman Problem (ATSP)

The case where the distances are given by a general matrix, including the Asymmetric
Traveling Salesman Problem (ATSP), necessitates the use of binary variables xij

1, i, j =
1, 2, . . . , N , indicating the presence of an arc (i, j) in the optimal tour. The objective
function of the problem is thus given by:

min
N∑
i=1

N∑
j=1

cij · xij (4.1)

Similar to the use of allocation variables of cities to the position in the tour presented
by Millar and Cyrus (2000), we may use the city-position variables zik, defined in equations
(2.8a) and (2.8d) to force the variables xij to be 1 if a corresponding arc (i, j) is present.
This yields the following constraints:

zik + zj,k+1 − 1 ≤ xij; k = 1, 2, . . . , (N − 1) (4.2a)

zi,N + zj,1 − 1 ≤ xij (4.2b)

i = 1, 2, . . . , N ; j = 1, 2, . . . , N

Equations (4.2a) and (4.2b) force variables xij to take the value of one if arc (i, j)
is in the tour. Else the lower bound relaxes. Because of the objective minimization in
equation (4.1), assuming all the cij are positive numbers, the variables xij are naturally

1 These variables are not to be confused with the variables x
(0)
i and xk used to represent city coordinates

in the case of the Manhattan distance TSP problem defined in earlier sections.



4 The general Asymmetric Traveling Salesman Problem (ATSP) 7

driven to their lower bound of zero if the constraints added do not enforce a value of 1.
Hence variables xij do not need to be binary, only continuous with bounds 0 ≤ xij ≤ 1.

This formulation requires thus the introduction of N2 variables and N3 additional
enforcing constraints.

The number of the enforcing constraints in equations (4.2a) and (4.2b) is thus going to
be the issue examined next, in order to see if an alternative formulation may be employed
that does not require such a large number of them (O(N3)).

4.1 Conditions of adjacency with city to position allocation

Using our binary tree location fixing, we utilize variables ril ∈ {0, 1} as in section 2.
Consider two cities i and j for which the positions in the tour are given as functions of
the ril and rjl variables:

POSi = 1 +
NL∑
l−1

2NL−l · ril (4.3)

POSj = 1 +
NL∑
l−1

2NL−l · rjl (4.4)

The above equations are simply converting the binary string (number) associated with
each position to decimal base. For the cities to be adjacent, hence for arc (i, j) to be in
the tour, we must have:

POSj − POSi = 1 (4.5)

or

NL∑
l−1

2NL−l · (rjl − ril) = 1 (4.6)

Clearly what we are seeking is that if condition in equation (4.6) holds, then the
corresponding xij variable must be forced to 1, else it is left loose within its bounds:

NL∑
l−1

2NL−l · (rjl − ril) =

{
1, xij = 1

6= 0, 0 ≤ xij ≤ 1 (or set to 0)
(4.7)

What we are after is a lower number of constraints derived by the indices i, j, l such
that their number is given by N2f(NL) where the product resulting from the inclusion
of f(NL) is less than N3. It is noted that NL = log2N .

4.1.1 Adjacency of binary numbers: motivation

The strings represented by the variables ril and rjl for l = 1, 2, . . . , NL for the two cities
i and j may be thought of as integer numbers in binary format. If we consider two
consecutive numbers in binary representation we find the following:

For string ri ∈ {0, 1}NL we consider the number encoded, NUMi, to be given by the
following equation:



4 The general Asymmetric Traveling Salesman Problem (ATSP) 8

NUMi =
NL∑
l=1

2NL−l · ril (4.8)

With NL bits we thus encode numbers 0 ≤ NUMi ≤ 2NL−1. It is noted that highest
power of 2 corresponds to level l = 1 and the lowest power of 2 corresponds to level
l = NL.

Any number NUMi in this range is analyzed such that we locate the lowest power bit
that is equal to 0, corresponding to some level l′. In other words we demand that:

l′ = max
l=1,2,... ,NL

l such that ril = 0 (4.9)

For l in the range l′ < l ≤ NL the definition of equation (4.9) implies that ril = 1,
unless l′ = NL in which case there are no higher level bits. This is depicted in Figure 4.1.

The next number to NUMi is obtained by adding 1 to it, so that in terms of its binary
digits, all digits l in the range l′ < l ≤ NL change to the value of 0 from 1, while the digit
in level l′ changes from 0 to the value of 1. Lower level digits, i.e. for 1 ≤ l < l′ remain
unchanged and equal to their previous values.

It is noted that the range for NUMi in Figure 4.1 is 0 ≤ NUMi ≤ 2NL− 2. This is so
as the case of NUMi = 2NL − 1 by addition of 1 would require one more bit to represent
the resulting number. The proof in the following section is based on these observations.

4.1.2 Condition of adjacency derived from the binary string representation

Looking at the binary tree allocation of positions and the relationship between positions
in the tour (leaves in the tree), such as in Figure 2.1, the following holds:

Theorem 1. Given two cities i and j and the binary representation of their position in
the tour by variable sets ril, rjl ∈ {0, 1} with l = 1, 2, . . . NL, then if and only if the cities
are allocated adjacently such that the position of city j is greater by 1 from the position
of city i (i.e. cities i and j are in consecutive positions), the following properties hold:

Property A:

There exists exactly one and only one l′, with l′ = 1, 2, . . . , NL, such that

ril′ = 0 and rjl′ = 1 (4.10)

Property B:

For 1 ≤ l < l′ (l = 1, 2, . . . , (l′ − 1))

ril = rjl (either both 0, or both 1) (4.11)

Property C:

For l′ < l ≤ NL (l = (l′ + 1), (l′ + 2), . . . , NL)

ril = 1 and rjl = 0 (4.12)

The converse also holds: if the three properties do not hold simultaneously for a pair
of cities i and j then the cities are not adjacent in the tour, such that arc (i, j) is not
present in the tour.



4 The general Asymmetric Traveling Salesman Problem (ATSP) 9

L
ev
el
l

1
2

..
.

l′
−

1
l′

l′
+

1
..
.
N
L
−

1
N
L

P
ow

er
of

2
2N

L
−
1

2N
L
−
2

..
.

2N
L
−
(l
′ −

1
)

2N
L
−
l′

2N
L
−
(l
′ +

1
)

..
.

21
20

N
U
M

i
r i

,1
r i

,2
..
.

r i
,(
l′
−
1
)

0
1

..
.

1
1

N
U
M

i
+

1
r i

,1
r i

,2
..
.

r i
,(
l′
−
1
)

1
0

..
.

0
0

F
ig
.
4.
1:

B
in

ar
y

n
u
m

b
er

re
p
re

se
n
ta

ti
on

of
n
u
m

b
er
N
U
M

i
in

b
it

s
an

d
ad

d
it

io
n

of
1

to
it

.



4 The general Asymmetric Traveling Salesman Problem (ATSP) 10

Lemma. The integer numbers NUMi and NUMj are described by a binary string. If
NUMj > NUMi then there exists an l′ such that

l′ = min
l=1,2,..,NL

l

for which the following hold

ril′ = 0, rjl′ = 1

ril = rjl, l = 1, 2, ..., l′ − 1

The following formulae hold and are going to be used in the proof.

k∑
i=1

2k−i = 2k − 1 (4.13)

m∑
i=1

2k−i = 2k − 2k−m (4.14)

k∑
i=m+1

2k−i =
k∑

i=1

2k−i −
m∑
i=1

2k−i = 2k − 1− (2k − 2k−m) = 2k−m − 1 (4.15)

Proof. The integer numbers NUMi and NUMj, were NUMj > NUMi, are described by
a binary string. Assuming that Properties A, B & C hold simultaneously then

NUMj −NUMi =
l′−1∑
l=1

2NL−l(rjl − ril)− 2NL−l′(rjl − ril) +
NL∑

l=l′+1

2NL−l(rjl − ril)⇒

⇒ NUMj −NUMi = 2NL−l′ −
NL∑

l=l′+1

2NL−l = 2NL−l′ − (2NL−l′ − 1)⇒

⇒ NUMj −NUMi = 1

Thus, the integer numbers NUMi and NUMj occupy consecutive leaves of the binary
tree.

The converse must also be true, meaning that if properties A, B & C do not hold
simultaneously then the integer numbers NUMi and NUMj are not adjacent. To prove
this, we consider the cases were the three properties do not hold simultaneously.

1. Property A does not hold

Based on our initial assumption that NUMj > NUMi, there are two possible sce-
narios:

(a) ril = rjl, l = 1, 2, ..., NL thus i = j

(b) ril = 0 and rjl = 1, for more than one index l ∈ [1, NL]. Let us examine the
case where this occurs for two levels in that there exist l′ < l′′ ≤ NL such that

ril′ = 0, rjl′ = 1
ril′′ = 0, rjl′′ = 1



4 The general Asymmetric Traveling Salesman Problem (ATSP) 11

Also, because j > i it is obvious that ril = rjl, l = 1, 2, ...l′ − 1. Then,

⇒ NUMj −NUMi =
l′−1∑
l=1

2NL−l(rjl − ril) + 2NL−l′(rjl′ − ril′)

+
l′′−1∑
l=l′+1

2NL−l(rjl − ril)

+2NL−l′′(rjl′′ − ril′′) +
NL∑

l=l′′+1

2NL−l(rjl − ril)⇒

⇒ NUMj −NUMi = 2NL−l′ +
l′′−1∑
l=l′+1

2NL−l(rjl − ril)

+2NL−l′′ +
NL∑

l=l′′+1

2NL−l(rjl − ril)

The minimum of this subtraction is achieved when ril = 1 and rjl = 0 in both
summations. Following that,

NUMj −NUMi ≥ 2NL−l′ −
l′′−1∑
l=l′+1

2NL−l + 2NL−l′′ −
NL∑

l=l′′+1

2NL−l ⇒

⇒ NUMj −NUMi ≥ 2NL−l′ − (
NL∑
l=1

2NL−l −
l′∑

l=1

2NL−l −
NL∑
l=l′′

2NL−l)

+2NL−l′′ − (2NL−l′′ − 1)⇒

⇒ NUMj −NUMi ≥ 2NL−l′ − (2NL − 1) + (2NL − 2NL−l′)

+(2NL−(l′′−1) − 1) + 1⇒

⇒ NUMj −NUMi ≥ 2 · 2NL−l′′ + 1⇒
⇒ NUMj −NUMi ≥ 3

It is proven, accordingly, that if this occurs for more than two layers then
NUMj −NUMi > 1.

2. Property B does not hold

Assume that there exists a l′, with l′ = 1, 2, . . . , NL, such that ril′ = 0 and rjl′ = 1.
Then, there are two possible scenarios:

(a) there exists a l′′ such that
l′′ = min

l=1,2,...,l′−1
l

for which the following hold

ril′′ = 0, rjl′′ = 1

which contradicts our initial assumption that Property A holds.



4 The general Asymmetric Traveling Salesman Problem (ATSP) 12

(b) there exists a l′′ such that
l′′ = min

l=1,2,...,l′−1
l

for which the following hold

ril′′ = 1, rjl′′ = 0

which contradicts our initial assumption that NUMj > NUMi.

3. Property C does not hold

Assume that there exists a l′, with l′ = 1, 2, . . . , NL, such that ril′ = 0 and rjl′ = 1.
Also, assume Property B holds. Then, there are two possible scenarios:

(a) there exists a l′′ such that

l′′ = min
l=l′+1,l′+2,...,NL

l

for which the following hold

ril′′ = 0, rjl′′ = 1

which violates Property A and was examined earlier.

(b) there exists a l′′ such that

l′′ = min
l=l′+1,l′+2,...,NL

l

for which the following holds

ril′′ = rjl′′

Following that,

⇒ NUMj −NUMi =
l′−1∑
l=1

2NL−l(rjl − ril) + 2NL−l′(rjl′ − ril′)

+
l′′−1∑
l=l′+1

2NL−l(rjl − ril)

+2NL−l′′(rjl′′ − ril′′) +
NL∑

l=l′′+1

2NL−l(rjl − ril)⇒

⇒ NUMj −NUMi = 2NL−l′ +
l′′−1∑
l=l′+1

2NL−l(rjl − ril) +
NL∑

l=l′′+1

2NL−l(rjl − ril)

The minimum of this subtraction is achieved when ril = 1 and rjl = 0 in both
summations. Then,

NUMj −NUMi ≥ 2NL−l′ − (2NL − 1) + (2NL − 2NL−l′) + (2NL−(l′′−1) − 1)

−(2Nl−l′′ − 1)⇒



5 Formulation of the ATSP problem with binary tree allocation of positions to the tour 13

⇒ NUMj −NUMi ≥ 2.2NL−l′′ − 2NL−l′′ + 1⇒
⇒ NUMj −NUMi ≥ 2NL−l′′ + 1⇒

⇒ NUMj −NUMi ≥ 2

Thus the theorem is proven.

5 Formulation of the ATSP problem with binary tree allocation of
positions to the tour

The formulation presented in this section is based on the comparison of the binary string
representing the position of each city. For this task we have two alternative formulation
approaches.

As comparisons of two strings may made easily only for cities within the extreme
positions (left-most and right-most) contained in the tour representation, we consider in
the first formulation approach problems such that the number of cities is given by:

N = 2NL − 1 (5.1)

We augment the distance matrix by repeating the first city as the
(N + 1)th city and utilize continuous variables indicating the presence of an arc as:

0 ≤ xij ≤ 1; i = 1, 2, . . . , N ; j = 2, 3, . . . , (N + 1) (5.2)

The above equation defines N2 continuous variables.
This is so because we have no cities feeding into the original city 1 which is designated

arbitrarily as the start of the tour, hence xi,1 do not appear as variables. Similarly, there
are no cities linked after city (N + 1), which is a repetition of city 1 as the end of the tour
(return to origin of tour), hence there are no variables x(N+1),j.

In case N + 1 is not an exact integer power of 2 we calculate NL by:

NL = dlog2(N + 1)e (5.3)

This should be replaced appropriately in the following sections for the calculation of
the number of constraints and variables appearing in the model, as applicable. Terms
containing log2(N + 1) should be replaced by dlog2(N + 1)e.

The following sections outline the construction of the optimization model. The for-
mulation results in a MILP problem.

5.1 Objective function

The objective function is comprised by the cost associated with the presence of each arc.
City (N + 1) is simply a repetition of city 1 (arbitrary choice of start/end of tour). There
are no arcs counted originating from the additional city (N + 1), as it is the terminus of
the tour.

min
N∑
i=1

N∑
j=2

cij · xij +
N∑
i=1

ci,1 · xi,(N+1) (5.4)

It is noted that in the summation we could have demanded that j 6= i ∧ (i, j) 6=
(1, (N + 1)).



5 Formulation of the ATSP problem with binary tree allocation of positions to the tour 14

5.2 Binary data-structure related variables and partitioning of their
values

We repeat here equations (2.8a)-(2.8d) indicating the partitioning of the city position
binary string, appropriate for the case of equation (5.1):

zik ≤ α(tkl) + β(tkl) · ril; l = 1, 2, . . . , NL (5.5a)

zik ≥ 1−
NL∑
l=1

(α(1− tkl) + β(1− tkl) · ril) (5.5b)

i = 1, 2, . . . , (N + 1); k = 1, 2, . . . , (N + 1)

There are (NL + 1) · (N + 1)2 = (N + 1)2(log2(N + 1) + 1) constraints in the above
setting.

The parameters tkl are found by running Algorithm 1 using N + 1 positions and the
corresponding NL levels.

The binary variables appearing are:

ril ∈ {0, 1}; i = 1, 2, . . . , (N + 1); l = 1, 2, . . . , NL (5.5c)

There are (N + 1)NL = (N + 1) log2(N + 1) variables defined in the equation above.
The continuous variables appearing are:

0 ≤ zik ≤ 1; i = 1, 2, . . . , (N + 1); k = 1, 2, . . . , (N + 1) (5.5d)

There are (N + 1)2 continuous variables defined in the equation above.
To guarantee uniqueness of the allocation of each position binary string to exactly one

city, we need to include the uniqueness of the allocation of each city to each position:

N+1∑
i=1

zik = 1; k = 1, 2, . . . , (N + 1) (5.5e)

N+1∑
k=1

zik = 1; i = 1, 2, . . . , (N + 1) (5.5f)

There are 2(N + 1) constraints defined in the equations above.
To force city 1 to position 1 of the tour, and city (N + 1) to position (N + 1) of the

tour we introduce the following constraints:

r1,l = 0; l = 1, 2, . . . , NL (5.6a)

r(N+1),l = 1; l = 1, 2, . . . , NL (5.6b)

It is noted that when N is not an exact integer power of 2, equation (5.6b) above
should be replaced by the following:

r(N+1),l = t(N+1),l; l = 1, 2, . . . , NL (5.7)

There are 2NL = 2 log2(N + 1) constraints defined in the equations above (these
constraints may be enforced by fixing the bounds of the associated variables).

It is noted that we could enforce the same condition by setting:



5 Formulation of the ATSP problem with binary tree allocation of positions to the tour 15

z1,1 = 1 and z(N+1),(N+1) = 1 (5.8)

5.3 Checking equality of the binary string elements of city i and
city j

To check the conditions of Theorem 1 it is necessary to construct a testing of the equality
of the ril and rjl binary string variables of any two cities i and j. This is done by the
following constraints, where the two variables are either tested to be equal to 0 or to 1.
Any of the two cases forces a new variable to take the value of 1, else if neither case holds
the variable is left to be loose in its bounds.

1− (ril + rjl) ≤ Eijl (5.9a)

(ril + rjl)− 1 ≤ Eijl (5.9b)

i = 1, 2, . . . , N ; j = 2, 3, . . . , (N + 1); j 6= i ∧ (i, j) 6= (1, (N + 1));

l = 1, 2, . . . , (NL− 1)

There are (N2 − N)(NL − 1) = (N2 − N)(NL − 1) = (N2 − N)(log2(N + 1) − 1)
variables Eijl, with bounds 0 ≤ Eijl ≤ 1, and 2(N2 − N)(log2(N + 1) − 1) constraints
defined in the above equations. The conditions and variables are not required for the last
layer, l = NL.

5.4 Checking the conditions of Theorem 1 to enforce variables xij

Here logical checks are employed to enforce lower bounds equal to 1 on the xij variables,
if the three conditions of Theorem 1 are met for each pair of arcs (i, j). We present two
ways of doing this, one which employs additional continuous variables and one which is
immediate. The conditions as written hold for NL ≥ 3.

5.4.1 Use of auxiliary variables to test and enforce logical conditions

Property A
(1− ril′) + rjl′ − 1 ≤ Aijl′ (5.10)

i = 1, 2, . . . , N ; j = 2, 3, . . . , (N + 1); j 6= i ∧ (i, j) 6= (1, (N + 1));

l′ = 1, 2, . . . , NL

There are (N2−N)NL = (N2−N) log2(N+1) constraints defined above. The number
of variables Aijl′ , with 0 ≤ Aijl′ ≤ 1, is also equal to (N2 −N) log2(N + 1).



5 Formulation of the ATSP problem with binary tree allocation of positions to the tour 16

Property B
l′−1∑
l=1

Eijl − (l′ − 1) + 1 ≤ Bijl′ (5.11)

i = 1, 2, . . . , N ; j = 2, 3, . . . , (N + 1); j 6= i ∧ (i, j) 6= (1, (N + 1));

l′ = 2, 3, . . . , NL

There are (N2−N)(NL− 1) = (N2−N)(log2(N + 1)− 1) constraints defined above.
The number of variables Bijl′ , with 0 ≤ Bijl′ ≤ 1, is also equal to (N2−N)(log2(N+1)−1).

Property C
NL∑

l=l′+1

[ril + (1− rjl)]− 2(NL− (l′ + 1) + 1) + 1 ≤ Cijl′ (5.12)

i = 1, 2, . . . , N ; j = 2, 3, . . . , (N + 1); j 6= i ∧ (i, j) 6= (1, (N + 1));

l′ = 1, 2, . . . , (NL− 1)

There are (N2−N)(NL− 1) = (N2−N)(log2(N + 1)− 1) constraints defined above.
The number of variables Cijl′ , with 0 ≤ Cijl′ ≤ 1, is also equal to (N2−N)(log2(N+1)−1).

Enforcement of xij constraints

Aij,1 + Cij,1 − 1 ≤ xij; (for l′ = 1) (5.13a)

Aijl′ +Bijl′ + Cijl′ − 2 ≤ xij; l′ = 2, 3, . . . , (NL− 1) (5.13b)

Aij,NL +Bij,NL − 1 ≤ xij; (for l′ = NL) (5.13c)

i = 1, 2, . . . , N ; j = 2, 3, . . . , (N + 1); j 6= i ∧ (i, j) 6= (1, (N + 1))

There are (N2 −N)NL = (N2 −N) log2(N + 1) constraints defined above.

5.4.2 Direct enforcement of logical conditions

Direct enforcement of of the adjacency conditions follows from the previous and analysis
and is presented immediately below.

xij ≥ [(1− ri,1) + rj,1 − 2]︸ ︷︷ ︸
Property A

+

[
NL∑
l=2

[ril + (1− rjl)]− 2(NL− (1 + 1) + 1)

]
︸ ︷︷ ︸

Property C

+1;

(for l′ = 1) (5.14a)



5 Formulation of the ATSP problem with binary tree allocation of positions to the tour 17

xij ≥ [(1− ril′) + rjl′ − 2]︸ ︷︷ ︸
Property A

+

[
l′−1∑
l=1

Eijl − (l′ − 1)

]
︸ ︷︷ ︸

Property B

+

[
NL∑

l=l′+1

[ril + (1− rjl)]− 2(NL− (l′ + 1) + 1)

]
︸ ︷︷ ︸

Property C

+1;

l′ = 2, 3, . . . , (NL− 1) (5.14b)

xij ≥ [(1− ri,NL) + rj,NL − 2]︸ ︷︷ ︸
Property A

+

[
NL−1∑
l=1

Eijl − (NL− 1)

]
︸ ︷︷ ︸

Property B

+1;

(for l′ = NL) (5.14c)

i = 1, 2, . . . , N ; j = 2, 3, . . . , (N + 1); j 6= i ∧ (i, j) 6= (1, (N + 1))

There are (N2 −N)NL = (N2 −N) log2(N + 1) constraints defined in the equations
above.

5.5 Tightening constraints

Different types of constraints (redundant) are added to the resulting MILP formulation
for the ATSP so as to tighten the feasible domain.

5.5.1 Arc variables xij

Allocation of arcs (i, j) through summations of the xij variables

N∑
i=1

xij = 1; j = 2, 3, . . . (N + 1) (5.15a)

N+1∑
j=2

xij = 1; i = 1, 2, . . . N (5.15b)

There are 2N constraints defined in the equations above.



5 Formulation of the ATSP problem with binary tree allocation of positions to the tour 18

Elimination of self-referential arcs and of link of city 1 to city N + 1

xii = 0; i = 2, 3, . . . , N ; j = 2, 3, . . . , N (5.16a)

x1,(N+1) = 0 (5.16b)

The above is automatically enforced by not including any forcing constraints for the
variables appearing and by the requirement of minimization of the objective function.

5.5.2 Partitioning of binary string variables ril and city positions

N+1∑
i=1

ril =
N + 1

2
; l = 1, 2, . . . , NL (5.17)

There are NL = log2(N + 1) constraints of this form. In the case that N + 1 is not
an exact integer power of 2, equations (5.17) need to be replaced by:

N+1∑
i=1

ril =
N+1∑
k=1

tkl; l = 1, 2, . . . , NL (5.18)

Additional tightening constraints, particularly for the case where N+1 is not an exact
power of 2 are introduced by limiting the number of the position allocated to each city i
as follows:

1 ≤
NL∑
l=1

2NL−l · ril ≤ N − 1; i = 2, 3, . . . , N (5.19)

These arise from the restriction that the position of a city may range from 2 to N
(since cities 1 and N + 1 are fixed to positions 1 and N + 1, respectively), such that
2 ≤ POSi ≤ N . There are 2(N − 1) such constraints.

5.5.3 Symmetry breaking (case of symmetric TSP with distances given by a
matrix)

For the Asymmetric TSP the following constraints should not be used, as distances from
city i to city j are not the same when i and j are reversed (there is directionality in the
ATSP). If this distances happen to be symmetric and we are dealing with a TSP whose
distances are given by a matrix, then the following constraints are used.

Similar to the discussion in section 3.1, we introduce the following constraint to force
the index of the second city in the tour to be smaller than the last one (penultimate city
in the augmented tour representation) closing the tour by returning to city (N + 1):

N∑
i=1

i · zi,2 ≤
N∑
i=1

i · zi,N (5.20)

An alternative and equivalent constraint for the ATSP case is to base the comparison
on the xij arc presence variables:

N∑
j=2

j · x1,j ≤
N∑
i=2

i · xi,(N+1) (5.21)



6 Results 19

City x y
1 10.58416945 −51.07803567
2 12.64040569 11.61855973
3 −4.72246031 64.37609131
4 28.77288143 −43.37664821
5 0.132976303 3.24127766
6 −95.34669232 80.51883235
7 0.34608131 20.55363708
8 9.07583291 0.493862256

Tab. 1: Coordinates for 8-cities problem.

The above constraint is based on the observation that city 1 is set as the start of the
tour, so we scan in the LHS of the constraint the second city in the tour. In the RHS it
is recognized that the artificially introduced city (N + 1), which is equivalent to city 1,
forms the end of the tour, and thus we scan all possible cities that feed into it.

Either of these constraints (or both for more tightness) may be included into the
formulation to break the symmetry of the solutions.

5.6 Alternative formulation

An alternative formulation for the ATSP problem which eliminates the need to consider
N + 1 cities is described here. All the constraints defined in Equations (5.5a)-(5.21) stay
the same for number of cities N and i, j, k = 1, 2, ..., N (i.e. replacing the maximum
number of cities with N instead of N + 1). Tightening constraints (5.15b) and (5.15a)
need to be summed over i, j = 1, 2, . . . , N with the exclusion i 6= j. The objective function
becomes

min
N∑
i=1

N∑
j = 1
j 6= i

cij · xij (5.22)

and the constraint
xi,1 = zi,N ; i = 1, 2, ..., N (5.23)

needs to be added to enforce the presence of an arc between the city placed on the
last leaf and the first city of the tour.

6 Results

All three formulations are coded in GAMS and tested using small size problems. The
solver CPLEX has been used and the runs are done on an ASUS Chassis AMD Athlon
Processor 2.21 GHz PC.

6.1 Manhattan formulation

To test the Manhattan formulation we implement two problems of 8 and 10 cities. For
these problems the coordinates are chosen using a random number generator. The coor-
dinates for the two problems are given respectively in Tables 1 and 2.

A summary of the results is given in Table 6.1.



7 Conclusions 20

City x y
1 0.938475958 −0.24007422
2 0.492295391 0.980246747
3 0.044364637 0.214636689
4 0.916432093 0.158259034
5 −0.54520066 0.473306820
6 0.49092077 −0.58925045
7 0.49092077 0.557613960
8 0.017379759 0.538031086
9 0.897945947 −0.254021207
10 −0.82659591 0.2146296389

Tab. 2: Coordinates for 10-cities problem.

Case BV CV Constraints Nodes Iterations CPU Time Optimal Tour
8-cities 21 121 330 496 16841 0.063 511.432884
10-cities 36 177 593 2544 132626 0.11 6.669152

Tab. 3: Summary of results obtained using the Manhattan formulation.

6.2 ATSP

To test the ATSP formulations we implement three problems of size 8 and 10 cities. For
the first two cases the intercity distances are chosen using a random number generator.
The distance coefficients are given for the two problems in Tables 4 and 6.2, respectively.

A summary of the results is given in Table 6.2.

7 Conclusions

This paper presents a totally novel formulation, in which it is recognized that the un-
derlying binary degrees of freedom in the general TSP problem is N logN which is the
smallest number of binary variables from all published formulations for the TSP. This is
based on a binary tree allocation of cities to their positions in the tour.

The proposed TSP formulation was found to converge very slowly for larger problems
than the ones reported in this work, and the explanation for this is that the lower bounds
produced in the Branch and Bound method were very loose. One explanation for this is

City 1 2 3 4 5 6 7 8
1 0 29 28 11 2 8 17 6
2 21 0 2 13 12 9 5 23
3 27 24 0 8 7 8 38 3
4 28 23 26 0 1 13 28 25
5 21 2 23 15 0 16 17 41
6 12 18 33 25 3 0 15 2
7 3 13 9 27 24 25 0 19
8 27 8 40 8 27 13 2 0

Tab. 4: Intercity distances for 8-cities problem.



7 Conclusions 21

City 1 2 3 4 5 6 7 8 9 10
1 0 21 27 22 6 35 33 33 24 41
2 78 0 34 23 46 48 4 2 13 22
3 32 7 0 10 7 11 6 47 10 10
4 21 13 3 0 47 40 48 21 45 17
5 13 27 12 8 0 16 32 5 18 15
6 25 6 10 34 35 0 21 49 4 22
7 25 7 22 25 39 27 0 12 16 10
8 22 28 30 26 28 23 31 0 45 33
9 24 5 39 5 21 5 32 26 0 16
10 29 3 7 31 21 4 26 35 30 0

Tab. 5: Intercity distances for 10-cities problem.

Case BV CV Constraints Nodes Iterations CPU Time Optimal Tour
8-cities 21 247 695 209 6414 0.062 31
10-cities 36 488 1460 600 32152 0.079 70

Tab. 6: Summary of results obtained using ATSP formulation.

the nature of constraints (5.14a)-(5.14c) which enforce the conditions of Theorem 1 to set
the xij variables to 1.

Although computationally the resulting TSP formulation is not competitive, this work
presents a new methodology of structuring the information describing the problem which
may lead to future developments exploiting it. The scheme is equivalent to binary expan-
sion of tour-locations which may be applicable to other standard TSP formulations, thus
allowing there also the same reduction in the number of binary variables.

The formulation proposed has a hierarchical structure, in that it may be viewed as
repeated partitioning (halving) of the set of cities at each level of the binary tree represen-
tation, so that eventually single cities are allocated at tour positions sequentially. Future
work will focus on possibilities of exploiting this property either in rigorous formulations
or in deriving useful heuristic procedures.

Finally, Lagrangean Relaxation methods will be considered for our new formulation.

References

Claus, A., 1984. A new formulation for the travelling salesman problem. SIAM Journal
on Algebraic and Discrete Methods 5 (1), 21–25.

Gavish, B., Graves, S. C., Jul. 1978. The travelling salesman problem and related prob-
lems.

Millar, H., Cyrus, P., 2000. An alternate formulation and lagrangian heuristic for the
traveling salesman problem. In: ASAC-IFSAM 2000 Conference, Montreal, Quebec,
Canada.

Miller, C. E., Tucker, A. W., Zemlin, R. A., 1960. Integer programming formulation of
traveling salesman problems. J. ACM 7 (4), 326–329.


