
OPERATIONS RESEARCH
Vol. 54, No. 6, November–December 2006, pp. 1172–1184
issn 0030-364X �eissn 1526-5463 �06 �5406 �1172

informs ®

doi 10.1287/opre.1060.0323
©2006 INFORMS

A Branch-and-Price Algorithm for the Multilevel
Generalized Assignment Problem

Alberto Ceselli, Giovanni Righini
Dipartimento di Tecnologie dell’Informazione, Università degli Studi di Milano, via Bramante 65, 26013, Crema, Italy

{ceselli@dti.unimi.it, righini@dti.unimi.it}

The multilevel generalized assignment problem (MGAP) is a variation of the generalized assignment problem, in which
agents can execute tasks at different efficiency levels with different costs. We present a branch-and-price algorithm that is the
first exact algorithm for the MGAP. It is based on a decomposition into a master problem with set-partitioning constraints
and a pricing subproblem that is a multiple-choice knapsack problem. We report on our computational experience with
randomly generated instances with different numbers of agents, tasks, and levels; and with different correlations between
cost and resource consumption for each agent-task-level assignment. Experimental results show that our algorithm is able
to solve instances larger than those of the maximum size considered in the literature to proven optimality.

Subject classifications : integer programming: branch-and-price; production-scheduling: generalized assignment.
Area of review : Optimization.
History : Received May 2004; revisions received August 2005, October 2005; accepted October 2005.

1. Introduction
The multilevel generalized assignment problem (MGAP)
is a variation of the well-known generalized assignment
problem (GAP). The GAP consists of assigning tasks to
agents with limited capacity, so that each task is assigned
to an agent and a capacity constraint is satisfied for each
agent. In the MGAP, each task-agent assignment can be
made at different levels, implying both different costs (or
revenues) and different amounts of resource used.
The MGAP arises in the context of large manufactur-

ing systems: It was first described in Glover et al. (1979)
as a task allocation problem in a real manufacturing envi-
ronment. The problem arises when machines performing
manufacturing operations on jobs can work at different
“levels:” This means that the same job can be executed,
for instance, with more or less accuracy, in more or less
time, or with a larger or smaller energy consumption. Obvi-
ously, the outcome in terms of product quality or added
value also depends on the level on which the manufactur-
ing operations have been done. Levels may also represent
different lot sizes, as in the original paper by Glover et al.
Besides its application in production-planning contexts, due
to its combinatorial structure the MGAP can also appear
as a subproblem in other contexts, such as load balancing
in clusters for high-performance computing, multifacility
location, and multivehicle routing problems. For this rea-
son, we here prefer the general terms “task” and “agent”
instead of “job” and “machine,” which are more specific to
production-scheduling optimization. Because it is a gener-
alization of the GAP, the MGAP is ��-hard, and even the
problem of determining whether a feasible solution exists
is ��-complete.

Laguna et al. (1995) proposed a tabu search algo-
rithm for the MGAP. They reported on results obtained
with instances involving up to 40 tasks, four agents, and
four efficiency levels. More recently, French and Wilson
(2002) presented two heuristic algorithms tested on larger
instances with up to 200 tasks, 30 agents, and five effi-
ciency levels. No ad hoc algorithm has been presented
so far for the exact optimization of the MGAP. The only
attempts to obtain optimal solutions have been made with
general-purpose optimization packages, but the very large
number of binary variables allows us to solve only problem
instances of small size. Osorio and Laguna (2003) proposed
adding logic cuts to strengthen the initial formulation; in
this way, they could solve problem instances with up to 60
tasks, 30 agents, and two levels to optimality using CPLEX.
Branch and price is an effective mathematical program-

ming technique to solve optimization problems like the
GAP and the MGAP, requiring the partition of a set of
elements into constrained subsets. A branch-and-price algo-
rithm for the GAP was presented in Savelsbergh (1997).
In this paper, we present a branch-and-price algorithm

based on a decomposition of the MGAP into a master
problem and a pricing subproblem; the former is a set-
partitioning problem, while the latter is a multiple-choice
knapsack problem. We illustrate a branching strategy that is
both effective at improving the dual bound and compatible
with the combinatorial structure of the pricing subproblem.
Our algorithm could solve problem instances larger than
those of the maximum size considered in the literature (400
tasks, 80 agents, four levels). We compared the branch-
and-price algorithm with CPLEX with and without logic
cuts, solving random instances with different correlations
between cost coefficients and resource requirements.

1172



Ceselli and Righini: A Branch-and-Price Algorithm for the Multilevel Generalized Assignment Problem
Operations Research 54(6), pp. 1172–1184, © 2006 INFORMS 1173

This paper is organized as follows: In §2, we introduce
the basic formulation of the MGAP and its set-partitioning
reformulation. In §3, we describe the branch-and-price
algorithm and discuss some implementation details. In §4,
we present our experimental results, and draw some con-
clusions.

2. Formulations
Consider a set of agents � = �1� � � � �N � and a set of tasks
� = �1� � � � �M�, such that each task must be assigned to
an agent. Each agent i ∈ � can execute each task j ∈ �
at different efficiency levels k ∈ � = �1� � � � �K�. Follow-
ing Laguna et al. (1995), we formulate the MGAP as a
minimization problem.

min
∑
i∈�

∑
j∈�

∑
k∈�

cijkxijk (1)

s.t.
∑
i∈�

∑
k∈�

xijk = 1 ∀ j ∈�� (2)

∑
j∈�

∑
k∈�

aijkxijk � bi ∀ i ∈� � (3)

xijk ∈ �0�1� ∀ i ∈� � ∀ j ∈�� ∀k ∈�� (4)

This model will be indicated as the “natural formulation”
of the MGAP. Binary variables x are assignment variables:
xijk = 1 if and only if task j ∈� is assigned to agent i ∈�
at level k ∈ �. Each task j ∈ � implies a resource con-
sumption aijk � 0 when it is assigned to agent i ∈ � at
level k ∈�; each agent i ∈� has an amount bi of available
resource. Each agent-task-level assignment implies a cost
cijk � 0. Set-partitioning constraints (2) impose that each
task is assigned to one agent at one efficiency level. Capac-
ity constraints (3) impose the resource restriction for each
agent. The objective is to minimize the sum of allocation
costs.
Usually the following assumption holds in real cases: For

each agent-task pair �i� j� and for each two different levels k
and h with k < h, we assume that aijk < aijh and cijk > cijh.
When this property does not hold, some assignments are
dominated, and the corresponding variables can be fixed to
zero by a trivial preprocessing. It is clear that the correlation
between the coefficients plays an important role in making
an instance easy or hard to solve. This is explained in more
detail in §4. Consider the relaxation in which constraints (2)
are replaced by

∑
i∈�

∑
k∈�

xijk � 1 ∀ j ∈�� (5)

Any feasible solution of (1), (5), (3), (4) in which some
task is assigned more than once can be transformed into a
feasible solution of (1), (2), (3), (4) by simply deleting the
assignments in excess, and this does not increase the value
of the objective function. Therefore, this relaxation has the
same optimal value of the natural formulation.

We introduce here an alternative formulation of the
MGAP, which is viable for a branch-and-price approach.
Let a duty d for agent i be an assignment of tasks to
agent i, that is a vector xdi = �xdi11� � � � � x

d
iMK�, where each

component xdijk takes value one if task j is assigned to
agent i at efficiency level k, and zero otherwise. Let �i =
�x1i � � � � � x

Di
i � be the set of all feasible duties for agent i ∈� ,

i.e., the set of vectors �xdi11� � � � � x
d
iMK� such that

∑
j∈�

∑
k∈�

aijkx
d
ijk � bi�

∑
k∈�

xdijk � 1 ∀ j ∈��

xdijk ∈ �0�1� ∀ j ∈� ∀k ∈��

Let zdi be a binary variable indicating whether a duty d ∈�i

is selected for agent i ∈� . The MGAP can be reformulated
as follows:

min
∑
i∈�

∑
d∈�i

(∑
j∈�

∑
k∈�

cijkx
d
ijk

)
zdi (6)

s.t.
∑
i∈�

∑
d∈�i

(∑
k∈�

xdijk

)
zdi = 1 ∀ j ∈�� (7)

∑
d∈�i

zdi = 1 ∀ i ∈� � (8)

zdi ∈ �0�1� ∀ i ∈� ∀d ∈�i� (9)

We remark that each xdijk term represents a constant in this
model; therefore, expressions (6) and (7) are linear. In this
master problem (MP for short), constraints (7) guarantee
that each task is assigned to one agent, and constraints (8)
guarantee that one duty is selected for each agent. Both
of them can be replaced by inequalities. Partitioning con-
straints (7) can be relaxed into covering constraints

∑
i∈�

∑
d∈�i

(∑
k∈�

xdijk

)
zdi � 1 ∀ j ∈� (10)

for the same reason outlined above. Because the empty duty
(i.e., a duty with no assignments) is always feasible for
each agent, we can replace constraints (8) with

∑
d∈�i

zdi � 1 ∀ i ∈� � (11)

We consider a master problem with inequality constraints
(10) and (11) instead of (7) and (8) because this makes it
easier for the simplex algorithm to find feasible solutions
when solving its linear relaxation.
In general, each set �i includes an exponential number

of assignments, and therefore the master problem has an
exponential number of variables. We solve the linear relax-
ation of the master problem (LMP for short) by column



Ceselli and Righini: A Branch-and-Price Algorithm for the Multilevel Generalized Assignment Problem
1174 Operations Research 54(6), pp. 1172–1184, © 2006 INFORMS

generation: We consider a restricted linear master prob-
lem (R-LMP) including only some subsets �′

i of columns,
that is,

min
∑
i∈�

∑
d∈�′

i

(∑
j∈�

∑
k∈�

cijkx
d
ijk

)
zdi (12)

s.t.
∑
i∈�

∑
d∈�′

i

(∑
k∈�

xdijk

)
zdi � 1 ∀ j ∈�� (13)

− ∑
d∈�′

i

zdi �−1 ∀ i ∈� � (14)

zdi � 0 ∀ i ∈� ∀d ∈�′
i� (15)

where constraints zdi � 1 have been removed because they
are implied by constraints (14).
Let � ∈ �M

+ and � ∈ �N
+ be the vectors of nonnegative

dual variables corresponding to constraints (13) and (14),
respectively. The reduced cost of duty d for agent i is

r̄ di = ∑
j∈�

∑
k∈�

cijkx
d
ijk −

∑
j∈�

�j

(∑
k∈�

xdijk

)
+�i�

To find columns with negative reduced cost, we must solve
the following pricing problem for each agent i ∈� :

min r̄ di = ∑
j∈�

∑
k∈�

�cijk −�j�x
d
ijk +�i (16)

s.t.
∑
j∈�

∑
k∈�

aijkx
d
ijk � bi (17)

∑
k∈�

xdijk � 1 ∀ j ∈�� (18)

xdijk ∈ �0�1� ∀ j ∈�� ∀k ∈�� (19)

that is, a multiple-choice knapsack problem (MCKP).
Although ��-hard, the MCKP is well solvable in practice
(see Martello and Toth 1990, Pisinger 1995), and this is a
reason that makes our column generation approach to the
MGAP particularly appealing.
The main computational advantage of the reformulation

presented above is that the bound given by the linear relax-
ation of Model (6), (10), (11), (9) dominates that given by
the linear relaxation of Model (1), (5), (3), (4). This is due
to the convexification of constraints∑
j∈�

∑
k∈�

aijkx
d
ijk � bi�

∑
k∈�

xdijk � 1 ∀ j ∈��

The MCKP polyhedra defined by these constraints do
not possess the integrality property because the MCKP is
��-hard. Therefore, their convexification yields a lower
bound that is guaranteed to be greater than or equal to
the linear programming lower bound (Martin 1999). In our
experiments (see Table 1, §4), the lower bound provided by
the reformulation used in our branch-and-price algorithm
was actually tighter than the linear programming bound of
the original model, which is used by general-purpose MIP
solvers.

3. A Branch-and-Price Algorithm

3.1. Lower Bound and Termination

We exploit the equivalence between Lagrangean relaxation
and Dantzig-Wolfe decomposition in the column generation
termination test: The terms �i in the pricing problem (16)–
(19) are not relevant in the definition of the optimal solu-
tion; hence, at each iteration t of column generation the
current values of the dual variables �t are used as multi-
pliers to compute a valid lower bound:

�t =−∑
i∈�

�ti +
∑
j∈�

�t
j �

where �ti is the optimal value of the pricing subproblem
for agent i. In this way, a sequence of lower bounds is
computed during column generation. This often allowed us
to prune the current node of the search tree even before
column generation was over. When the gap between the
optimal value of the R-LMP at iteration t and the best
incumbent lower bound is smaller than a predefined thresh-
old, the column generation algorithm is terminated and
the best incumbent is kept as the final lower bound. This
is useful to avoid undesired tailing-off effects in the col-
umn generation algorithm. In our experiments, we fixed the
threshold to 10−6.

3.2. Branching Strategy

One of the most challenging aspects in the design of a
branch-and-price algorithm is the choice of the branching
strategy: Besides partitioning the solution space, a good
branching strategy must make infeasible the current optimal
solution of the R-LMP, and it must not change the structure
of the pricing subproblem. Many authors have addressed
the issue of the design of effective branching strategies
in branch-and-bound and branch-and-price algorithms. We
refer the reader to Land and Doig (1960) and Barnhart et al.
(1998) for detailed treatments of the subject.
We have devised a ternary branching rule that consists

of selecting a task j∗, which has a fractional assignment to
two or more agents in the optimal solution of the R-LMP.
We forbid some of the assignments in each of two new
subproblems, and we assign a task to a particular agent in
the third subproblem.
For each task j ∈�, we consider the set Mj of agents

for which there is a fractional assignment

fij =
∑
d∈�′

i

∑
k∈�

xdijkz
d
i

in the optimal solution of the R-LMP, and we select the
agent i∗j = argmaxi∈� �fij� corresponding to the highest
fractional assignment for task j . The set Mj\�i∗j � is parti-
tioned into two subsets M−

j and M+
j in the following way:

The agents in Mj\�i∗j � are sorted by nonincreasing values
of fij , and they are inserted alternately in M+

j and M−
j .



Ceselli and Righini: A Branch-and-Price Algorithm for the Multilevel Generalized Assignment Problem
Operations Research 54(6), pp. 1172–1184, © 2006 INFORMS 1175

Agent i∗j is inserted in both M+
j and M−

j . In this way, we
compute a heuristic solution to a subset sum problem to
obtain a balanced partition of the agents in Mj . The idea is
to fix the same number of variables in each branch, while
trying to keep a balanced partition.
The set of agents to which task j is not assigned, �Mj ,

is also partitioned into two subsets �M−
j = �i ∈ � � fij = 0,

i � ı̃� and �M+
j = �i ∈ � � fij = 0� i > ı̃�, where ı̃ is chosen

in such a way that � �M−
j � = � �Mj �/2�.

The task j∗ selected for branching is the one for which
�Mj � is maximum. In case of ties, we select the task for
which the partition obtained is most balanced, that is,
�∑i∈M−

j
fij −

∑
i∈M+

j
fij �/

∑
i∈Mj

fij is minimum.
Then, we branch on j∗ by setting
• ∑

i∈M−
j∗∪ �M−

j∗
∑

k∈� xij∗k = 0 in the first branch,
• ∑

i∈M+
j∗∪ �M+

j∗
∑

k∈� xij∗k = 0 in the second branch, and
• ∑

k∈� xi∗
j∗ j∗k

= 1 in the third branch.
The addition of constraints in the first and second

branches forbids some assignments, but it does not change
the structure of the pricing problem. The constraint in the
third branch is handled in a similar way: We forbid the
assignment of task j∗ to all agents but i∗j∗ , and we state as
equality the j∗th constraint of set (18) in the pricing prob-
lem for agent i∗j . This does not change the structure of the
pricing problem.
We adopt a mixed search strategy. The third branch is

always explored first, in a depth-first search fashion. This
allows us to quickly reoptimize the LMP and to search for
good primal solutions deep in the search tree. The sub-
problems in the first and second branches are stored as
open nodes. Whenever an integer solution is found, or the
dual bound for the subproblem exceeds the value of the
best incumbent primal solution, the node with the lowest
dual bound is retrieved from the open nodes list in a best-
bound-first search fashion. A set of experiments showed
that this branching strategy is more effective than a standard
two-branches rule: First, the depth-first exploration of the
third branch helps in quickly finding tight primal bounds;
moreover, the assignment of the task to the most desirable
agent is forbidden in both of the first two branches, and
this helps in tightening the corresponding bounds.
When all the variables in a relaxed solution have inte-

ger values, the optimal task-level assignment is computed
solving a MCKP for each agent.

3.3. Column Generation

Pricing Algorithm. We solve the binary MCKP to
optimality by a modified version of Pisinger’s algorithm
(see Pisinger 1995) which combines dynamic programming
with bounding and reduction techniques. This algorithm
was devised for the MCKP with integer coefficients, while
in our pricing subproblems the dual variables (as well as
the multipliers in Lagrangean relaxation) can be fractional.
Therefore, we modified the algorithm in a way similar to
that described in Ceselli and Righini (2005) and Ceselli

(2003), that is, by relaxing the bounding tests so that the
solution computed by the algorithm may differ from opti-
mality by at most a very small positive value (n · 10−9 in
our experiments, where n is the number of variables left
outside the core). Because the classical formulation of the
MCKP has equality constraints, we add a set of N dummy
elements, each appearing in a constraint of the set (18),
corresponding to items with zero resource consumption and
zero cost.

Column Management. At each iteration of the column
generation algorithm, all columns that are generated with a
negative reduced cost are inserted into the R-LMP.
Whenever the number of columns exceeds a limit, we

remove columns from the R-LMP. According to statistical
results (see §4.2), this limit was set to 3,000 in our exper-
iments. The removal criterion depends on three different
tests on the reduced cost of each column, so three types of
removable columns are considered.
• A column is red if its reduced cost exceeds the gap

between the best incumbent feasible solution and the lowest
lower bound among all the open nodes of the search tree. In
this case, the column cannot belong to an optimal solution
of any node of the search tree, and therefore it is deleted.
• A column is yellow if its reduced cost exceeds the

gap between the current R-LMP value and the Lagrangean
lower bound. In this case, the column cannot belong to the
optimal solution of the current node; the column is deleted
from the R-LMP and is stored in a yellow pool Py .
• A column is green if its reduced cost exceeds the same

gap as above, divided by N . In this case, the column can
belong to the optimal solution of the current node; it is
removed from the R-LMP and is stored in a green pool Pg .
Because every column is related to a particular agent,

each pool is partitioned into N subpools. The green pool
Pg is scanned before executing the pricing algorithm, also
at the node of the search tree in which the deletion has
occurred: If any column with negative reduced cost is
found, it is inserted into the R-LMP. The columns in the
yellow pool Py are considered for reinsertion only in sub-
sequent nodes of the search tree.
Finally, to avoid an excessive growth of the pools, the

columns are erased from the pool when their reduced cost
is nonnegative for a certain number of consecutive evalu-
ations. This parameter was tuned to a value of six in our
experiments (see §4.2).

Initialization. To guarantee that a feasible solution of
the R-LMP exists in each node of the search tree, a dummy
column is inserted into the initial R-LMP; it corresponds to
a duty in which all tasks are executed by a dummy agent
with infinite capacity. The cost of such a column is set to a
very high value, that is,

∑
j∈�maxi∈� � k∈��cijk�. Moreover,

11 sets of columns are inserted into the initial R-LMP at
the root node, corresponding to primal solutions produced
by heuristic algorithms. A detailed description of this ini-
tialization is reported in §3.4.



Ceselli and Righini: A Branch-and-Price Algorithm for the Multilevel Generalized Assignment Problem
1176 Operations Research 54(6), pp. 1172–1184, © 2006 INFORMS

To obtain a warm start, in each nonroot node the R-LMP
is initialized with the feasible columns of the most recently
solved node, plus all columns from the pools that have neg-
ative reduced cost when they are evaluated with the optimal
dual values of the father node.

3.4. Primal Bounds

The problem of finding a feasible solution to the MGAP
is ��-complete. Nevertheless, we search for feasible solu-
tions at every node of the search tree because the avail-
ability of good primal bounds may considerably reduce the
overall computing time needed to reach a provably optimal
solution.
We devised a fast rounding heuristic, and implemented

both heuristic algorithms, MGAPH1 and MGAPH2, pro-
posed by French and Wilson (2002). Furthermore, we pro-
pose a new local search neighborhood (that we call SHIFT)
and a modification of the local search technique used for
MGAPH2 (that we call SWAP). In the following para-
graphs, we outline these algorithms and two local search
techniques. Then, we describe how each heuristic is used
in the branch-and-price algorithm.
For a formal description of MGAPH1 and MGAPH2, we

refer to the original paper, while the complete pseudocodes
of the rounding heuristic and the local search algorithms
are reported in the appendix.

Rounding Heuristic. Let fij =
∑

d∈�′
i
�
∑

k∈� xdijk�z
d
i be

the (possibly fractional) assignment of task j to agent i cor-
responding to the fractional R-LMP solution defined by the
zdi variables. First, each task is assigned to the agent for
which fij is maximum. Let Ci be the resulting set of tasks
assigned to agent i. Second, for every agent i an MCKP
with integer coefficients is solved to optimality by the algo-
rithm of Pisinger (see Pisinger 1995). If a feasible solution
can be found for each agent, a primal bound for MGAP is
obtained; otherwise, the heuristic fails. We observed that in
almost all cases, this method finds a feasible solution.

MGAPH1. This algorithm consists of two steps. First,
a superoptimal integer solution is built with a greedy ap-
proach. For each task i, the agent-level assignment �i� j� k�
with the lowest cijk is selected, possibly violating some
capacity constraint. Then, a local search for feasible solu-
tions is performed, shifting tasks from overloaded agents
to agents with enough residual resources. The shift corre-
sponding to the minimum increase in the solution value per
resource consumption unit is iteratively selected.

MGAPH2. Consider gijk =
∑

d∈�′
i
xdijkz

d
i . In a construc-

tion step, a value rj = gi′jk′ − gi′′jk′′ is computed for each
task, where �i′� j� k′� and �i′′� j� k′′� are the first and the sec-
ond agent-level assignments for task j that do not violate
capacity constraints with the highest gijk values. The task
with the highest rj is selected, and the �i

′� j� k′� assignment
is made. If, due to capacities, a task is found that cannot be
assigned to any agent, the heuristic fails. Otherwise, a local

search is performed, considering a neighborhood made of
all solutions that can be obtained from the current one by
swapping two tasks assigned to different agents.

Local Search. First, we propose a SHIFT procedure:
The neighborhood of the current solution is made of all
solutions that can be obtained by shifting a task from an
agent to another or from an efficiency level to another. As
detailed in the appendix, we consider in turn each task,
each agent, and each efficiency level on that agent. The
elements in each set are considered in random order. When-
ever an improving move is found, it is immediately per-
formed with a first-improve policy. The cost of this local
search step is O�NMK�. Second, we modified the pairwise
swap neighborhood of French and Wilson (2002), obtain-
ing a procedure that we call SWAP in the following way.
We consider all solutions that can be obtained by swapping
two tasks assigned to different agents, or by swapping the
efficiency levels of two tasks assigned to the same agent.
Only the best improving swap is performed at each itera-
tion. The cost of this improving phase is O�M2K2� for each
iteration.
Our rounding heuristic, coupled with the exploration of

the SHIFT neighborhood, was run at every column genera-
tion step. It yielded good upper bounds even in the earlier
iterations with a low computational cost, and this was use-
ful also to drive the column removal routine. MGAPH2
was used once for each node in the search tree, using
the optimal R-LMP solution. We modified the local search
step of MGAPH2 in the following way: First, we explore
the SHIFT neighborhood and the first-improving shift is
made, until no more improving shifts can be found. We
then explore the SWAP neighborhood and the best improv-
ing swap is made until no more improving swaps can be
found. The exploration of the SHIFT and the SWAP neigh-
borhoods is iterated until no more improving moves can
be made. The neighborhood SWAP is considered only at
the root node. The rounding heuristic and the MGAPH1
algorithm were used in the initialization of the R-LMP: We
chose to generate 25 sets of columns using the former, ran-
domly drawing each fij in the interval &0�1� (see §4.2).
The details on how the random values were generated are
reported in §4. Also, columns corresponding to infeasible
solutions were added to the R-LMP.

4. Experimental Analysis

4.1. Test Instances

We tested the branch-and-price algorithm on three classes
of instances. Classes C and D are generated using random
generators as described by Martello and Toth for the GAP,
and extended to the MGAP, while Class E is generated as
proposed by Laguna et al. (1995).
• Class C: uncorrelated resource consumption and cost.
aijk is taken as a random integer from a uniform dis-

tribution in &5� � � � �25'.



Ceselli and Righini: A Branch-and-Price Algorithm for the Multilevel Generalized Assignment Problem
Operations Research 54(6), pp. 1172–1184, © 2006 INFORMS 1177

cijk is taken as a random integer from a uniform dis-
tribution in &1� � � � �40'.

bi = 0�8
∑

i∈�
∑

k∈� aijk/�NK�.
• Class D: strongly correlated resource consumption

and cost.
aijk is taken as a random integer from a uniform dis-

tribution in &1� � � � �100'.
cijk is taken as a random integer from a uniform dis-

tribution in &101− aijk� � � � �121− aijk'.
bi = 0�8

∑
i∈�

∑
k∈� aijk/�NK�.

• Class E: resource consumption and cost correlated
through an exponential distribution.

aijk is randomly generated as 1− 10 ln&random�0�1''
rounded to the nearest integer with probability p, aijk =�
(that is, the assignment of task j to agent i at level k is
forbidden) with probability 1−p.

cijk is randomly generated as 1�000/aijk − 10 ·
random�0�1' rounded to the nearest integer.

bi =max�0�8
∑

i∈�
∑

k∈� aijk/�NK��maxj� k�aijk��.
By “random�0�1'” we mean a random rational value uni-

formly drawn in the interval �0�1'. Such a random value
was generated by drawing a random signed integer and
dividing this by the constant value “INT_MAX” (on our
machine, four bytes are used for signed integers, and
“INT_MAX” is set to 231 − 1). We generated 215 test
instances in the following way. For each class, we gener-
ated two problem sets, with M = 100 and M = 200 tasks.
For M = 100, we considered a number of agents N equal
to 10, 20, and 30 and a number of levels K equal to 3, 4,
and 5; for M = 200, we considered a number of agents
N equal to 15 and 30 and a number of levels K equal to
4 and 5. For the instances in Class E with M = 100, the
probability p of allowing an agent-task-level assignment
was fixed to 1.0, while for the instances in Class E with
M = 200, the case p= 0�8 and the case p= 1�0 have been
considered. Each combination is reported in the first four
columns of the tables reported in this section, and consists
of five instances; hence, each row of the tables reports the
average results for these five instances.
As reported in §2, dominated assignments can be found

by simple preprocessing tests. In fact, about 50% of the
binary variables were fixed to zero for the Class C in-
stances, about 11% for Class D, and about 8% for Class E.
As expected, the percentage of fixed variables increases as
the number of levels K increases.
The branch-and-price algorithm was coded in C++ and

compiled under Linux OS with gcc version 2.96 with full
optimizations. CPLEX 6.5.3 was used as an LP solver.
All tests were run on a PC equipped with an Intel P4
1,600 MHz CPU and 512 MB RAM. Each test was stopped
in case of memory overflow or whenever a time-out of two
hours was exceeded.

4.2. Parameter Tuning

As discussed in the previous sections, three parameters
affect the computational performance of the algorithm.

They are: the number of columns generated to populate
the initial RMP, the threshold on the number of columns
in the RMP that triggers the columns removal routine, and
the number of iterations in which a column is kept in the
columns pool. To tune these parameters, we considered the
CPU time needed to solve the root problem of the instances
involving 200 tasks. In Figure 1, we include three charts,
in which different settings for each parameter are com-
pared. In each chart, the values in the abscissae correspond
to the different settings of the parameter, and the values
in the ordinates are the corresponding computation time.

Figure 1. Tuning the algorithm parameters.

0

50

100

150

200

250

300

3,000 4,000 5,000 6,000 7,000

C
P

U
 ti

m
e 

(s
)

Columns limit

Limiting the number of columns in the RMP

0

100

200

300

400

500

600

700

0 20 40 60 80 100

C
P

U
 ti

m
e 

(s
)

Number of solutions

Initializing the RMP with heuristic solutions

Type C, N = 15
Type C, N = 30
Type D, N = 15
Type D, N = 30

Type E, N = 15
Type E, N = 30
Type E (p = 0.8), N = 15
Type E (p = 0.8), N = 30

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16 18

C
P

U
 ti

m
e 

(s
)

Iterations limit

Deleting columns in the pool



Ceselli and Righini: A Branch-and-Price Algorithm for the Multilevel Generalized Assignment Problem
1178 Operations Research 54(6), pp. 1172–1184, © 2006 INFORMS

We observed that the computation time did not change
significantly for different numbers of levels. Therefore, in
each chart we present eight series, considering each com-
bination of the correlation type and the number of agents,
and reporting the average results on the corresponding
instances. First, we tried to initialize the RMP with the
dummy column only, or with columns corresponding to 5,
10, 25, and 100 primal solutions. It is worth noting that
the worst performance corresponds to the initialization of
the RMP with only a few columns: When considered as
constraints in the dual problem, these columns restrict the
solution space, leaving the dual variables free to assume
misleading values. Setting this parameter to 25 seems to
be the most appropriate choice. Second, we tried to set the
columns-removal threshold to 3,000, 4,000, 5,000, 6,000,
and 7,000. Even if sometimes a setting to 5,000 columns
would be better (instances of type C, with 15 agents), fix-
ing the threshold to 3,000 gives the best average CPU time.
Third, we tuned the iterations limit on the columns pool
by setting it to zero, which means not managing a pool
of removed columns, 3, 6, 12, and 18. The value of six
was found to be the best. A slight increase in the computa-
tion time was observed moving from zero to three, which
reflects the overhead for managing the pool.

4.3. Computational Results

In the first set of tests, the quality of the bound given by
the LMP relaxation is compared to the bound given by the
LP relaxation, which is used by CPLEX and other general-
purpose solvers. In Table 1 we report, for both methods,
the average integrality gap (int. gap)—that is, the gap �v∗−
��/v∗ between the relaxation value � and the optimal (or
the best-known) integer solution value v∗; and the average
number of fractional agent-level assignments for each task
(fract.)—that is, the ratio between the number of nonzero
variables in an optimal fractional solution and M , the num-
ber of tasks.
Both relaxations yield a rather tight bound, but the LMP

relaxation clearly dominates the LP relaxation, also from an
experimental point of view. Nevertheless, the time required
to obtain the LMP bound is one order of magnitude (some-
times even two orders) higher than the time required to
compute the LP relaxation.
The ratio between the LMP integrality gap and the

LP integrality gap increases as the ratio M/N decreases
and decreases as K increases. This was expected because
the M/N value represents the average number of tasks
assigned to the same agent. As reported by Martello and
Toth (1990), at most two variables can assume fractional
values in the linear relaxation of an MCKP problem; these
two fractional variables must belong to the same multiple-
choice constraint (18). Hence, when a high number of
tasks is assigned to the same agent in a fractional solu-
tion, several task-level assignments take an integer value,
and the convexification of constraints (17)–(18) has a minor
effect. Second, a high K corresponds to a high number

Table 1. Comparison between LP relaxation and LMP
relaxation.

Instances
Linear relaxation LMP relaxation

Int. gap Int. gap
Correlation N M K (%) Fract. (%) Fract.

C 10 100 3 2.35 1.10 0.34 1.23
10 100 4 2.41 1.10 0.45 1.33
10 100 5 1.82 1.09 0.39 1.22
20 100 3 4.59 1.19 0.38 1.31
20 100 4 3.32 1.19 0.40 1.43
20 100 5 3.10 1.19 0.40 1.41
30 100 3 5.96 1.29 0.34 1.41
30 100 4 3.73 1.28 0.35 1.50
30 100 5 0.36 1.29 0.00 1.83

Avg. (C) 3.07 1.19 0.34 1.41
D 10 100 3 0.12 1.10 0.06 1.73

10 100 4 0.12 1.10 0.09 1.71
10 100 5 0.06 1.10 0.06 2.03
20 100 3 0.67 1.20 0.60 2.45
20 100 4 0.53 1.20 0.52 2.67
20 100 5 0.43 1.20 0.43 3.32
30 100 3 1.06 1.30 0.91 2.81
30 100 4 0.56 1.30 0.55 2.87
30 100 5 0.50 1.29 0.50 3.37

Avg. (D) 0.45 1.20 0.41 2.55
E 10 100 3 0.16 1.10 0.02 1.43

10 100 4 0.13 1.10 0.00 1.13
10 100 5 0.11 1.09 0.00 1.21
20 100 3 0.65 1.19 0.03 1.71
20 100 4 0.56 1.20 0.02 1.78
20 100 5 0.63 1.20 0.03 1.77
30 100 3 1.86 1.29 0.07 2.32
30 100 4 1.64 1.30 0.08 2.20
30 100 5 1.53 1.29 0.07 2.13

Avg. (E) 0.81 1.19 0.04 1.74
C 15 200 4 1.07 1.08 0.23 1.25

15 200 5 1.00 1.07 0.20 1.26
30 200 4 0.19 1.14 0.09 2.07
30 200 5 0.00 1.15 0.00 2.74

Avg. (C) 0.57 1.11 0.13 1.83
D 15 200 4 0.15 1.08 0.15 2.56

15 200 5 0.11 1.07 0.11 3.13
30 200 4 0.66 1.15 0.66 4.13
30 200 5 0.46 1.15 0.46 4.71

Avg. (D) 0.34 1.11 0.34 3.63

E �p= 0�8� 15 200 4 0.08 1.01 0.01 1.31
15 200 5 0.07 1.01 0.00 1.32
30 200 4 0.31 1.01 0.01 1.60
30 200 5 0.29 1.01 0.01 1.58

Avg. (E, p 0.8) 0.19 1.01 0.01 1.45

E �p= 1�0� 15 200 4 0.07 1.07 0.01 1.32
15 200 5 0.06 1.07 0.01 1.25
30 200 4 0.27 1.14 0.01 1.42
30 200 5 0.27 1.14 0.01 1.57

Avg. (E, p 1.0) 0.17 1.11 0.01 1.39

of binary variables in the same multiple-choice constraint.
This does not affect the number of variables with a frac-
tional value; thus, following the previous argumentation,
the convexification has a minor effect. On the opposite, for
both relaxations the number of nonzero variables in a frac-
tional solution increases as the ratio M/N decreases. On
the average, the LMP solution has more fractional assign-



Ceselli and Righini: A Branch-and-Price Algorithm for the Multilevel Generalized Assignment Problem
Operations Research 54(6), pp. 1172–1184, © 2006 INFORMS 1179

ments than the LP solution. This is especially evident for
instances in Class D.
In Table 2, we report computational results for our

method. The table consists of two horizontal blocks. The
first refers to the root node and the second to the nodes
of the search tree. We indicate v̄ the value of the best pri-
mal solution found at the root node, v∗ the optimal solution
value (or the best-known primal bound, when optimality
was not proved), �� the optimal LMP value at the root node,
and �∗ the dual bound at the end of computation. In the
“root node” block, we report the value �v̄− v∗�/v∗, which
indicates how far the initial primal bound is from optimal-
ity (primal gap); the value �v̄− ����/ ���—that is, the gap
between the primal and dual bound at the root node (p.d.
gap); the number of column generation iterations needed
to reach a LMP optimum (iter.), the number of generated
columns (cols); and the time spent at the root node. In the
whole search tree block we indicate the number of nodes
evaluated (ev. nodes), the gap between the primal and dual
bound at the end of computation �v∗ − �∗��/�∗� (gap),
the number of instances solved to proven optimality (opt),
and the overall time spent (time) in the exploration of the
whole search tree (including the root node).
By looking at the rightmost three columns of the root

node block, it can be noticed that the number of column
generation iterations and the time required to solve the
relaxation decrease as the number of agents increases. In
fact, the insertion of new columns in the R-LMP is gov-
erned by an “all-negative” policy: A new column with neg-
ative reduced cost can be found for each agent. A larger
number of agents means a larger number of columns added
to the R-LMP at each column generation iteration, and thus
faster convergence.
By analyzing the computational results for the whole

search tree, it is clear that instances in Class C can be
solved very easily: Optimality was proven at the root node
for all instances but one. This was expected because re-
source consumption and costs are not correlated, and an
optimal solution can quickly be found by choosing assign-
ments with low resource consumption and low cost.
All the instances in Class E were solved to optimality

in a few minutes: Often a very tight primal bound was
found at the root node, and the gap between primal and
dual bounds was closed by exploring a few nodes of the
search tree. This shows that our branching rule is effective
for these kinds of instances.

Effect of Symmetries. Instances in Class D are indeed
the hardest ones. A singular effect was experimentally
observed: Tight primal and dual bounds were obtained at
the root node, but the gap could not be closed after many
branching steps. We explain this phenomenon with the fol-
lowing observation. Let the efficiency of an assignment
�i� j� k� be the ratio 1/aijkcijk. Because resource consump-
tion and cost are strongly correlated, several assignments
have a similar efficiency. Suppose that a task j is fraction-
ally assigned to agent i in the optimal LMP solution of a

node in the search tree, and a branching operation forbids
this fractional assignment. Even if agents are not identical,
an equivalent solution is likely to exist, in which the frac-
tional part of task j is assigned to a different agent i′ at
the same efficiency, maybe by shifting to agent i the frac-
tional part of another task j ′ previously allocated to agent i′.
Hence, a fractional optimal solution after branching would
be a simple rearrangement of the tasks between the agents.
This effect is mitigated in Class E instances because the
correlation between resource consumption and cost is not
linear.
This further motivates the depth-first search feature of

our branching rule: The gap can be closed just by finding
the optimal integer solution, which is more likely to be
found deep in the search tree than at the root node, as fixing
task-agent assignments to one has a strong effect in the
construction of an integer solution.

Large-Scale Instances. To test our algorithm on a more
challenging testbed, we considered the set of instances pre-
sented by Yagiura et al. (1998). These instances correspond
to GAP problems generated with C, D, and E correlation
types, in which up to 1,600 tasks must be assigned to up
to 80 agents. We considered the problems involving the
assignment of 400, 900, and 1,600 tasks. To obtain a set of
corresponding MGAP instances, we put the tasks on two,
three, and four levels for the instances with 400, 900, and
1,600 tasks, respectively, and adjusted the capacity of the
agents by dividing each value by two, three, and four cor-
respondingly. We imposed no time limitation on these tests.
The results obtained by our branch and price on these mod-
ified instances are reported in Table 3. In the first horizontal
block of this table, we report the original GAP instance ID
and the number of agents, tasks, and levels of the corre-
sponding MGAP instance. The second block corresponds
to the optimization status at the root node. We indicate
how far the primal solution found at the root node is with
respect to the best-known primal solution, the gap between
the primal and dual solutions and the time spent. The third
block refers to the overall branching tree and contains the
gap between the primal and dual bounds at the end of
computation, the number of explored nodes, and the time
required to obtain a proven optimal solution. The last two
columns were marked with a dash when the process ran
out of memory. We observed the same behavior of the pre-
vious analysis: Branch-and-price was able to solve all the
instances with correlation type C and E; on the other hand,
it failed to solve to proven optimality the instances with
correlation type D, even though the gap between primal
and dual bounds was very small.

Further Testing. As discussed in the previous para-
graph, instances in Class D remain challenging. While it is
computationally easy to find a very tight primal bound, it is
hard to identify an optimal integer solution. We also mea-
sured the Hamming distance between the primal solution
found by our heuristics at the root node and the best primal



Ceselli and Righini: A Branch-and-Price Algorithm for the Multilevel Generalized Assignment Problem
1180 Operations Research 54(6), pp. 1172–1184, © 2006 INFORMS

Table 2. Experimental results for the branch-and-price algorithm.

Instances Root node Whole search tree

Corr. N M K Primal gap (%) P.d. gap (%) Iter. Cols. Time(s) Ev. nodes Gap (%) Opt. Time(s)

C 10 100 3 0.00 0.00 166�20 1,702.40 5�19 0�00 0.00 5 5�19
10 100 4 0.00 0.00 152�80 1,684.40 5�14 0�00 0.00 5 5�14
10 100 5 0.00 0.00 150�00 1,619.40 4�77 0�00 0.00 5 4�77
20 100 3 0.00 0.00 49�20 1,315.20 1�62 0�00 0.00 5 1�62
20 100 4 0.00 0.00 42�40 1,222.40 1�58 0�00 0.00 5 1�58
20 100 5 0.00 0.00 42�40 1,196.20 1�61 0�00 0.00 5 1�61
30 100 3 0.00 0.00 25�20 1,329.00 1�18 0�00 0.00 5 1�18
30 100 4 0.98 0.16 21�20 1,242.60 1�26 1�20 0.00 5 1�60
30 100 5 0.00 0.00 14�80 1,142.80 1�28 0�00 0.00 5 1�28

Avg. (C) 0.11 0.02 73�80 1,383.82 2�62 0�13 0.00 45 2�66

D 10 100 3 0.46 0.49 161�00 1,741.80 6�92 6�110�00 0.02 3 2�102�17
10 100 4 0.54 0.57 162�20 1,763.20 7�49 6�669�80 0.00 4 3�324�51
10 100 5 0.54 0.54 123�20 1,473.00 6�20 3�133�80 0.00 5 1�678�22
20 100 3 1.62 1.76 58�80 1,527.60 3�36 10�217�60 0.12 0 —
20 100 4 1.52 1.59 50�40 1,469.60 3�38 9�584�20 0.07 0 —
20 100 5 1.58 1.63 41�20 1,325.00 3�21 11�828�80 0.04 1 6�608�36
30 100 3 1.63 1.80 37�20 1,700.40 2�78 7�775�00 0.15 0 —
30 100 4 1.37 1.51 34�00 1,680.40 2�95 9�740�80 0.13 0 —
30 100 5 1.16 1.22 28�00 1,576.60 2�94 10�950�20 0.06 0 —

Avg. (D) 1.16 1.24 77�33 1,584.18 4�36 8�445�58 0.07 13 3�428�31

E 10 100 3 0.41 0.42 181�80 1,933.60 7�78 66�00 0.00 5 63�52
10 100 4 0.04 0.04 192�60 2,026.40 9�06 1�20 0.00 5 10�73
10 100 5 0.28 0.28 189�00 1,982.00 9�02 4�20 0.00 5 14�40
20 100 3 1.08 1.10 65�20 1,617.40 3�51 123�60 0.00 5 53�89
20 100 4 0.52 0.54 65�00 1,620.80 3�87 173�40 0.00 5 80�72
20 100 5 0.95 0.97 68�00 1,636.60 4�39 136�80 0.00 5 68�59
30 100 3 1.84 1.95 32�40 1,519.00 2�43 1�698�00 0.00 5 597�99
30 100 4 1.03 1.10 33�00 1,567.40 2�91 711�60 0.00 5 274�41
30 100 5 0.92 0.98 34�40 1,585.60 3�38 478�80 0.00 5 190�87

Avg. (E) 0.79 0.82 95�71 1,720.98 5�15 377�07 0.00 45 150�57

Avg. M = 100 0.68 0.69 82�28 1,562.99 4�04 2�940�93 0.02 103 1�193�85

C 15 200 4 0.00 0.00 357�80 2,548.20 87�46 0�00 0.00 5 87�46
15 200 5 0.00 0.00 356�00 2,131.40 54�79 0�00 0.00 5 54�79
30 200 4 0.00 0.00 47�00 2,024.60 10�15 0�00 0.00 5 10�15
30 200 5 0.00 0.00 27�60 1,579.00 10�73 0�00 0.00 5 10�73

Avg. (C) 0.00 0.00 197�10 2,070.80 40�78 0�00 0.00 20 40�78

D 15 200 4 0.72 0.75 182�20 2,160.00 68�73 5�278�20 0.02 0 —
15 200 5 0.53 0.54 162�00 2,767.00 58�26 4�111�60 0.01 3 1�429�00
30 200 4 1.19 1.25 63�60 2,659.00 29�70 5�289�00 0.06 0 —
30 200 5 0.94 0.96 60�00 2,545.00 25�18 7�500�80 0.02 0 —

Avg. (D) 0.85 0.88 116�95 2,532.75 45�47 5�544�90 0.03 3 1�429�00

E �p= 0�8� 15 200 4 0.37 0.37 428�80 2,779.80 123�18 16�20 0.00 5 287�66
15 200 5 0.38 0.38 412�40 1,627.80 104�06 30�00 0.00 5 433�27
30 200 4 0.64 0.65 128�80 1,711.80 45�11 148�20 0.00 5 419�52
30 200 5 0.41 0.41 137�40 1,720.40 45�87 47�40 0.00 5 206�73

Avg. (E, 0.8) 0.45 0.45 276�85 1,959.95 79�55 60�45 0.00 20 336�79

E �p= 1�0� 15 200 4 0.42 0.42 390�00 2,219.00 106�92 53�40 0.00 5 975�23
15 200 5 0.23 0.23 405�00 1,710.20 148�19 58�80 0.00 5 1�037�15
30 200 4 0.41 0.41 128�00 1,633.20 44�52 46�80 0.00 5 199�19
30 200 5 0.28 0.28 130�40 1,689.80 44�47 86�40 0.00 5 271�30

Avg. (E, 1.0) 0.33 0.34 263�35 1,813.05 86�03 61�35 0.00 20 620�71

Avg. M = 200 0.41 0.42 213�56 2,094.14 62�96 1�416�68 0.01 63 606�82



Ceselli and Righini: A Branch-and-Price Algorithm for the Multilevel Generalized Assignment Problem
Operations Research 54(6), pp. 1172–1184, © 2006 INFORMS 1181

Table 3. Testing branch-and-price on large-size instances.

Instances Root node Whole search tree

ID Corr. N M K Primal gap (%) P.d. gap (%) Time(s) Final gap (%) Ev. nodes Time(s)

c10400 C 10 200 2 43�51 43�51 643�21 0.00 6 757�69
c20400 20 200 2 0�64 0�69 111�75 0.00 30 278�82
c40400 40 200 2 0�54 0�54 20�35 0.00 12 50�25
c15900 15 300 3 0�09 0�09 4�514�97 0.00 6 4�854�12
c30900 30 300 3 0�10 0�10 372�94 0.00 90 2�078�95
c60900 60 300 3 0�00 0�00 26�40 0.00 0 31�95
c201600 20 400 4 0�07 0�07 5�381�14 0.00 3 5�877�77
c401600 40 400 4 0�00 0�00 203�58 0.00 0 213�42
c801600 80 400 4 0�00 0�00 43�99 0.00 0 61�22
Avg. 4�99 5�00 1�257�59 0.00 16.33 1�578�24

d10400 D 10 200 2 0�46 0�49 526�17 0.03 — —
d20400 20 200 2 0�51 0�58 86�22 0.07 — —
d40400 40 200 2 1�33 1�48 23�48 0.15 — —
d15900 15 300 3 0�63 0�65 2�576�19 0.02 — —
d30900 30 300 3 1�10 1�19 301�49 0.09 — —
d60900 60 300 3 0�93 1�05 101�30 0.12 — —
d201600 20 400 4 0�00 0�76 10�606�39 0.76 — —
d401600 40 400 4 0�00 0�74 649�28 0.74 — —
d801600 80 400 4 1�00 1�07 218�10 0.07 — —
Avg. 0�66 0�89 1�676�51 0.23 — —

e10400 E 10 200 2 1�41 1�42 670�55 0.00 804 17�473�80
e20400 20 200 2 0�21 0�21 94�91 0.00 3 121�89
e40400 40 200 2 1�96 1�97 27�38 0.00 39 151�86
e15900 15 300 3 0�03 0�03 4�732�69 0.00 15 6�607�22
e30900 30 300 3 0�85 0�85 350�93 0.00 72 1�759�14
e60900 60 300 3 0�02 0�02 130�60 0.00 12 313�62
e201600 20 400 4 0�15 0�15 12�446�65 0.00 3 12�996�30
e401600 40 400 4 0�02 0�02 875�21 0.00 45 3�188�50
e801600 80 400 4 0�17 0�17 276�39 0.00 213 2�685�78
Avg. 0�54 0�54 2�178�37 0.00 134.00 5�033�12

solution encountered while exploring the search tree. Even
if a small improvement is made in the solution value, an
average distance higher than 100 and 250 is observed for
Class D instances with M = 100 and M = 200, respectively
(for Class E, such distance is about 45 and 65). The sym-
metry in the LMP optimal solutions suggests the presence
of symmetries also in the integer optimal solutions. How-
ever, even though symmetric optima could exist, which are
less far apart from the initial solution, it would still be hard
to cover such a large distance with standard local search
methods.
Finally, we remark that the number of efficiency levels

does not affect the performance of our method: Branch-
and-price was able to solve instances involving up to 30
efficiency levels. Although no problem with so high a num-
ber of efficiency levels is addressed in the literature, these
kinds of instances could arise as a discretization of some
nonlinear resource consumption function.

4.4. Benchmark Algorithms

General Purpose Solver. As a first term of compari-
son, we present the behavior of ILOG CPLEX 6.5.3 when
used as an IP solver to optimize the MGAP. CPLEX uses a
branch-and-cut approach, automatically generating cliques,
cover, and GUB-cover inequalities to strengthen the LP
relaxation. All internal parameters were kept at their default
values. These include a relative optimality tolerance of
0�01%. While instances in Class C were handled quite eas-
ily, CPLEX was able to solve only a small number of
instances in Class E, and no instance in Class D, mainly
due to memory overflow problems.

Logic Cuts. Logic cuts are a class of inequalities, anal-
ogous to cover cuts, that can be obtained in a preprocessing
phase from the capacity constraints (3). A similar gen-
eration of valid cover cuts in a preprocessing phase has
recently been adopted by Nauss (2003) for the case of the
GAP. The use of logic cuts to improve the performances
of a general-purpose solver for the MGAP is discussed by



Ceselli and Righini: A Branch-and-Price Algorithm for the Multilevel Generalized Assignment Problem
1182 Operations Research 54(6), pp. 1172–1184, © 2006 INFORMS

Osorio and Laguna (2003). As proposed by the authors, we
added all nondominated 1-cuts to the model of MGAP and
used CPLEX to solve the new formulation. The 1-cuts can
be generated in linear time with a simple procedure.
According to the computational experience described by

Osorio and Laguna (2003), all CPLEX parameters were
kept at their default values, except for the search policy
parameter, whose setting was changed from “best-bound-
first” to “up-branch-first.”
The introduction of logic cuts yielded a substantial

improvement to the performances of CPLEX for small
instances: The size of the search tree was strongly reduced,
avoiding the memory overflow problems. However, the
introduction of these inequalities enlarged the dimension of
the problem considerably, and the computation time was
substantially increased.
To assess the effectiveness of the heuristics and local

search methods used for branch-and-price, we tried to
incorporate them into the optimization process of CPLEX.
We kept the same settings used for branch-and-price: We
ran MGAPH2 and considered the SWAP neighborhood
only at the root node, while MGAPH1 with the SHIFT
neighborhood was used once at each node of the branching
tree.

Experimental Results. In Table 4, we compare the
performances of the four methods. The table is divided into
four horizontal blocks; each block refers to a solution strat-
egy, which is indicated in the leading row. For each method,
we report the average time to complete computation (when
optimality was proven), the number of instances solved to
proven optimality, and the average gap between the pri-
mal and dual bounds, when computation exceeded resource
limitation. As outlined before, even if the introduction of
logic cuts solves the memory problems, the convergence
of the solver is slow. The embedding of the primal heuris-
tics yielded a further improvement to the performances of
CPLEX, but the overall behavior of the method was still the
same. This test highlighted that the bounding and branching
techniques are of key importance in the algorithmic suc-
cess of branch-and-price. Branch-and-price clearly outper-
formed the other three methods: This is especially evident
for instances in Class E, where CPLEX was able to prove
the optimality of only nine of the instances with M = 100,
the introduction of logic cuts allowed to solve two more
instances, while our algorithm always provided the optimal
solution. Instances in Class D are difficult for both CPLEX
and our algorithm. However, our method allows us to obtain
a smaller gap between the final upper and lower bounds.

AHard Instance. Laguna et al. (1995) described a hard
instance involving 30 tasks, eight agents, and three effi-
ciency levels. The best solution found by their tabu search
method after 120.7 seconds (on a DECstation 5000/120
MHz) has a cost equal to 691,634. French and Wilson
(2002) tested their heuristics on this instance, finding solu-
tions of cost equal to 714,608 and 703,912 within 0.2 and

0.1 seconds (on a HP9000/700 MHz), with MGAPH1 and
MGAPH2, respectively. Osorio and Laguna (2003), using
CPLEX with logic cuts and allowing a relative optimal-
ity tolerance of 1�0%, found a solution of value 690,624
in 36 hours of computation (on a machine equipped with
a Pentium 100 MHz CPU). We started branch-and-price
from scratch; that means we did not exploit information
about the previously known upper bounds. It solved this
instance to proven optimality in about three hours of com-
putation, confirming the value of the optimal solution to be
690,624.

4.5. Conclusions

In this paper, we have described a branch-and-price algo-
rithm for the MGAP. At the best of our knowledge, this
is the first exact method proposed in the literature for
the MGAP. It compares favorably against a state-of-the-
art general-purpose MIP solver, and it was able to prove
optimality for a very hard MGAP instance that had not
been solved to proven optimality so far. Its success mainly
relies upon the tightness of the set-covering reformulation,
the existence of an effective algorithm to solve the MCKP,
and a branching rule that does not affect the combina-
torial structure of the pricing subproblem. Following an
up-branch-first search strategy, the exact optimization algo-
rithm presented here is also suitable for approximation pur-
poses when very large-scale MGAP instances are tackled.

Appendix

Rounding Heuristic

Input: zdi ∀ i ∈� ∀d ∈�′
i

(the solution of R-LMP)
Output: i�j� ∈� (agent assignment) and
k�j� ∈� (level assignment) ∀ j ∈�

(a feasible solution for the MGAP)

(Initialization)
forall i ∈� do
Ci �=�; qi �= bi

(Step 1: task-agent assignment)

fij =
∑
d∈�′

i

(∑
k∈�

xdijk

)
zdi ∀ i ∈� ∀ j ∈�

forall j ∈� do
Ij �= �i � qi �mink∈��aijk��
if Ij =� then FAIL
else
i�j� �= argmaxi∈Ij �fij�
Ci�j� �=Ci�j� ∪ �j�; qi�j� �= qi�j� −mink∈��ai�j�jk�

(Step 2: task-level assignment)
forall i ∈� do
Solve to optimality the MCKP:



Ceselli and Righini: A Branch-and-Price Algorithm for the Multilevel Generalized Assignment Problem
Operations Research 54(6), pp. 1172–1184, © 2006 INFORMS 1183

Table 4. Comparison between CPLEX 6.5.3 and branch-and-price.

Instances CPLEX 6.5.3 CPLEX+Logic cuts CPLEX+LC+Heurs Branch-and-price

Corr. N M K Gap (%) Opt. Time(s) Gap (%) Opt. Time(s) Gap (%) Opt. Time(s) Gap (%) Opt. Time(s)

C 10 100 3 0.00 5 3�61 0.00 5 6�56 0.00 5 4�10 0.00 5 5�19
10 100 4 0.00 5 8�20 0.00 5 11�00 0.00 5 8�16 0.00 5 5�14
10 100 5 0.00 5 5�44 0.00 5 7�50 0.00 5 6�60 0.00 5 4�77
20 100 3 0.00 5 4�49 0.00 5 7�92 0.00 5 6�60 0.00 5 1�62
20 100 4 0.00 5 6�25 0.00 5 7�96 0.00 5 7�65 0.00 5 1�58
20 100 5 0.00 5 12�64 0.00 5 15�03 0.00 5 14�06 0.00 5 1�61
30 100 3 0.00 5 5�89 0.00 5 6�99 0.00 5 6�47 0.00 5 1�18
30 100 4 0.00 5 8�08 0.00 5 13�55 0.00 5 12�24 0.00 5 1�60
30 100 5 0.00 5 9�88 0.00 5 11�43 0.00 5 13�19 0.00 5 1�28

Avg. (C) 0.00 45 7�16 0.00 45 9�77 0.00 45 8�78 0.00 45 2�66

D 10 100 3 0.64 0 — 0.58 0 — 0.24 0 — 0.02 3 2�102�17
10 100 4 0.57 0 — 0.50 0 — 0.28 0 — 0.00 4 3�324�51
10 100 5 0.66 0 — 0.52 0 — 0.22 0 — 0.00 5 1�678�22
20 100 3 1.48 0 — 1.32 0 — 0.90 0 — 0.12 0 —
20 100 4 1.33 0 — 1.30 0 — 0.89 0 — 0.07 0 —
20 100 5 1.28 0 — 0.99 0 — 0.89 0 — 0.04 1 6�608�36
30 100 3 1.87 0 — 1.68 0 — 1.32 0 — 0.15 0 —
30 100 4 1.86 0 — 1.68 0 — 1.39 0 — 0.00 0 —
30 100 5 1.51 0 — 1.46 0 — 1.18 0 — 0.06 0 —

Avg. (D) 1.24 0 — 1.12 0 — 0.81 0 — 0.07 13 3�428�31

E 10 100 3 0.14 2 791�06 0.14 4 3�820�26 0.03 4 708�37 0.00 5 63�52
10 100 4 0.06 3 521�65 0.08 3 3�191�33 0.02 4 714�58 0.00 5 10�73
10 100 5 0.05 4 466�01 0.04 4 2�278�66 0.00 5 1�734�20 0.00 5 14�40
20 100 3 1.77 0 — 1.49 0 — 0.86 0 — 0.00 5 53�89
20 100 4 1.52 0 — 1.71 0 — 0.97 0 — 0.00 5 80�72
20 100 5 1.58 0 — 2.60 0 — 2.04 0 — 0.00 5 68�59
30 100 3 3.90 0 — 4.02 0 — 3.32 0 — 0.00 5 597�99
30 100 4 2.97 0 — 3.57 0 — 3.33 0 — 0.00 5 274�41
30 100 5 3.18 0 — 3.04 0 — 2.55 0 — 0.00 5 190�87

Avg. (E) 1.69 9 592�91 1.86 11 3�096�75 1.46 13 1�052�38 0.00 45 150�57

Avg. M = 100 0.98 54 300�04 0.99 56 1�553�26 0.76 58 530�58 0.02 103 1�193�85

C 15 200 4 0.00 5 91�86 0.00 5 93�90 0.00 5 123�76 0.00 5 87�46
15 200 5 0.00 5 82�64 0.00 5 131�47 0.00 5 103�48 0.00 5 54�79
30 200 4 0.00 5 273�34 0.00 5 385�82 0.00 5 273�05 0.00 5 10�15
30 200 5 0.39 4 243�10 0.00 5 586�54 0.00 5 143�33 0.00 5 10�73

Avg. (C) 0.10 19 172�73 0.00 20 299�44 0.00 20 160�91 0.00 20 40�78

D 15 200 4 0.63 0 — 0.54 0 — 0.29 0 — 0.02 0 —
15 200 5 0.60 0 — 0.48 0 — 0.22 0 — 0.01 3 1�429�00
30 200 4 0.91 0 — 0.99 0 — 0.79 0 — 0.06 0 —
30 200 5 0.80 0 — 0.83 0 — 0.64 0 — 0.02 0 —

Avg. (D) 0.73 0 — 0.71 0 — 0.49 0 — 0.03 3 1�429�00

E 15 200 4 0.17 0 — 0.37 0 — 0.17 0 — 0.00 5 287�66
p 0.8 15 200 5 0.17 0 — 0.64 0 — 0.16 0 — 0.00 5 433�27

30 200 4 1.17 0 — 2.15 0 — 1.86 0 — 0.00 5 419�52
30 200 5 1.10 0 — 2.26 0 — 2.03 0 — 0.00 5 206�73

Avg. (E, p 0.8) 0.65 0 — 1.36 0 — 1.05 0 — 0.00 20 336�79

E 15 200 4 0.25 0 — 0.85 0 — 0.66 0 — 0.00 5 975�23
p 1.0 15 200 5 0.24 0 — 0.89 0 — 0.80 0 — 0.00 5 1�037�15

30 200 4 1.06 0 — 2.11 0 — 2.28 0 — 0.00 5 199�19
30 200 5 1.17 0 — 1.97 0 — 2.30 0 — 0.00 5 271�30

Avg. (E, p 1.0) 0.68 0 — 1.45 0 — 1.51 0 — 0.00 20 620�71

Avg. M = 200 0.54 19 172�73 0.88 20 299�44 0.76 20 160�91 0.01 63 606�82



Ceselli and Righini: A Branch-and-Price Algorithm for the Multilevel Generalized Assignment Problem
1184 Operations Research 54(6), pp. 1172–1184, © 2006 INFORMS

min
∑
j∈Ci

∑
k∈K

cijkxijk

s.t.
∑
j∈Ci

∑
k∈�

aijkxijk � bi
∑
k∈�

xijk = 1 ∀ j ∈Ci

xijk ∈ �0�1� ∀ j ∈Ci� ∀k ∈�

forall j ∈Ci do k�j� �= �k � xijk = 1�

Local Search

(Shift Neighborhood)
forall j ∈� do
i′ �= (null element), v �= ci�j�jk�j�
forall i ∈� , forall k ∈� do
if �cijk < v AND qi � aijk� then
i′ �= i; k′ �= k; v �= cijk

if �i′ �= (null element)� then
qi�j� �= qi�j� + ai�j�jk�j�
qi′ �= qi′ − ai′jk′
i�j� �= i′; k�j� �= k′

(Swap Neighborhood)
forever do
i′ �= (null element), v �= 0
forall js� jd ∈� do
forall ks� kd ∈� do
is �= i�js�; id �= i�jd�
. �= �cid js ks + cis jd kd�− �cis js k�js� + cid jd k�jd��
/s �= ais jd kd − ais js k�js�
/d �= aid js ks − aid jd k�jd�
if �.< v AND /s � qis AND /d � qid� then
v �=.;
j ′ �= js; j ′′ �= jd
k′ �= ks; k′′ �= kd

if �i′ = (null element)� then BREAK
qi�j ′� �= qi�j ′� − ai�j ′�j ′k�j ′� + ai�j ′�j ′′k′′
qi�j ′′� �= qi�j ′′� − ai�j ′′�j ′′k�j ′′� + ai�j ′′�j ′k′
SWAP�i�j ′�� i�j ′′��; k�j ′� �= k′; k�j ′′� �= k′′

Acknowledgments
The authors are grateful to Manuel Laguna and Maria
Auxilio Osorio for providing their test instances. The
authors also acknowledge the kind support of ACSU (Asso-
ciazione Cremasca Studi Universitari) to the OR Lab at the
Dipartimento di Technologie dell’Informazione of the Uni-
versità di Milano degli Studi, where this work was done.

References
Barnhart, C., E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, P. H.

Vance. 1998. Branch-and-price. Column generation for solving huge
integer programs. Oper. Res. 46(3) 316–329.

Ceselli, A. 2003. Two exact algorithms for the capacitated p-median prob-
lem. 4OR 1(4) 319–341.

Ceselli, A., G. Righini. 2005. A branch-and-price algorithm for the capac-
itated p-median problem. Networks 45(3) 125–142.

French, A. P., J. M. Wilson. 2002. Heuristic solution methods for
the multilevel generalized assignment problem. J. Heuristics 8
143–153.

Glover, F., J. Hultz, D. Klingman. 1979. Improved computer-based plan-
ning techniques. Part II. Interfaces 9(4) 12–20.

Laguna, M., J. P. Kelly, J. L. Gonzalez-Velarde, F. Glover. 1995. Tabu
search for the multilevel generalized assignment problem. Eur. J.
Oper. Res. 82 176–189.

Land, A. H., A. G. Doig. 1960. An automatic method for solving discrete
programming problems. Econometrica 28 497–520.

Martello, S., P. Toth. 1990. Knapsack Problems—Algorithms and Com-
puter Implementations. Wiley, New York.

Martin, R. K. 1999. Large Scale Linear and Integer Optimization. Kluwer
Academic Publishers, Norwell, MA.

Nauss, R. M. 2003. Solving the generalized assignment problem: An
optimizing and heuristic approach. INFORMS J. Comput. 15(3)
249–266.

Osorio, M. A., M. Laguna. 2003. Logic cuts for multilevel generalized
assignment problems. Eur. J. Oper. Res. 151 238–246.

Pisinger, D. 1995. A minimal algorithm for the multiple-choice knapsack
problem. Eur. J. Oper. Res. 83(2) 392–410.

Savelsbergh, M. 1997. A branch-and-price algorithm for the generalized
assignment problem. Oper. Res. 45(6) 831–841.

Yagiura, M., T. Yamaguchi, T. Ibaraki. 1998. A variable depth search algo-
rithm with branching search for the generalized assignment problem.
Optim. Methods Software 10 419–441.


