Branch-and-Cut for TSP

- Branch-and-Cut is a general technique applicable e.g. to solve symmetric TSP problem.
- TSP is $\mathcal{N} \mathcal{P}$-hard - no one believes that there exists a polynomial algorithm for the problem.
- TSP can be formulated as an integer programming problem - for an n-vertex graph the number of binary variables becomes $\frac{n(n-1)}{2}$, and the problem has an exponential number of cut-set elimination constraints.

Lower bound: 1-tree bound

Lower bound: 51488
Jesper Larsen

Department of Management Engineering / Operations Research

Challenges

For the cutting plane approach to work we need to

1. be able to check whether any cut-set elimination constraints are violated (efficiently) and
2. we must be able to solve the LP relaxation efficiently.

A solution approach

1. The number of cut-set elimination constraints is huge $\left(2^{|V|}\right)$ and even though we can remove half of those due to symmetry there are still exponentially many.
2. Therefore, in the relaxed version we remove the integrality constraints and the exponentially many cut-set elimination constraints.
3. Even though there are "only" $O\left(n^{2}\right)$ variables we need to be able to solve the LP relaxation efficiently.

Problem 2: Solving the LP "intelligently"

- Start by solving a smaller variant of the original problem. Let $E^{\prime} \subseteq E$ and solve:

$$
\begin{aligned}
\mathrm{LP}\left(E^{\prime}\right) \mathrm{min} & \sum_{(i, j) \in E^{\prime}} c_{i j} x_{i j} \\
\text { s.t. } & \sum_{j:(i, j) \in E^{\prime}} x_{i j}=2, \quad i=1, \ldots, n \\
& \sum_{(i, j) \in \delta(S)} x_{i j} \geq 2, \quad \emptyset \subset S \subset V \\
& 0 \leq x_{i j} \leq 1, \quad(i, j) \in E^{\prime}
\end{aligned}
$$

Generating a feasible solution

－An optimal solution x^{\prime} for $L P\left(E^{\prime}\right)$ can be extended to a feasible solution for the original problem by
－$x_{e}^{*}=x_{e}^{\prime}, e \in E^{\prime}$ ，and
$\triangleright x_{e}^{*}=0, e \in E \backslash E^{\prime}$ ．
－BUT this solution might not be optimal in the original relaxed problem．

Jesper Larsen
9

Checking optimality

－Idea：Look at the dual problem．
－Let y_{i} be the dual variable for the i^{\prime} th constraint

$$
\sum_{j:(i, j) \in E^{\prime}} x_{i j}=2,
$$

－Let Y_{S} be the dual variable for for＂S^{\prime} th＂ constraint

$$
\sum_{(i, j) \in \delta(S)} x_{i j} \geq 2
$$

Jesper Larsen
10

Dual of the STSP II

－If $\left(y^{\prime}, Y^{\prime}\right)$ is also feasible for the dual linear programming problem of the original problem then we know that x^{*} is optimal
－Otherwise add variables to E^{\prime} that violated the constraint of the dual linear programming problem and resolve．

Problem 1: Separation algorithm

- Start of by removing the cut-set elimination constraints. Then we get:

$$
\begin{array}{ll}
\min & \sum_{e \in E} c_{e} x_{e} \\
\text { s.t. } & \sum_{\substack{j:(i, j) \in E}} x_{i j}=2, \quad i=1, \ldots, n \\
0 \leq x_{e} \leq 1, \quad e \in E
\end{array}
$$

- Let x^{*} be a feasible solution to the initial linear programming problem.
Jesper Larsen 13

Department of Management Engineering / Operations Research

The separation algorithm: using max-flow

Use max-flow to find cuts that are violated in the present situation. Here we have two problems:

- Max-flow works on directed graphs - this is a non-directed graph.
- We need a sink and a source to run the max-flow algorithm.
- Max-flow needs capacities on the edges.

Structure of a solution

- If the solution is split into several "independent" components then the node set S of each component violates a cut-set elimination constraint. This situation is very easy to detect.
- We might end in a situation where the graph is not disconnected but there are actually cut-set elimination constraints that are violated. How do we detect those?

Is that enough?

Now we are in a good position. We are now able to detect all possible cut-set elimination constraints, but is that enough to solve the problem?

Fractional solution

Consider the following part of a graph (dash edges have a flow of 0.5 , the remaining ones a flow of 1).

$$
\text { Jesper Larsen } \quad 17
$$

Department of Management Engineering / Operations Research

Cuts for the TSP I

- It is known that the cut-set elimination cuts and comb inequalities are facet-defining (Grötschel and Padberg 1979).
- These cuts are generally still not enough but there are more cuts we could add:
- Blossom (Padberg and Rao 1982)
- Path inequalities (Naddef and Rinaldi 1998)
- 2-handled clique tree (Padberg and Rinaldi 1991)
- Star inequalities (Fleischmann 1988)

Comb inequalities

Let C be a comb with a handle H and teeth $T_{1}, T_{2}, \ldots, T_{2 k+1}$ for $k \geq 1$. Then the solution x for a feasible solution must satisfy:
$x(E(H))+\sum_{i=1}^{2 k+1} x\left(E\left(T_{i}\right)\right) \leq|H|+\sum_{i=1}^{2 k+1}\left(\left|T_{i}\right|-1\right)-(k+1)$

Jesper Larsen
18

Cuts for the TSP II

- Even these are not enough.
- There is today no full description of the convex hull for the TSP.
- Furthermore for some of the valid inequalities the exists no efficient (polynomial) separation algorithm.

Upper bound: 56892
Jesper Larsen

21

Effective methods give a small gap

- THEREFORE branch after having added all the "simple" valid inequalities.

- Example:

- Upper bound:
- 72337: Nearest insertion
- 65980: Farthest insertion
- 56892: Chained Lin-Kernigan heuristic
- Lower bound:
- 56785: LP-relaxation, cut-set and simple comb-ineq
- Gap: 0.2% !!

Jesper Larsen
22

- Objective value: 992.5
- Identify a comb inequality: Handle being Thisted, Ringkøbing and Herning; teeth being (Thisted, Skagen), (Ringkøbing, Esbjerg) and (Herning, Vejle).

Example: Tour of Jutland VIII

Objective value: 996

- Integer solution!!!

