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Branch-and-Cut for TSP
Branch-and-Cut is a general technique
applicable e.g. to solve symmetric TSP
problem.

TSP is NP-hard – no one believes that there
exists a polynomial algorithm for the problem.

TSP can be formulated as an integer
programming problem – for an n-vertex graph
the number of binary variables becomes n(n−1)

2 ,
and the problem has an exponential number of
cut-set elimination constraints.
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The symmetric TSP

min
∑

(i,j)∈E

cijxij

s.t.
∑

j:(i,j)∈E

xij = 2, i = 1, . . . , n

∑

(i,j)∈δ(S)

xij ≥ 2, ∅ ⊂ S ⊂ V

xij ∈ {0, 1}, (i, j) ∈ E
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A Sample TSP
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Lower bound: 1-tree bound

Lower bound: 51488
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A solution approach
1. The number of cut-set elimination constraints is

huge (2|V |) and even though we can remove half
of those due to symmetry there are still
exponentially many.

2. Therefore, in the relaxed version we remove the
integrality constraints and the exponentially
many cut-set elimination constraints.

3. Even though there are “only” O(n2) variables we
need to be able to solve the LP relaxation
efficiently.
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Challenges
For the cutting plane approach to work we need to

1. be able to check whether any cut-set elimination
constraints are violated (efficiently) and

2. we must be able to solve the LP relaxation
efficiently.
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Problem 2: Solving the LP “intelligently”
Start by solving a smaller variant of the original
problem. Let E ′ ⊆ E and solve:

LP(E ′) min
∑

(i,j)∈E′

cijxij

s.t.
∑

j:(i,j)∈E′

xij = 2, i = 1, . . . , n

∑

(i,j)∈δ(S)

xij ≥ 2, ∅ ⊂ S ⊂ V

0 ≤ xij ≤ 1, (i, j) ∈ E ′
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Generating a feasible solution
An optimal solution x′ for LP (E ′) can be
extended to a feasible solution for the original
problem by

x∗
e = x′

e, e ∈ E ′, and
x∗

e = 0, e ∈ E \ E ′.

BUT this solution might not be optimal in the
original relaxed problem.
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Checking optimality
Idea: Look at the dual problem.

Let yi be the dual variable for the i′th constraint
∑

j:(i,j)∈E′

xij = 2,

Let YS be the dual variable for for “S′th”
constraint

∑

(i,j)∈δ(S)

xij ≥ 2,
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Dual of the STSP I

DP(E ′) max
∑

i∈V

2yi +
∑

S⊂V

2YS

s.t. yi + yj +
∑

”(i,j)∈δ(S)”

YS ≤ cij, (i, j) ∈ E ′

YS ≥ 0, S ⊂ V
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Dual of the STSP II
If (y′, Y ′) is also feasible for the dual linear
programming problem of the original problem
then we know that x∗ is optimal

Otherwise add variables to E ′ that violated the
constraint of the dual linear programming
problem and resolve.
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Problem 1: Separation algorithm
Start of by removing the cut-set elimination
constraints. Then we get:

min
∑

e∈E

cexe

s.t.
∑

j:(i,j)∈E

xij = 2, i = 1, . . . , n

0 ≤ xe ≤ 1, e ∈ E

Let x∗ be a feasible solution to the initial linear
programming problem.
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Structure of a solution
If the solution is split into several “independent”
components then the node set S of each
component violates a cut-set elimination
constraint. This situation is very easy to detect.

We might end in a situation where the graph is
not disconnected but there are actually cut-set
elimination constraints that are violated. How
do we detect those?
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The separation algorithm: using max-flow
Use max-flow to find cuts that are violated in the
present situation. Here we have two problems:

Max-flow works on directed graphs – this is a
non-directed graph.

We need a sink and a source to run the
max-flow algorithm.

Max-flow needs capacities on the edges.
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Is that enough?
Now we are in a good position. We are now able to
detect all possible cut-set elimination constraints,
but is that enough to solve the problem?



17Jesper Larsen

Department of Management Engineering / Operations Research

Fractional solution
Consider the following part of a graph (dash edges
have a flow of 0.5, the remaining ones a flow of 1).
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Comb inequalities
Let C be a comb with a handle H and teeth
T1, T2, . . . , T2k+1 for k ≥ 1. Then the solution x for a
feasible solution must satisfy:

x(E(H))+
2k+1∑

i=1

x(E(Ti)) ≤ |H|+
2k+1∑

i=1

(|Ti|−1)−(k+1)
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Cuts for the TSP I
It is known that the cut-set elimination cuts and
comb inequalities are facet-defining (Grötschel
and Padberg 1979).

These cuts are generally still not enough but
there are more cuts we could add:

Blossom (Padberg and Rao 1982)
Path inequalities (Naddef and Rinaldi 1998)
2-handled clique tree (Padberg and Rinaldi
1991)
Star inequalities (Fleischmann 1988)

20Jesper Larsen

Department of Management Engineering / Operations Research

Cuts for the TSP II
Even these are not enough.

There is today no full description of the convex
hull for the TSP.

Furthermore for some of the valid inequalities
the exists no efficient (polynomial) separation
algorithm.
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An upper bound: Chained Lin Kernighan

Upper bound: 56892
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Effective methods give a small gap
THEREFORE branch after having added all the
“simple” valid inequalities.

Example:

Upper bound:
• 72337: Nearest insertion
• 65980: Farthest insertion
• 56892: Chained Lin-Kernigan heuristic
Lower bound:
• 56785: LP-relaxation, cut-set and simple
comb-ineq

Gap: 0.2% !!
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Example: Tour of Jutland I

16 cities –
15 + 14 + 13 + . . . + 2 + 1 =
16×15

2 = 120 variables.

Let us keep the constraint
that∑

j xij = 2, i = 1, . . . , N .

Relax integrality constraints
on variables to 0 ≤ xij ≤ 1
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Example: Tour of Jutland II

Objective value: 920

Forbid the subtour Skagen-
Thisted-Aalborg and
resolve
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Example: Tour of Jutland III

Objective value: 960

Forbid the subtour
Fredericia-Kolding-Vejle
and resolve
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Example: Tour of Jutland IV

Objective value: 982

Forbid the subtour Kolding-
Fredericia-Vejle-Esbjerg-
Aabenraa-Tønder-Ribe and
resolve
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Example: Tour of Jutland V

Objective value: 992.5

Identify a comb inequal-
ity: Handle being Thisted,
Ringkøbing and Herning;
teeth being (Thisted, Ska-
gen), (Ringkøbing, Esbjerg)
and (Herning, Vejle).
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Example: Tour of Jutland VI

Objective value: 992.5

Identify a comb inequal-
ity: Handle being Ve-
jle, Silkeborg and Aarhus;
teeth being (Vejle, Fred-
ericia), (Silkeborg, Viborg)
and (Aarhus, Randers).
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Example: Tour of Jutland VII

Objective value: 994.5

Identify a comb inequality:
Handle being Viborg, Ran-
ders and Aalborg; teeth
being (Viborg, Silkeborg),
(Randers, Aarhus) and
(Aalborg, Skagen).
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Example: Tour of Jutland VIII

Objective value: 996

Integer solution!!!


