
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Discrete Optimization

A branch-and-bound algorithm for the linear ordering
problem with cumulative costs

Giovanni Righini

Dipartimento di Tecnologie dell’Informazione, Università degli Studi di Milano, Via Bramante 65, 26013 Crema, Italy

Received 14 July 2006; accepted 15 February 2007
Available online 2 April 2007

Abstract

The linear ordering problem with cumulative costs is an NP-hard combinatorial optimization problem arising from an
application in UMTS mobile-phone communication systems. This paper presents a polynomially computable lower bound
that is particularly effective when embedded in a branch-and-bound algorithm. The same idea can be further exploited to
sort the children nodes at each node of the search tree, in order to find the optimal solution earlier. A suitable truncation of
the resulting branch-and-bound algorithm results in a fast constructive heuristic.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Branch-and-bound; Combinatorial optimization; Linear ordering problem

1. Introduction

The linear ordering problem (LOP in the remain-
der) is an NP-hard combinatorial optimization
problem that consists in finding an optimal permuta-
tion of a given set N of items; the objective function
depends on whether item i precedes or follows item j

for each ði; jÞ pair of items in N. The LOP has many
applications, ranging from marketing to psychology,
from scheduling to archaeology: a polyhedral study
of the LOP is due to (Grötschel et al., 1984,
1985a,b). More references to applications can be
found in (Reinelt, 1985). In graph theoretical terms
the LOP is defined as follows: a complete digraph
D ¼ ðN;AÞ is given and the goal is to find an opti-
mal spanning acyclic tournament in D. An acyclic

tournament is an acyclic digraph T ¼ ðN;A0Þ such
that for every two distinct vertices i and j in N the
arc set A0 contains exactly one arc with endpoints
i and j. Acyclic tournaments are in one-to-one corre-
spondence with permutations of the vertices; hereaf-
ter a generic permutation is indicated by
P : f1; . . . ;Ng7!N, where N ¼ jNj; so, PðkÞ indi-
cates the vertex placed in position k and P�1ðiÞ indi-
cates the position in which vertex i is placed.

The linear ordering problem with cumulative
costs (LOP-CC in the remainder) arises from an
application in the sector of UMTS mobile-phone
telecommunication systems. The detailed motiva-
tion of the LOP-CC was recently described by
(Bertacco et al., 2004), who also gave a proof of
NP-hardness for the problem. In the LOP-CC each
vertex i 2N has a non-negative weight pi; for each
ordered pair of distinct vertices i and j in N a non-
negative cost cij is given; in general cij 6¼ cji. The

0377-2217/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.ejor.2007.02.044

E-mail address: righini@dti.unimi.it

Available online at www.sciencedirect.com

European Journal of Operational Research 186 (2008) 965–971

www.elsevier.com/locate/ejor



Author's personal copy

objective function to be minimized is the sum of cost
terms a associated with the vertices and recursively
defined in this way:

ai ¼ pi þ
X

jjP�1ðjÞ>P�1ðiÞ

cijaj 8i 2N:

In (Bertacco et al., 2004) the authors proposed a
depth-first-search branch-and-bound algorithm
which is much faster than a general purpose solver
(ILOG CPLEX 9.0.2) and a heuristic algorithm
based on dynamic programming.

The main contribution of this paper is a new
lower bound, which is used in a branch-and-bound
algorithm for the exact optimization of the LOP-
CC. A policy for sorting the branches at each node
of the search tree is also illustrated: it allows to
obtain an effective heuristic from the truncation of
the branch-and-bound algorithm.

2. The model

The mathematical programming model of the
LOP-CC introduced by (Bertacco et al., 2004) is
the following:

min z ¼
X
i2N

ai;

s:t: ai ¼ pi þ
XN

j¼1

cijxijaj 8i 2N; ð1Þ

xij þ xji ¼ 1 8i; j 2N; ð2Þ
xij þ xjk þ xki 6 2 8i; j; k 2N; ð3Þ
ai 2 Rþ 8i 2N;

xij 2 f0; 1g 8i; j 2N:

The objective is the minimization of the overall va-
lue of variables a that represent the costs accumu-
lated at the vertices. The value of each term ai is
given by constraints (1) and depends on the cumula-
tive costs a of the vertices that follow i in the acyclic
tournament defined by the x variables. Constraints
(2) and (3) impose that the values of the x variables
define an acyclic tournament. As indicated in Bert-
acco et al., (2004) this non-linear model can be
linearized with the introduction of additional vari-
ables; this is useful to solve the LOP-CC with a gen-
eral-purpose mixed integer linear programming
solver.

3. Branch-and-bound

The algorithm devised by (Bertacco et al., 2004)
is a depth-first-search branch-and-bound algorithm,

in which each vertex is assigned to a position, start-
ing from position N and going back to position 1. In
this way all values of a variables are recursively
computed, starting from aPðNÞ down to aPð1Þ. In
order not to enumerate all the 2N possible permuta-
tions, the algorithm exploits a lower bounding
technique.

Consider the generic node at level l in the search
tree, where l vertices have been assigned to the last l

positions in the acyclic tournament, while the others
are still to be ordered. Call L the set of the unor-
dered vertices and R the set of the vertices already
ordered. The value of the objective function can
be split into two terms:

z ¼
X
i2L

ai þ
X
i2R

ai: ð4Þ

The second term in (4) can be computed exactly,
since the vertices in R have already been ordered
and hence the value of a is known for them. The first
term in (4) can be split into three terms:X

i2L
ai ¼

X
i2L

X
j2L

cijxijaj

 !
þ
X
i2L

pi þ
X
i2L

X
j2R

cijaj:

ð5Þ
For each vertex i 2L the first term in (5) includes
the contributions to ai due to the vertices in L,
the second term in (5) represents the fixed cost
and the third term in (5) includes the contributions
to ai due to the vertices in R. The third term does
not depend on the x variables since all vertices in
R follow all vertices in L in the acyclic tournament
under construction (i.e. xij ¼ 1 8i 2L; j 2 R).
Hence the values of the second and third terms in
(5) can be computed exactly. An illustration is given
in Fig. 1.

The lower bound used by (Bertacco et al., 2004)
is given by all costs that can be computed exactly,
that is

LB0 ¼
X
i2L

pi þ
X
i2L

X
j2R

cijaj þ
X
i2R

ai:

To prove that LB0 6 z, observe that z� LB0 ¼P
i2L
P

j2Lcijxijaj P 0, because all p and c data
are non-negative and hence a variables are also
non-negative.

The computational experiments reported in
(Bertacco et al., 2004) show that this lower bound
is effective enough to win the comparison versus
CPLEX 9.0.2 solving the linearized version of the
mathematical formulation given above. However,
this lower bound disregards the unknown term

966 G. Righini / European Journal of Operational Research 186 (2008) 965–971



Author's personal copy

H ¼
P

i2L
P

j2Lcijxijaj. Therefore, any lower bound
to the value of H can be used to strengthen LB0,
thus possibly reducing the size of the search tree
and the computing time.

4. A lower bound

For each vertex i 2L define bi ¼ pi þ
P

j2Rcijaj.
In any complete solution the final value of ai is
certainly not less than the value of bi at any interme-
diate node in the search tree, owing to the non-
negativity of the data. Therefore, bi is a valid lower
bound to the final value of ai. In addition for each
pair of distinct vertices i and j in L, we know that
in a complete solution either i precedes j or vice
versa: therefore, either cijaj or cjiai will contribute
to the overall cost. Hence the following inequalities
hold:

H P
X
i;j2L

minfcijaj; cjiaigP
X
i;j2L

minfcijbj; cjibig:

Hence the value

LB1 ¼ LB0 þ
X
i;j2L

minfcijbj; cjibig;

which is computable in OððN � lÞ2Þ at each node at
level l in the search tree, is a valid lower bound.

5. Computational results

The algorithm of (Bertacco et al., 2004) was re-
implemented to test the effectiveness of the lower
bounding technique described above. In the reim-

plementation, the C programming language was
used, instead of C++, without any change to the
algorithm. All tests reported in the remainder have
been done on a 2.0 GHz PC AMD Sempron
3000+ with 512MB RAM, Windows XP operating
system and the DevC++ 4.9.9.0 compiler.

The computational tests were done on four data-
sets, each made of 500 randomly generated
instances kindly provided by Livio Bertacco. All
instances have size equal to 16 (this is due to techno-
logical reasons related to the UMTS application
from which the problem arises). Experiments were
also made on subgraphs of size N = 14 and
N = 12 by considering only the first N rows and col-
umns of the cost matrices.

Table 1 presents the computational results. For
each set of 500 instances and for each size the table
reports the average and the maximum computing
time and the average and the maximum number of
nodes explored in the search tree. These values are
reported for the branch-and-bound algorithm with
lower bound LB0 and for the branch-and-bound
algorithm with lower bound LB1.

Although the re-implementation could not
exactly reproduce the outcome of (Bertacco et al.,
2004), owing to the differences in hardware, operat-
ing system, programming language and compiler,
the results with lower bound LB0 scale with the size
of the instances in a similar way as those reported in
the above mentioned paper. The comparison shows
that LB1 allows to reduce the computing time of one
order of magnitude and the number of nodes evalu-
ated by two to three orders of magnitude.

The two lower bounds were also compared by
computing their values at the root node for all the
problem instances. The outcome is reported in
Table 2: each column reports the average value of
the gap between the optimal value z* and the lower
bound LB computed at the root node ðz��LB

LB
Þ. From

the results reported in Table 2 it is clear that LB1 is
significantly tighter on all classes of instances and
for any size.

6. Branch sorting policy

This section illustrates another idea concerning
the order in which children nodes are explored at
each node in the search tree.

In Bertacco et al. (2004) the authors described a
depth-first-search policy that allows an effective
recursive implementation of the code: the vertices
are initially sorted according to their fixed cost pi

2

5

3 4 6 1

Fig. 1. A small example with six vertices, three fixed and three to
be decided. The bolded arcs correspond to precedences between
vertices in R, that determine the second term in (4); the arcs
crossing the vertical line correspond to precedences between
vertices in L and vertices in R, that determine the third term in
(5). The bi-directional vertical arrows on the left correspond to
the undecided precedences, that determine the first term in (5).

G. Righini / European Journal of Operational Research 186 (2008) 965–971 967



Author's personal copy

and this sequence determines the order in which
children nodes are visited: the unordered vertices
(those in L) are kept in a FIFO queue and each step
down in the search tree corresponds to a Pop oper-
ation, while each backtrack step corresponds to a
Push operation on the queue. In this way the first
leaf that the algorithm examines corresponds to
the solution in which the vertex with the largest
fixed cost is in the last position (i.e., it is fixed first)
and the one with the smallest fixed cost is in the first
position (i.e., it is fixed last). However, the leaves of

the search tree are not visited according to the lexi-
cographic order defined by the initial sequence: for
instance, if the starting sequence is h1; 2; 3; 4i, with
p1 < p2 < p3 < p4, the leaves of the search tree are
generated in this order: first h1; 2; 3; 4i, then
h2; 1; 3; 4i and now h3; 1; 2; 4i precedes h1; 3; 2; 4i
even if p1 < p3.

Even if this technique is very effective from a soft-
ware implementation viewpoint, a suitable sorting
of the children nodes, repeated at each node of the
search tree, may allow the algorithm to discover
the optimal solution earlier.

To have a quantitative figure of merit of the effec-
tiveness of the branching policy and in particular of
the ordering in which the children nodes are
explored, it is necessary to measure ‘‘how early’’
the optimal solution is discovered. For this purpose
let us consider a generic instance of the LOP-CC
and the corresponding search tree as it is explored
by a depth-first-search branch-and-bound algorithm
and let us indicate by P* the optimal path to be fol-
lowed along the search tree to reach the first leaf
corresponding to an optimal solution. Let us define
a vector bl with one component for each level l of
the search tree. Each component bl may range in
½0; . . . ;N � l� 1�, that is it may take on a number
of different values equal to the number of children
nodes at that level. The value of bl indicates the
number of ‘‘wrong’’ branches that have been
explored from the node of P* at level l before the
branch that leads to the optimal solution. A vector

Table 1
Comparison between branch-and-bound algorithms using lower bounds LB0 and LB1

Set Size Avg. time Max. time Avg. no. of nodes Max. no. of nodes

LB0 LB1 LB0 LB1 LB0 LB1 LB0 LB1

A 12 0.03 0.00 1.00 0.00 138,249.65 1815.98 3,419,066 46,409
14 0.50 0.01 31.00 1.00 2,745,671.10 11,862.01 166,581,704 529,724
16 12.58 0.14 973.00 5.00 60,974,332.11 100,422.75 4,729,842,076 4,963,008

B 12 0.05 0.01 2.00 1.00 270,668.24 6806.23 12,487,041 260,226
14 1.30 0.07 105.00 3.00 7,037,065.99 19,438.65 562,082,006 4,077,536
16 38.85 1.50 2022.00 178.00 188,009,341.31 137,804.72 9,804,359,196 204,379,303

C 12 0.02 0.00 1.00 0.00 151,073.13 5005.30 3,820,123 111,448
14 0.53 0.06 29.00 3.00 2,890,538.03 52,734.75 160,998,680 327,3061
16 14.94 1.00 1069.00 44.00 72,449,144.17 740,194.33 5,178,947,760 37,629,119

D 12 0.03 0.00 1.00 1.00 170,845.18 5907.80 3,338,684 140,596
14 0.64 0.07 16.00 2.00 3,488,891.31 67,846.74 89,150,125 1,930,878
16 16.78 1.20 542.00 33.00 81,387,534.69 861,567.37 2,623,680,651 26,285,589

Avg. 12 0.03 0.00 1.25 0.05 148,734.07 4883.83 5,766,228.50 139,669.75
14 0.74 0.05 45.50 2.25 4,040,541.61 37,970.54 244,703,128.75 2,452,799.75
16 20.79 0.96 1151.50 65.00 100,705,088.07 459,997.29 5,584,207,420.75 68,314,254.75

Table 2
Average percentage gaps at the root node

Data-set Size LB0 (%) LB1 (%)

A 12 44.64 15.23
14 51.39 20.42
16 57.22 25.75

B 12 69.73 37.76
14 76.39 47.09
16 82.30 56.49

C 12 69.67 40.54
14 77.03 50.62
16 83.09 60.24

D 12 73.90 45.23
14 81.02 56.27
16 86.52 65.92

Avg. 12 64.49 34.69
14 71.46 43.60
16 77.28 52.10

968 G. Righini / European Journal of Operational Research 186 (2008) 965–971



Author's personal copy

b ¼ ð0; 0; . . . ; 0Þ represents the ideal case, in which
the algorithm finds the optimal solution as the first
leaf of the search tree. Dividing bl by the maximum
number of children nodes at level l, we get a fraction
gl ¼ bl

N�l�1
, whose value is between 0 and 1, repre-

senting the effectiveness of the branch sorting policy
at level l.

We measured the average values of the compo-
nents of vector g over all the instances of the bench-
mark, and we observed rather high values, often
greater than 0.5. This motivated the design of a dif-
ferent policy to sort the branches, inspired by lower
bound LB1.

As before we indicate with L the set of vertices
still to be ordered in a node at level l in the search
tree. For each pair of vertices i; j 2L, a choice is
made between arcs ði; jÞ and ðj; iÞ, looking at the
minimum among the two costs cijbj and cjibi. If
cijbj < cjibi we orient the arc from i to j or vice
versa. Depending on these decisions the in-degree
of each vertex is determined. Then all the vertices
in L are sorted by increasing values of their in-
degree so that the one with maximum in-degree is
the last one in the ordering and then it is fixed first.

Table 3 reports the average values of gl over the
500 instances of the first data-set with N = 16, using
the policy of (Bertacco et al., 2004), with the FIFO
queue, and using the policy in which the branches
are sorted at each node of the search tree as

explained above. In the bottom lines of the table
the overall results of the branch-and-bound algo-
rithm are also reported for the two cases. Even if
the branch sorting policy does not yield any advan-
tage in the overall performances of the branch-and-
bound algorithm, it significantly reduces the average
values of g: this means that it allows the algorithm
to find an optimal solution earlier. This suggests a
criterion to truncate the exploration of the search
tree, as shown in the next section.

7. Truncated branch-and-bound

Time is very critical for the UMTS application
from which the problem arises. Therefore, it is
important to develop very fast heuristics still pro-
viding good solutions. The two terms of comparison
available in the literature are a paper by (Benvenuto
et al., 2005), who developed a GRASP heuristic,
and the paper by (Bertacco et al., 2004), who pre-
sented a heuristic algorithm based on dynamic pro-
gramming and proved it over-performs the
aforementioned GRASP.

Remarkably the computing time of the exact
branch-and-bound algorithm with lower bound
LB1 is comparable with that reported for the
dynamic programming heuristic algorithm pre-
sented in (Bertacco et al., 2004). However, better
results can be obtained by truncating the branch-
and-bound in order to reduce the computing time
at the expense of the optimality guarantee. For this
purpose the fraction of branches to be explored at
each level of the search tree is limited by a given
threshold 0 6 h 6 1: at each node of the search tree
the children nodes are sorted as explained in the pre-
vious section and the algorithm explores only the
first bhðN � l� 1Þc þ 1 children nodes. Setting
h = 1 the whole search tree is (implicitly) explored
and the best solution found is guaranteed to be opti-
mal. Setting h = 0 only the first branch is explored
at each node and the search tree reduces to a path
from the root to the first leaf. Choosing intermedi-
ate values one can tune the trade-off between speed
and solution cost.

Table 4 shows the average computing time, the
maximum computing time, the average percentage
gap, the maximum percentage gap and the number
of optimal solutions found for the whole data-set
of 2000 instances, for five different values of h
including the two limit cases h = 0 and h = 1.

These results show that for h = 0.25 the trun-
cated branch-and-bound algorithm finds optimal

Table 3
Effects of branch sorting

Level FIFO queue Sorted branches
g g

1 0.034 0.034
2 0.267 0.045
3 0.375 0.049
4 0.370 0.046
5 0.408 0.040
6 0.373 0.037
7 0.379 0.025
8 0.330 0.027
9 0.313 0.029
10 0.321 0.031
11 0.317 0.019
12 0.254 0.020
13 0.242 0.017
14 0.179 0.010
15 0.180 0.000
16 0.000 0.000
Avg. no. nodes 100,422.75 96,265.056
Max. no. nodes 4,963,008 5,177,634
Avg. time 0.134 0.122
Max. time 4 5

G. Righini / European Journal of Operational Research 186 (2008) 965–971 969



Author's personal copy

solutions for about half of the instances and for
h = 0.50 it finds optimal solutions for about 95%
of the instances. The correspondent reduction in
computing time can be very significant: up to a
factor of 3 for h = 0.75 and a factor of 10 for
h = 0.50.

8. Large instances

To exploit the ideas explained above the algo-
rithms were also tested on larger instances with
the purpose of studying which is the maximum size
for which an approach based on truncated branch-
and-bound is viable. This was done in the same
spirit of an analogous investigation reported by
(Bertacco et al., 2004); it must not be viewed as a
trial to present an accurate heuristic for large
instances of the LOP-CC: for this purpose local
search algorithms are obviously more appropriate.

The benchmark used is the same of (Bertacco
et al., 2004) and it consists of sub-matrices of differ-
ent size taken from a randomly generated ð32� 32Þ
cost matrix. (Bertacco et al., 2004) reported to have
solved these instances with up to N = 20 in 3 hours.
The leftmost part of Table 5 reports the computing
time (hh:mm:ss) needed by the branch-and-bound
algorithm with lower bound LB1 to solve the
instances up to N = 26 within one hour and a half.
A trial with N = 28 was stopped after 24 hours.
Heuristic values computed with the truncated
branch-and-bound with h = 0.5 and h = 0.25 are
also reported in the rightmost part of the table.

The results show that the truncated branch-and-
bound algorithm was able to find the optimal solu-
tion for all instances for which the optimum is
known with a reduction in computing time of a fac-
tor of about 3 with h = 0.5 and about 40 with
h = 0.25.

It should be remarked that the computing time of
the truncated branch-and-bound approach tends to
explode when the size of the instance grows. There-
fore, for large instances, like those of the LOLIB,
one has to choose whether to develop fast or accu-
rate heuristics.

If enough computing time is available, it is possi-
ble to develop accurate heuristics, based on local
search. For instance, while this paper was under
review, a tabu search algorithm for the LOP-CC
was presented by (Duarte et al., 2006). After a care-
ful calibration of a number of parameters, it could
compute within a reasonable time heuristic solu-
tions for instances larger than those considered here
above, some taken from the LOLIB library and oth-
ers generated at random with up to 150 vertices.

On the other hand, if computing time is a very
scarce resource, as in the case of the telecommunica-
tion systems that gave origin to the papers by (Ben-
venuto et al., 2005) and (Bertacco et al., 2004), fast
constructive heuristics are required. The truncated
branch-and-bound illustrated above can be easily
turned into a fast constructive heuristic by setting
h = 0. Table 6 reports the results obtained in this
way (column ‘‘Constr. heur.’’) on the random
instances of (Duarte et al., 2006) (available on-line

Table 4
Truncated branch-and-bound

Size h Avg.
time

Max.
time

Avg. gap
(%)

Max. gap
(%)

Opt.
sol.

12 0.00 0.000 0.000 8.764 147.793 232
0.25 0.000 0.000 1.018 37.446 1303
0.50 0.002 1.000 0.053 7.627 1913
0.75 0.002 1.000 0.007 3.306 1991
1.00 0.005 1.000 0.000 0.000 2000

14 0.00 0.001 1.000 12.539 140.787 95
0.25 0.003 1.000 1.303 37.770 1155
0.50 0.012 1.000 0.097 10.062 1903
0.75 0.025 1.000 0.011 2.978 1990
1.00 0.053 3.000 0.000 0.000 2000

16 0.00 0.000 0.000 20.355 369.291 34
0.25 0.014 1.000 1.697 37.544 947
0.50 0.129 14.000 0.378 10.387 1846
0.75 0.358 56.000 0.005 1.897 1990
1.00 0.903 173.000 0.000 0.000 2000

Table 5
Results obtained on larger instances

Size Exact Truncated

Time Cost Time Cost h

18 0:00:02 5.636060 0:00:01 5.636060 0.50
20 0:01:31 8.115764 0:00:38 8.115764 0.50
22 0:03:10 8.178600 0:01:17 8.178600 0.50
24 0:16:59 11.962475 0:06:17 11.962475 0.50
26 1:37:33 15.208841 0:02:31 15.208841 0.25
28 >24:00:00 0:53:54 17.428847 0.25

Table 6
Comparison of heuristics on random large instances

Size GRASP Constr. heur. TSLOPCC

Cost Time Cost Cost Time

35 0.935 1.68 0.588 0.344 0.39
100 8.48E+05 24.75 1.43E+04 1.20E+03 30.75
150 2.90E+11 78.31 8.84E+07 2.25E+06 180.43

970 G. Righini / European Journal of Operational Research 186 (2008) 965–971



Author's personal copy

as reported in their paper), compared with the
results of the GRASP heuristic of (Benvenuto
et al., 2005) (column ‘‘GRASP’’) and those of the
tabu search of (Duarte et al., 2006) (column
‘‘TSLOPCC’’). The values in both these columns
are taken from (Duarte et al., 2006). The computing
time of our constructive heuristic is not reported,
because all data-sets, made of 25 instances each,
were solved in less than one second on a 2.0 GHz
processor; computing times for GRASP and
TSLOPCC are taken from (Duarte et al., 2006)
and were measured on a 3.2 GHz processor.

From the results reported it is clear that the con-
structive heuristic obtained from the truncated
branch-and-bound algorithm dominates the
GRASP in both time and cost. No domination
exists between truncated branch-and-bound and
tabu search, since the former is faster and the latter
is more accurate.

Acknowledgements

The author is grateful to Matteo Fischetti, whose
presentation at AIRO Winter 2005 workshop in-
spired this work, to Livio Bertacco for kindly pro-
viding his computer code and the input data, and

to three anonymous referees for their helpful
comments.

References

Benvenuto, N., Carnevale, G., Tomasin, S., 2005. Optimum
power control and ordering in SIC receivers for uplink
CDMA systems. IEEE International Conference on Commu-
nications, ICC 2005 4, 2333–2337.

Bertacco, L., Brunetta, L., Fischetti, M., 2004. The linear
ordering problem with cumulative costs. Technical report,
Department of Information Engineering, University of
Padova, October 13, 2004.

Duarte, A., Laguna, M., Martı̀ R., 2006. Tabu search for the
linear ordering problem with cumulative costs. Technical
report, Universidad de Valencia.

Grötschel, M., Jünger, M., Reinelt, G., 1984. A cutting plane
algorithm for the linear ordering problem. Operations
Research 32, 1195–1220.

Grötschel, M., Jünger, M., Reinelt, G., 1985a. On the acyclic
subgraph polytope. Mathematical Programming 33, 28–
42.

Grötschel, M., Jünger, M., Reinelt, G., 1985b. Facets of the
linear ordering polytope. Mathematical Programming 33, 43–
60.

LOLIB. Linear Ordering LIBrary. <http://www.iwr.uni-heidel-
berg.de/groups/comopt/software/LOLIB/>.

Reinelt, G., 1985. The linear ordering problem: algorithms and
applicationsResearch and Exposition in Mathematics, vol. 8.
Heldermann Verlag, Berlin.

G. Righini / European Journal of Operational Research 186 (2008) 965–971 971


