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Itz [h1, Aa), we choose a new vartable yy () {vi}) and set

/

Z' = {x, A yh (A A i)
If Z = {A;}, we choose a set Y = {y|, y»} of two new variables and set
Z' = {1, y1, v} 0, v 32 (AL Y b (AL Y 2t

Observe that in each case Z can be equivalently replaced by Z' in any instance
of SATISFIABILITY. |

Theorem 15.22. (Cook [1971]) 3Sar is NP-complete.

Proof: As a restriction of SATISFIABILITY, 3SAT is certainly in NP. We now show
that SATISFIABILITY polynomially transforms to 3SAT. Consider any collection Z
of clauses Zi, ..., Zn. We shall construct a new collection Z’ of clauses with
three literals per clause such that Z is satisfiable if and only if Z’ is satisfiable.
To do this, we replace each clause Z; by an equivalent set of clauses, each
with three literals. This is possible in linear time by Proposition 15.21. O

If we restrict each clause to consist of just two literals, the problem (called
2SAT) can be solved in linear time (Exercise 7).
15.5 Some Basic NP-Complete Problems

Karp discovered the wealth of consequences of Cook’s work for combinatorial
optimization problems. As a start, we consider the following problem:

STABLE SET
Instance: A graph G and an integer k.

Question: Is there a stable set of k vertices?

Theorem 15.23. (Karp [1972]) STABLE SET is NP-complete.

Proof: Obviously, STABLE SET € NP. We show that SATISFIABILITY polynomially
transforms to STABLE SET.

Let Z be a collection of clauses Zi, ..., Z, with Z; = {Aj1, ..., Aig,} (0 =
1,...,m), where the A;; are literals over some set X of variables.

We shall construct a graph G such that G has a stable set of size m if and
only if there is a truth assignment satisfying all m clauses.

For each clause Z;, we introduce a clique of k; vertices according to the literals
in this clause. Vertices corresponding to different clauses are connected by an edge

® ®
X5 X

3

Fig. 15.1.

if and only if the literals contradict each other. Formally, let V(G) := {v;; : |
i <m, 1 <j<k}and

E(G) == {{vij, v} : (i =k and j #1)

or (A;; = x and Ay = X for some x € X )}.

See Figure 15.1 for an example (m = 4, Z; = {7, x2, x3}, Z» = {x1, X3}, Z3
{x2, %3} and Z; = {x1, X2, X3}).

Suppose G has a stable set of size m. Then its vertices specify pairwise compat-
ible literals belonging to different clauses. Setting each of these literals to be frue
(and setting variables not occurring there arbitrarily) we obtain a truth assignment
satisfying all m clauses. 7

Conversely, if some truth assignment satisfies all m clauses, then we choose
a literal which is #rue out of each clause. The set of corresponding vertices then
defines a stable set of size m in G. l

It is essential that k is part of the input: for each fixed k it can be decided in
O (n*) time whether a given graph with n vertices has a stable set of size k (simply
by testing all vertex sets with k elements). Two interesting related problems are
the following:

VERTEX COVER
Instance: A graph G and an integer k.

Question: Is there a vertex cover of cardinality k?




C'Liour
Instance: A graph G and an mteger k

Question: Has G a clique of cardinality k?

Corollary 15.24. (Karp [1972]) VERrTEX COVER and CLIQUE are NP-complete.

Proof: By Proposition 2.2, STABLE SET polynomially transforms to both VERTEX
Cover and CLIQUE. (i

We now turn to the famous Hamiltonian circuit problem (already defined in
Section 15.3).

Theorem 15.25. (Karp [1972]) HamirtoniaN Circult is NP-complete.

Proof: Membership in NP is obvious. We prove that 3SAT polynomially trans-
forms to HAMILTONIAN CIRCUIT. Given a collection Z of clauses Z1, ..., Z,, over
X = {x1, ..., x,}, each clause containing three literals, we shall construct a graph
G such that G is Hamiltonian iff Z is satisfiable.

(a) (b)
u u' U u
@ L ] ® @
()
@ ®
v v v v
Fig. 15.2.
(a) (b)
u u’ u u'
® @ @ -®
@ ® ®
v v v v’

Fig. 15.3.

T

We first define two gadgets which will appear several times in ¢ Consider the
graph shown in Figure 15.2(a), which we call A, We assume that it is a subgraph
ol G and no vertex of A except u, u', v, v is mcident (o any other edge of ¢
Then any Hamiltonian circuit of ¢; must traverse A in one of the ways shown
in Figure 15.3(a) and (b). So we can replace A by two edges with the additional
restriction that any Hamiltonian circuit of & must contain exactly one of them

(Figure 15.2(b)).

(a) (b)

Fig. 15.4.

Now consider the graph B shown in Figure 15.4(a). We assume that it is a
subgraph of G, and no vertex of B except u and ' is incident to any other edge
of G. Then no Hamiltonian circuit of G traverses all of e;, e,, e3. Moreover, one
easily checks that for any S C {ej, ey, e3} there is a Hamiltonian path from u to
u' in B that contains S but none of {ey, 3, €3} \ S. We represent B by the symbol
shown in Figure 15.4(b).

We are now able to construct G. For each clause, we introduce a copy of
B, joined one after another. Between the first and the last copy of B, we insert
two vertices for each variable, all joined one after another. We then double the
edges between the two vertices of each variable x; these two edges will cor-
respond to x and X, respectively. The edges ey, e, e3 in each copy of B are
now connected via a copy of A to the first, second, third literal of the corre-
sponding clause. This construction is illustrated by Figure 15.5 with the example
{{x1, X2, X3}, {¥1, x2, X3}, {71, X2, x3}}. Note that an edge representing a literal can
take part in more than one copy of A; these are then arranged in series.

Now we claim that G is Hamiltonian if and only if Z is satisfiable. Let C' be
a Hamiltonian circuit. We define a truth assignment by setting a literal true iff C
contains the corresponding edge. By the properties of the gadgets A and B each
clause contains a literal that is true.
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S-DIMENSIONAL MATCHING (31DM)

Instance. Disjoint sets U, V, W ool equal cardinality and 7" C 1) »x V x W,

Question: 1s there a subset M ol T with |M| [/] such that for distinct
(e, v, w), (u', v, w'y € M oone has u - u', v £ 0 and w £ w'?

Theorem 15.26. (Karp [1972]) 3DM is NP-complete.

Proof: Membership in NP is obvious. We shall polynomially transform Sat-
ISFIABILITY to 3DM. Given a collection Z of clauses Zi, ..., Z, over X
{xi,..., X}, we construct an instance (U, V, W, T) of 3DM which is a yes-
instance if and only if Z is satisfiable.

<

(B)

N

J

Fig. 15.5.

Conversely, any satisfying truth assignment defines a set of edges correspond-
ing to literals that are frue. Since each clause contains a literal that is #7ue this set We define:
of edges can be completed to a tour in G. | .
U = {x,5x:i=1,....n; j=1,...,m}
This proof'is essentially due to Papadimitriou and Steiglitz [1982]. The problem '

of deciding whether a given graph contains a Hamiltonian path is also NP-complete Vo= leii= l ol f=Liassmf U ADY: § =21, 1]
(Exercise 14(a)). Moreover, one can easily transform the undirected versions to e ok Leowit= 15 fro=lyus.0m)
the directed Hamiltonian circuit or Hamiltonian path problem by replacing each W= | b;’ i=1 o j=1.,m U {w i j=1,...,m)
undirected edge by a pair of oppositely directed edges. Thus the directed versions .
are also NP-complete. Uld{ :k=1,....n—1; j=1,...,m)

There is another fundamental NP-complete problem: Ty = {(.x:;' , u;" , bf ), (%7, a/ i Iy;." Yt = 1,005 m o jJe=liie m}

m-1 1

where """ = q,

T, = {(x,v/,wh:ii=1,..., n, j=1,..., m; x; € Z;}
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Uy v, wly I, TR I, Sy X e 2yl
5 “‘,/~"/\/~’//./)~‘\r/~‘/\/-'//\/’:’ Liwoenehtd P=1liwuen m, k=1,...,n—1}
T = T,UT,UT;.
For an illustration of this construction, see Figure 15.6. Here m 2, 7,

{x1, X2}, Z, = {¥1, Xz}. Each triangle corresponds to an element of 7, U 75. The
elements ¢y, d] and the triples in 73 are not shown.

Suppose (U, V, W, T) is a yes-instance, so let M C T be a solution. Since
the a/’s and b appear only in elements 7, for each i we have either M N T} 2
{(x;",af,bij) cj=1,....mlorMNT, D {(fij,a;/+l,b;/) cj=1,...,m}. In the
first case we set x; to false, in the second case to true.

Furthermore, for each clause Z; we have (A/, v/, w’/) € M for some literal
X € Z;. Since A/ does not appear in any element of M N T; this literal is true;
hence we have a satisfying truth assignment.

Conversely, a satisfying truth assignment suggests a set M; C 7T of cardinality
nm and a set M, C T, of cardinality m such that for distinct (u, v, w), (u’, V', w’) €
M, UM, we have u # u’, v # v’ and w # w'. It is easy to complete M; U M, by
(n — 1)m elements of T; to a solution of the 3DM instance. O

A problem which looks simple but is not known to be solvable in polynomial
time is the following:

SUBSET-SUM
Instance: Natural numbers cy, ..., ¢, K.
Question: s there a subset S C {1, ..., n} such that ZjeS ¢;=K?

Corollary 15.27. (Karp [1972]) SUBSET-SuM is NP-complete.

Proof: Itis obvious that SUBSET-SuM is in NP. We prove that 3DM polynomially
transforms to SUBSET-SUM. So let (U, V, W, T) be an instance of 3DM. W.l.o.g.
let UUV UW = {uy,...,us,}. We write S := {{a,b,c} : (a,b,c) € T} and
S = {Sl, cee 7sn}~

Define .
¢ =Yy m+DT (=1
Ui €3;
and
3m
K = Z(n+1)i*1.
i=1

Written in (n + 1)-ary form, the number ¢; can be regarded as the incidence
vector of 5; (j = 1,...,n), and K consists of 1’s only. Therefore each solution
to the 3DM instance corresponds to a subset R of S such that Z‘\, <r ¢j = K, and
vice versa. Moreover, size(c;) < size(K) = O(mlogn), so the above is indeed a
polynomial transformation. l

I56 The Clans coNT Y6
An important special case 18 the following problem
PARTITION
Instance:  Natural numbers ¢, ..., Cy:
Question: 1s there a subset S {r ..., n} such that >] € >«/‘/4\"/ !

Corollary 15.28. (Karp [1972]) PARTITION is NP-complete.

Proof: We show that Suser-Sum polynomially transforms to PARTITION. So
let ¢y, ..., ¢,, K be an instance of SUBSET-SUM. We add an element Chl
’Z;‘I:I ¢ — 2K’ (unless this number is zero) and have an instance ¢y, ..., ¢, of
PARTITION.

Case 1: 2K <Y ,¢;. Then for any I C {1, ..., n} we have
Z("i = K if and only if Z €= Z Cis
iel ielU{n+1} ie{l,..n]\I

Case2: 2K > )" ¢ Then forany / C {I,...,n} we have

Zci = K if and only if Zc,» = Z Ci.

iel iel ie{l,...n+1}\1

~ In both cases we have constructed a yes-instance of PARTITION if and only if
the original instance of SUBSET-SUM is a yes-instance. (|

We finally note:
Theorem 15.29. INTEGER LINEAR INEQUALITIES is NP-complete.

Proof: We already mentioned the membership in NP in Proposition 15.12. Any
of the above problems can easily be formulated as an instance of INTEGER LINEAR
INEQUALITIES. For example a PARTITION instance ¢y, ..., ¢, is a yes-instance if
and only if {x € Z" : 0 <x < 1, 2¢"x = ¢" 1} is nonempty. (]

15.6 The Class coNP

The definition of NP is not symmetric with respect to yes-instances and no-
instances. For example, it is an open question whether the following problem
belongs to NP: given a graph G, is it true that G is not Hamiltonian? We intro-
duce the following definitions:

Definition 15.30. For a decision problem P = (X, Y) we define its complement
10 be the decision problem (X, X \ Y). The class coNP consists of all problems
whose complements are in NP. A decision problem P € coNP is called coNP-
complete if all other problems in coNP polynomially transform to P.



