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1 Set covering
We start from the following Set Covering Problem instance:

min z = x1 + 2x2 + x3 + 2x4 + x5

x1 + x2 + x4 ≥ 1
x2 + x3 ≥ 1
x2 + x4 + x5 ≥ 1

x3 + x4 + x5 ≥ 1
x1, x2, x3, x4, x5 ∈ {0, 1}

We relax all four constraints with Lagrangean relaxation and we obtain:

min zLR(λ) =x1 + 2x2 + x3 + 2x4 + x5+
+ λ1(1− x1 − x2 − x4) + λ2(1− x2 − x3)+
+ λ3(1− x2 − x4 − x5) + λ4(1− x3 − x4 − x5)
x ∈ {0, 1}

which we can rewrite as

min zLR(λ) =(1− λ1)x1 + (2− λ1 − λ2 − λ3)x2 + (1− λ2− λ4)x3+
+ (2− λ1 − λ3 − λ4)x4 + (1− λ3 − λ4)x5+
+ λ1 + λ2 + λ3 + λ4

x ∈ {0, 1}

Since this is a Lagrangean relaxation, if we solve problem LR to optimality for any
given choice of λ ≥ 0 we always obtain a valid lower bound, i.e. z∗LR(λ) ≤ z∗.

If we use very low values for the multipliers, we may obtain infeasible solutions
from LR, because constraint violations are not penalized enough. For instance with
λ = (0.2, 0.7, 0.7, 0, 4) we have

min zLR(λ) =0.8x1 + 0.4x2 − 0.1x3 + 0.7x4 − 0.1x5 + 2.0
x ∈ {0, 1}
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whose optimal solution is x∗ = (0, 0, 1, 0, 1) with z∗LR(λ) = 1.8. With this solution
row 1 remains uncovered.

If we use very large values for the multipliers, we are likely to obtain a feasible
solution but a weak lower bound. For instance if we choose λ = (10, 10, 10, 10) we
have

min zLR(λ) =− 9x1 − 28x2 − 19x3 − 28x4 − 19x5 + 40
x ∈ {0, 1}

whose optimal solution is x∗ = (1, 1, 1, 1, 1) with z∗LR(λ) = −63. With this solution
all rows are covered but the lower bound is useless.

1.1 Lagrangean heuristic
Starting from an infeasible solution obtained by Lagrangean relaxation, it is possible
to repair it in a heuristic way, in order to obtain a feasible solution and hence an upper
bound zUB ≥ z∗.

For instance, starting from x∗ = (0, 0, 1, 0, 1) which is optimal for λ = (0.2, 0.7, 0.7, 0, 4),
we can choose the minimum cost column that we need to insert in order to cover the
uncovered rows. Here we have only one uncovered row, that is row 1. The minimum
cost column covering row 1 is column 1. Hence we obtain x = (1, 0, 1, 0, 1) which is
now feasible. Its cost is equal to 3 and this is an upper bound (it is also the optimal
value but so far we do not have obtained any guarantee of this).

A heuristic procedure like this is very fast and it can be repeated in every node of a
branch-and-bound tree.

1.2 Subgradient optimization
Though being convex, function f∗LR(λ) does not have an analytical expression and it
is not everywhere differentiable. The subgradient optimization method is an iterative
procedure to search for its optimal value. Starting from the current optimal solution
x∗(λ

(k)), obtained at iteration k, it modi�es the values of the Lagrangean multipliers so
that:

• multipliers corresponding to violated constraints are increased;

• multipliers corresponding to active constraints are left unchanged;

• multipliers corresponding to respected and non active constraints are decreased.

This is equivalent to increase each multiplier by an amount proportional to the sub-
gradient, i.e. to the amount by which the constraint is violated in x∗(λ(k)): s(k) =
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b − Ax∗(λ(k)). The updating formula to compute λ(k+1) at iteration k + 1 from λ(k)

at iteration k is as follows:

λ(k+1) = max{λ(k) +

∣∣zUB − z∗LR(λ(k))
∣∣

∥∥s(k)
∥∥2 s(k), 0}

where zUB is an upper bound. If the gap between the current upper bound zUB and the
current lower bound z∗LR(λ(k) is large, the step is also large; if the gap is small, the step
is also small. When the value of a multiplier would become negative according to the
update formula, it is set to 0 because Lagrangean relaxation of inequality constraints
requires all multipliers to be non-negative.

Since we are using zUB instead of z∗ (which is obviously unknown), we are in-
troducing an approximation which enlarges the step. Therefore the convergence of the
method is no longer guaranteed. For this purpose a decreasing step coef�cient t is used,
to scale down the steps. A common heuristic rule is to start with t(0) = 2 and to halve
its value every 30 or so iterations. hence we are using the following update formula:

λ(k+1) = max{λ(k) + t(k)

∣∣zUB − z∗LR(λ(k))
∣∣

∥∥s(k)
∥∥2 s(k), 0}

Subgradient optimization terminates in two cases:
• when we reach a good enough lower bound (i.e. z∗LR(λ(k)) is very close to zUB)

• when t(k) is so small that the multipliers do not change signi�cantly from one
iteration to the other.

Remark. When we are solving ILP instances with integer data we know that z∗ is also
integer. Hence we can round up z∗LR(λ(k)) in the end test (not in the multipliers update
formula).

1.3 Solution of our example
We start with λ(0) = (0, 0, 0, 0) and t(0) = 1.

Lagrangean subproblem: iteration 1. The relaxed problem is

min zLR(λ(0)) = x1 + 2x2 + x3 + 2x4 + x5

x1, x2, x3, x4, x5 ∈ {0, 1}
The optimal solution is x∗(λ(0)) = (0, 0, 0, 0, 0) with z∗LR(λ(0)) = 0. All rows are
uncovered.

Lagrangean heuristic. We iteratively look for the minimum cost column that covers
an uncovered row.
Iteration 1: row 1. We select column 1 of cost 1. Rows 2, 3 and 4 remain uncovered.
Iteration 2: row 2. We select column 3 of cost 1. Row 3 remains uncovered.
Iteration 3: row 3. We select column 5 of cost 1. Now all rows are covered.
We have computed the heuristic solution x = (1, 0, 1, 0, 1) with cost zUB = 3.
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Subgradient optimization: iteration 1. Using the update formula we compute:

λ(1) = max{λ(0)+t(0)
∣∣zUB − z∗LR(λ(0))

∣∣
∥∥s(0)

∥∥2 s(0), 0} =




0
0
0
0


+1

|3− 0|
4




1
1
1
1


 =




3/4
3/4
3/4
3/4




Lagrangean subproblem: iteration 2. With λ(1) = (0.75, 0.75, 0.75, 0.75) we have

min zLR(λ(1)) = x1 + 2x2 + x3 + 2x4 + x5 +
3
4

(1− x1 − x2 − x4 ) +

3
4

(1 − x2 − x3 ) +

3
4

(1 − x2 − x4 − x5) +

3
4

(1 − x3 − x4 − x5) =

1
4
x1 − 1

4
x2 − 1

2
x3 − 1

4
x4 − 1

2
x5 + 3

x1, x2, x3, x4, x5 ∈ {0, 1}
The optimal solution is x∗(λ(1)) = (0, 1, 1, 1, 1) with z∗LR(λ(1)) = 1.50. In this
solution all rows are covered.

Subgradient optimization: iteration 2. We have s(1) = (−1,−1,−2,−2). Using
the update formula we compute:

λ(2) =




3/4
3/4
3/4
3/4


 + 1

|3− 3/2|
10




−1
−1
−2
−2


 =




12/20
12/20
9/20
9/20




Lagrangean subproblem: iteration 3. With λ(2) = (0.6, 0.6, 0.45, 0.45) we have

min zLR(λ(2)) = x1 + 2x2 + x3 + 2x4 + x5 +
12
20

(1− x1 − x2 − x4 ) +

12
20

(1 − x2 − x3 ) +

9
20

(1 − x2 − x4 − x5) +

9
20

(1 − x3 − x4 − x5) =

0.40x1 + 0.35x2 − 0.05x3 + 0.50x4 + 0.10x5 + 2.1
x1, x2, x3, x4, x5 ∈ {0, 1}
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The optimal solution is x∗(λ(2)) = (0, 0, 1, 0, 0) with z∗LR(λ(2)) = 2.05. In this solu-
tion rows 1 and 3 are uncovered.

We can observe that the lower bound z∗LR(λ(2)) = 2.05 can be rounded up to 3 and
since zUB is also equal to 3, we have closed the gap and we have proved the optimality
of the current best feasible solution x∗ = (1, 0, 1, 0, 1).

5


