Additive bounding for the Double TSP with Multiple Stacks

Luca Diedolo, ACT-OR luca.diedolo@ahead-research.com

Giovanni Righini, University of Milan giovanni.righini@unimi.it

Optimization and Decision Science Conference 2020

November 19th, 2020

The DTSPMS

The Double Traveling Salesman Problem with Multiple Stacks is an NP-hard combinatorial optimization problem.

- Data:
 - two weighted graphs (pickup and delivery) with a depot each
 - a vehicle with a given number of stacks (LIFO policy)
- solution: a Hamiltonian cycle for each graph, based at the depot
- objective: minimize the total cost of the two cycles
- constraints: the two cycles must be compatible with the LIFO policy for each stack: picked up items are put on top of a stack and only items on top of a stack can be delivered.

A sample instance

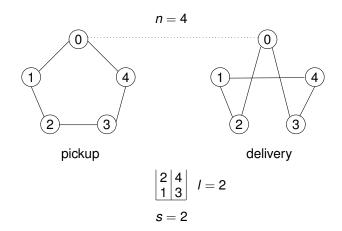


Figure: A sample instance with n = 4, s = 2, l = 2

State of the art

Only very small instances have been solved to optimality.

- Petersen, Archetti, Speranza (2010): branch-and-cut on a two-index vehicle flow formulation with additional infeasible path constraints;
- Carrabs, Cerulli, Speranza (2013): branch-and-bound for the DTSPMS with 2 stacks;
- Alba Martínez, Cordeau, Dell'Amico, Iori (2013): branch-and-cut: up to *n* = 28 nodes in one hour.

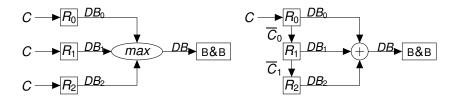
Our goal

- testing the tightness of additive bounds (Fischetti, Toth, 1989);
- using them in a branch-and-bound algorithm.

Additive Bounds

Multiple bounds

Additive bounds



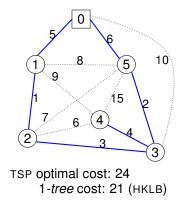
- C → original costs
- $\overline{C} \rightarrow$ reduced costs
- *R* → relaxations
- $DB \rightarrow$ dual bounds

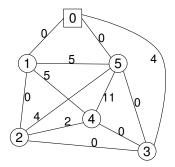
Routing step

- Held and Karp method to compute TSP lower bound
 - primal step compute 1-tree
 - dual step modify edge costs using subgradient optimization

1-tree computed by нк

the corresponding residual instance

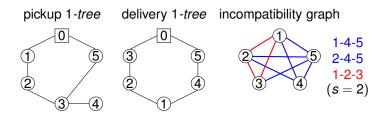




Listing step

Incompatibility graph, from an arbitrary orientation of the two cycles:

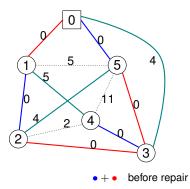
- STRAIGHT edge: $i \prec j$ in both pickup and delivery cycles
- **REVERSE edge**: $i \prec j$ in pickup cycle and $j \prec i$ in delivery cycle



Find all cliques of cardinality s + 1, where s is the number of stacks.

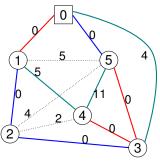
Repair step

Destructive



- minimum cost *subtour* of clique **1-4-5** of cost **13** (0-3-4-1-2-5-0)
- similarly for 1-2-3, cost 9

Non-destructive

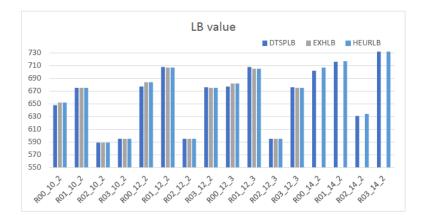


+ • after repair

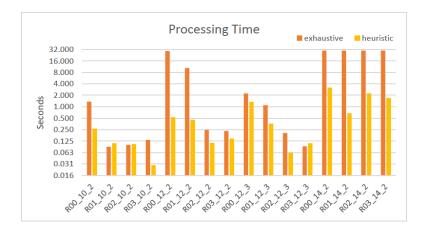
 minimum cost *subtour* of pair (1-4-5, 1-2-3) of cost 20 (0-3-2-1-4-5-0)

Non-destructive repair cost: exact or heuristic.

Computational results: lower bounds

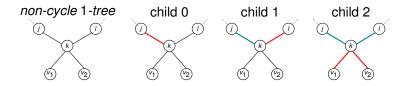


Computational results: computing time



Branching

- 1-tree branching (DEG(k) > 2)
 - forbidden and fixed edges



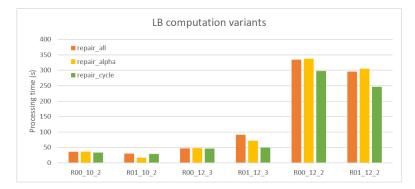
• repairing subtour branching

• similarly, only with *positive* reduced cost edges

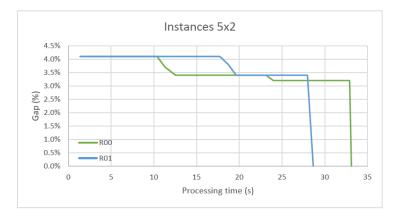
Bounding

Three variants tested for computing the additive LB

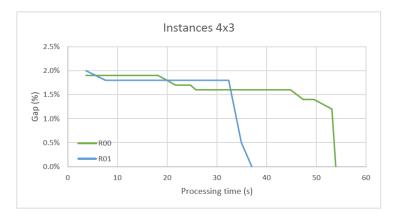
- repair_all repair is always performed
- repair_alpha repair is performed only when $\alpha = \frac{UB-LB}{UB}$ is small enough
- repair_cycle repair is performed only when 1-trees are cycles



DTSPMS B&B algorithm – Experiments (5 \times 2)



DTSPMS B&B algorithm – Experiments (4×3)



DTSPMS B&B algorithm – Experiments (6×2)

Conclusions

Conclusions

- additive lower bounds exceed the double TSP bound in about 75% of instances;
- heuristic non-destructive cost computation is very effective;
- repair_cycle saves processing time;
- results are still far from state-of-the-art.

Future developments

- Improve the computation of the Held-Karp lower bound;
- combinatorial explosion due to combinatorial number of checks
 → develop a heuristic also for *destructive* repair costs.