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0. Introduction

This survey is devoted to cutting planes that are useful or potentially useful in solving
mixed integer programs. This topic is important because (a) improving formulations
with cutting planes is of interest independently of the algorithm used to solve the
problem, and (b) linear programming based branch-and-bound with cuts added, known
as branch-and-cut, is now one of the most widespread and successful tools for solving
mixed integer programs.
The paper is divided into four sections. First, we discuss ways of generating cuts for

general integer programs (IPs) max{cTx: Ax= b; x∈Zn
+} and mixed integer programs

(MIPs) max{cTx + hTy: Ax + Gy = b; x∈Zn
+; y∈Rp

+} independently of any problem
structure. It was shown theoretically in the 70s and 80s that Gomory’s mixed inte-
ger cuts, simple disjunctive cuts and mixed integer rounding cuts are based on the
same disjunctive argument. In the 90s it has been shown, starting with lift-and-project
(disjunctive) cuts, how all three types of cuts can be successfully used
computationally.
In Section 2.1 we look at IPs and MIPs with some local structure, starting with

knapsack sets. Whereas cover inequalities for 0–1 knapsack sets were studied and
used in the 70s and 80s, attention has switched to various generalizations of
0–1 knapsack sets, in particular several mixed knapsack sets containing one or more
continuous variables. These have a richer polyhedral structure then the pure knap-
sack sets, and arise very naturally in mixed integer programs. We introduce lifting,
an important technique for strengthening valid inequalities and obtaining facet-de6ning
inequalities. Still in the context of knapsack sets, we also introduce a new way to
derive valid inequalities, starting from feasible solutions. Knapsack constraints arise
when studying IPs whose constraint matrices have general integer coe2cients. We also
consider problems with 0–1 coe2cient matrices. A natural starting point is the set
packing problem. The basic inequalities for the set packing polytope based on cliques
and cycles are derived, as well as the separation problem for such inequalities. We
then brieMy examine the generalizations of these inequalities to general independence
systems.
A major challenge is to produce stronger inequalities in a way that is easily char-

acterized, and potentially useful for computation. In Section 3 some steps in this
direction are examined. A procedure to mix mixed integer rounding inequalities is
presented, and also a way to extend formulations of certain combinatorial optimiza-
tion problems to include set packing relaxations. Though their computational sig-
ni6cance is still to be demonstrated, we discuss polynomial algorithms relating to
the LovNasz-Schrijver lift-and-project procedure, semi-de6nite optimization and clique
separation.
In Section 4 we look at four important problem classes, ranging from network design

to electricity generation, and try to indicate the state-of-the-art in terms of known strong
cutting planes, and their use in computation.
We assume that readers are familiar with elementary terminology of valid inequalities

and polyhedra, see for instance [78,95,107] for an in-depth treatment. See also [62] for
a recent discussion of computational issues.
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1. General cutting planes

In this section, we discuss methods of generating cutting planes for general mixed
integer programs without exploiting any problem structure. As we will see, in certain
cases these methods provide a complete linear description of the polyhedron under
consideration. As a warm-up we start with the pure integer case and describe the well
known ChvNatal–Gomory cutting planes. We will see that this approach (based on a
rounding argument) fails if continuous variables are involved. Methods that apply to
the general mixed integer case are based on a disjunctive argument, and we will discuss
three of them.

1.1. Pure integer programs

Consider a pure integer program min{cTx: x∈X } where X = {x∈Zn
+: Ax = b} and

A; b are integer. Gomory and later ChvNatal found distinct but closely related ways of
6nding a linear description of conv(X ). We begin with

1.1.1. Chv2atal’s geometric view
By de6nition a polyhedron P is integer if every face contains an integer point. By the

integer Farkas lemma (see, for instance, [95] Corollary 4.1a) this in turn is equivalent
to the fact that every supporting hyperplane contains an integer vector. The idea is
now to look at every supporting hyperplane of P={x∈Rn

+: Ax=b} and shift it closer
to PI = conv(X ) until it contains an integer point.
Let {x∈Rn: hTx=#} be a supporting hyperplane of P with P ⊆ {x∈Rn: hTx6#}

and h integer. Let

Q1:=
⋂

(h;#)∈�

{x∈Rn: hTx6 �#�}; (1)

where � denotes the set of all supporting hyperplanes of P with integer left-hand side.
Obviously, PI ⊆ Q1. At 6rst sight it is not obvious that Q1 is again a polyhedron,
because there are in6nitely many supporting hyperplanes. However, it turns out that
Q1 is again a polyhedron. This allows us to continue the process and apply the same
procedure to Q1. With

Q0:=P and Qt+1:=(Qt)1

we have

P = Q0 ⊇ Q1 ⊇ · · · ⊇ PI :

ChvNatal shows that PI is obtained this way after a 6nite number of iterations when
P is a polytope, and Schrijver shows the result when P is an arbitrary polyhedron.

Theorem 1.1 (ChvNatal [30], Schrijver [94]). Let P be a rational polyhedron. Then
(i) Q1 is a polyhedron.
(ii) Qt = PI for some @nite t.
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The question remains how to generate hyperplanes on demand, i.e., how to 6nd
(h; #)∈� that cuts oR the current (fractional) solution of the LP relaxation min{cTx: x∈P}.
Gomory [46,48] gives an answer to this question.

1.1.2. Gomory’s algorithmic view
Let x∗ be an optimal solution of the LP relaxation min{cTx: x∈P}, P ⊆ Rn+ and B ⊆

{1; : : : ; n} be a basis of A with x∗B=A−1
B b−A−1

B ANxN and x∗N=0, where N={1; : : : ; n}\B.
If x∗ is integral, we terminate with an optimal solution for min{cTx: x∈X }. Other-

wise, one of the values x∗B must be fractional. Let i∈B be some index with x∗i �∈ Z.
Since every feasible integral solution x∈X satis6es xB = A−1

B b− A−1
B ANxN ,

A−1
i· b−

∑
j∈N

A−1
i· A:jxj ∈Z; (2)

where Di· and D:j denotes the ith row and jth column of some matrix D, respectively.
The term on the left remains integral when adding integer multiples of xj, j∈N , or
an integer to A−1

i· b. We obtain

f(A−1
i· b)−

∑
j∈N

f(A−1
i· A:j)xj ∈Z; (3)

where f(�) = �− ���, for �∈R. Since 06f(·)¡ 1 and x¿ 0, we conclude that

f(A−1
i· b)−

∑
j∈N

f(A−1
i· A:j)xj6 0;

or equivalently,∑
j∈N

f(A−1
i· A:j)xj¿f(A−1

i· b) (4)

is valid for PI . Moreover, it is violated by the current linear programming solution x∗,
since x∗N = 0 and f(A−1

i· b) = f(x∗i )¿ 0. After subtracting xi +
∑

j∈N A−1
i· A:jxj = A−1

i· b
from (4) we obtain

xi +
∑
j∈N

�A−1
i· A:j�xj6 �A−1

i· b�; (5)

which is, when the right-hand side is not rounded, a supporting hyperplane with integer
left-hand side, and thus a member of �. Moreover, adding this inequality to the system
Ax = b preserves the property that all data are integral. Thus, the slack variable that
is to be introduced for the new inequality can be required to be integer as well and
the whole procedure can be iterated. In fact, Gomory [49] proves that with a particular
choice of the generating row such cuts lead to a 6nite algorithm, i.e., after adding a
6nite number of inequalities, an integer optimal solution is found. Thus, it provides an
alternative proof for Theorem 1.1.
Given P and a general point x∗ ∈P, the separation problem for ChvNatal–Gomory

inequalities is to determine whether x∗ ∈P1, and if not to 6nd an inequality hTx6 �#�
cutting oR x∗. An e2cient procedure has been proposed when h= uA with u restricted
to be a {0; 12} vector [28], but the general problem has been shown to be NP-hard
[108].
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1.2. Mixed integer programs

The two approaches discussed so far fail when both integer and continuous variables
are present. ChvNatal’s approach fails because the right-hand side cannot be rounded
down in (1). Gomory’s approach fails since it is no longer possible to add integer
multiples to continuous variables to derive (3) from (2). For instance, 1

3 +
1
3x1−2x2 ∈Z

with x1 ∈Z+; x2 ∈R+ has a larger solution set than 1
3 + 1

3x1 ∈Z. As a consequence,
we cannot guarantee that the coe2cients of the continuous variables are non-negative
and therefore show the validity of (4). Nevertheless, it is possible to derive valid
inequalities using the following disjunctive argument.

Observation 1.2. Let (ak)Tx6 �k be a valid inequality for a polyhedron Pk ⊆Rn+ for
k = 1; 2. Then;

n∑
i=1

min(a1i ; a
2
i )xi6max(�1; �2)

is valid for both P1 ∪ P2 and conv(P1 ∪ P2).

This observation applied in diRerent ways yields valid inequalities for the mixed
integer case. We present three methods that are all more or less based on Observation
1:2.

1.2.1. Gomory’s mixed integer cuts
Consider again the situation in (2), where xi; i∈B, is required to be integer. We

use the following abbreviations Saj = A−1
i· A:j; Sb = A−1

i· b, fj = f( Saj), f0 = f( Sb), and
N+ = {j∈N : Saj¿ 0} and N− =N \N+. Expression (2) is equivalent to

∑
j∈N Sajxj =

f0 + k for some k ∈Z. We distinguish two cases,
∑

j∈N Sajxj¿ 0 and
∑

j∈N Sajxj6 0.
In the 6rst case,∑

j∈N+

Sajxj¿f0

must hold. In the second case, we have
∑

j∈N− Sajxj6f0 − 1, which is equivalent to

− f0

1− f0

∑
j∈N−

Sajxj¿f0:

Now we apply Observation 1.2 to the disjunction P1 = P ∩ {x: ∑j∈N Sajxj¿ 0} and
P2 = P ∩ {x: ∑j∈N Sajxj6 0} and obtain the valid inequality∑

j∈N+

Sajxj − f0

1− f0

∑
j∈N−

Sajxj¿f0: (6)

This inequality may be strengthened in the following way. Observe that the derivation
of (6) remains unaRected when adding integer multiples to integer variables. By doing
this we may put each integer variable either in the set N+ or N−. If a variable is in
N+, the 6nal coe2cient in (6) is Saj and thus the best possible coe2cient after adding
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integer multiples is fj = f( Saj). In N− the 6nal coe2cient in (6) is (f0=(1 − f0)) Saj

and thus f0(1− fj)=(1− f0) is the best choice. Overall, we obtain the best possible
coe2cient by using min(fj; f0(1−fj)=(1−f0)). This yields Gomory’s mixed integer
cut [47]∑

j: fj6f0

j integer

fjxj +
∑

j: fj¿f0

j integer

f0(1− fj)
1− f0

xj

+
∑
j∈N+

j non-integer

Sajxj −
∑
j∈N−

j non-integer

f0

1− f0
Sajxj¿f0: (7)

Gomory [47] shows that an algorithm based on iteratively adding these inequalities
solves min{cTx: x∈X } with X = {x∈Zp

+ ×Rn−p
+ : Ax= b} in a 6nite number of steps

provided cTx∈Z for all x∈X .

1.2.2. Mixed-integer-rounding cuts
Consider the following elementary mixed integer set X={(x; y)∈Z×R+: x−y6 b}

with b∈R and the inequality

x − 1
1− f(b)

y6 �b�: (8)

Proposition 1.3 (Nemhauser and Wolsey [78,79]). Inequality (8) is valid for conv(X ).

Proof. Consider the disjunction P1=X∩{(x; y): x6 �b�} and P2=X∩{(x; y): x¿ �b�+
1}. For P1 we immediately see that

(x − �b�)(1− f(b))6y

is valid by adding the inequalities x−�b�6 0 and 06y scaled with weights 1−f(b)
and 1. For P2 we combine −(x− �b�)6− 1 and x− y6 b with weights f(b) and 1
to obtain

(x − �b�)(1− f(b))6y:

Thus; Observation 1.2 implies that (x−�b�)(1−f(b))6y is valid for conv(P1 ∪P2)
= conv(X ).

The basic observation expressed in Proposition 1.3 can now be extended to more
general situations. Consider the following mixed integer set:

X = {(x; y)∈Zn
+ × R+: aTx − y6 b};

with a∈Rn; b∈R. We take fi = f(ai) and f0 = f(b) in the sequel.
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Proposition 1.4 (Nemhauser and Wolsey [78,79]). The inequality
n∑

i=1

(
�ai�+ (fi − f0)+

1− f0

)
xi − 1

1− f0
y6 �b� (9)

is valid for conv(X ); where v+ =max(0; v) for v∈R. Inequality (9) is called a mixed
integer rounding (MIR) inequality.

Proof. Relax aTx−y6 b to
∑

i∈N 1�ai�xi+
∑

i∈N 2 aixi−y6 b; where N 1={i∈{1; : : : ; n}:
fi6f0} and N 2 = {1; : : : ; n} \ N 1. Applying Proposition 1.3 to w − z6 b with
w =

∑
i∈N 1�ai�xi +

∑
i∈N 2�ai�xi ∈Z and z = y +

∑
i∈N 2 (1− fi)xi¿ 0 yields

w − z
1− f0

6 �b�: (10)

Substituting w and z in (10) gives (9).

MIR inequalities imply Gomory’s mixed integer cuts (7) when applied to the mixed
integer set X = {(x; y−; y+)∈Zn

+ ×R2
+: a

Tx+ y+ − y− = b}. To see this consider the
relaxation aTx − y−6 b of X . Proposition 1.4 gives

n∑
i=1

(
�ai�+ (fi − f0)+

1− f0

)
xi − 1

1− f0
y−6 �b�:

Subtracting the original inequality aTx + y+ − y− = b gives Gomory’s mixed integer
cut (7).
Nemhauser and Wolsey [79] discuss MIR inequalities in a more general setting.

They prove that MIR inequalities provide a complete description for any mixed 0–1
polyhedron. Marchand and Wolsey [69,70] show that certain strong cutting planes for
structured mixed integer programs can be derived as MIR inequalities. They also show
their computational eRectiveness in solving general mixed integer programs.

1.2.3. Lift-and-project cuts
The idea of “lift and project” is to consider the integer programming problem, not in

the original space, but in some space of higher dimension (lifting). Then inequalities
found in this higher dimensional space are projected back to the original space resulting
in tighter integer programming formulations. Versions of this approach diRer in how
the lifting and the projection are performed, see [10,66,96]. All approaches only apply
to 0–1 mixed integer programming problems. We explain the ideas in [10] in more
detail and show the connections and diRerences to [66,96].
The validity of the procedure is based on a trivial observation.

Observation 1.5. If c0 + cTx¿ 0 and d0 + dTx¿ 0 are valid inequalities for X ; then
(c0 + cTx)T(d0 + dTx)¿ 0 is valid for X .

Consider a 0–1 program min{cTx: x∈X } with X = {x∈{0; 1}p × Rn−p: Ax6 b},
in which the system Ax6 b already contains the trivial inequalities 06 xi6 1 for i=
1; : : : ; p. Let P={x∈Rn: Ax6 b} and PI=conv(X ). Consider the following procedure.
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Algorithm 1.6 (Lift-and-Project).

1. Select an index j∈{1; : : : ; p}.
2. Multiply Ax6 b by xj and 1− xj giving

(Ax)xj6 bxj;

(Ax)(1− xj)6 b(1− xj) (11)

and substitute yi:=xixj for i = 1; : : : ; n; i �= j and xj:=x2j (lifting).
Call the resulting polyhedron Lj(P).

3. Project Lj(P) back to the original space by eliminating variables yi. Call the
resulting polyhedron Pj.

The following theorem shows that the jth component of each vertex of Pj is either
zero or one.

Theorem 1.7 (Balas et al. [11]). Pj = conv(P ∩ {x∈Rn: xj ∈{0; 1}}).

For any sequence of indices i1; : : : ; it ∈{1; : : : ; p}; t¿ 1 let

Pi1 ;i2 ;:::;it :=(: : : (Pi1 )i2 : : :)it :

A repeated application of Algorithm 1.6 yields PI .

Theorem 1.8 (Balas et al. [10]). Pi1 ;:::;it = conv(P ∩ {x∈Rn: xih ∈{0; 1}; h= 1; : : : ; t}).

Theorem 1.8 shows that the result does not depend on the order in which one applies
Algorithm 1.6 to the selected variable. Thus, we may write P{i1 ;:::;it} instead of Pi1 ;:::;it
and P{1; :::;p} = PI .

The problem that remains in order to implement Algorithm 1.6 is to carry out Step
3. Let Lj(P) = {(x; y): Dx + By6d}. Then the projection of Lj(P) onto the x-space
can be described by

Pj = {x: (uTD)x6 uTd for all u∈C};
where C={u: uTB=0; u¿ 0}. Thus, the problem of 6nding a valid inequality in Step
3 of Algorithm 1.6 that cuts oR a current (fractional) solution x∗ can be solved by the
linear program

max uT(Dx∗ − d);

u∈C:
(12)

This linear program is unbounded, if there is a violated inequality, since C is a poly-
hedral cone. For algorithmic convenience C is often truncated by some “normalizing
set”, see [10]. If an integer variable xj that attains a fractional value in a basic feasible
solution is used to determined the index j in Algorithm 1.6, then an optimal solution
to (11) indeed cuts oR x∗.
The computational merits of lift-and-project cuts to solve real-world problems are

discussed in [10,11].
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There is a close connection between the lift-and-project method and disjunctive
programming. In fact, Theorem 1.7 states that Pj = conv(P0 ∪ P1) where P0:=P ∩
{x∈Rn: xj =0} and P1:=P ∩ {x∈Rn: xj =1}. The inequalities obtained by projecting
Lj(P) onto the x-space may be viewed as inequalities obtained from the disjunction of
P into P0 and P1. Thus, lift-and-project is a specialization of disjunctive programming,
see, for instance, [8,60] for further details on this issue.
Observation 1.5 can be applied to a more general setting. For the ease of exposition

we assume that our mixed integer program is indeed a pure integer program, i.e.,
p = n. Sherali and Adams [96] suggest lifting the problem to a higher dimensional
space by multiplying Ax6 b by every product (

∏
j∈J1 xj)(

∏
j∈J2 (1 − xj)) such that

J1; J2 ⊆ {1; : : : ; n} are disjoint and |J1∪J2|=d for some 6xed value d∈{1; : : : ; n}. They
linearize the problem by setting xi=xki ; 26 k6d +1, and by replacing every product∏

j∈J xj by a single variable yJ for J ⊆ {1; : : : ; n}. Thereafter, the high-dimensional
problem is projected to the space of x-variables. If d=n is chosen, then this procedure
directly yields a linear description of PI .
Setting d= 1, the 6rst step of the above procedure leads to the system

(Ax)xj6 bxj for j = 1; : : : ; n;

(Ax)(1− xj)6 b(1− xj) for j = 1; : : : ; n:

Setting yij = xixj for 16 i¡ j6 n, and then projecting back to the original space
leads to a polyhedron N (P) ⊆ ⋂n

j=1 Pj. It is clear from Theorem 1.7 that this tighter
procedure must be repeated at most n times to terminate with PI . LovNasz and Schrijver
[66] studied this projection in more detail. They note that if x0 = 1; then the product
of two valid inequalities

(c0 + cTx)T(d0 + dTx) = cT
(

x0
x

)
(x0; xT)d= cTXd¿ 0;

where X =( x0x )(x0; x
T) is a symmetric and positive semide6nite matrix. This is pursued

in Section 2.3.
We want to emphasize here that in contrast to the pure integer case none of the

cutting plane procedures presented yields a 6nite algorithm for general mixed integer
programs. Gomory needs an integer restricted objective function, and the other two
provide 6niteness only for 0–1 mixed integer programs. Cook, Kannan, and Schrijver
[33] present the so-called split cuts. These cuts are again based on Observation 1.2
and may be viewed as special disjunctive cuts. They turn out to be equivalent to MIR
inequalities [79]. However, Cook et al., show that the split cuts in combination with a
certain rounding technique, which is based on the idea of discretizing the continuous
variables, su2ce to generate the mixed integer hull of a polyhedron. See also [83].

2. Simple structures

Above we have looked at valid inequalities for IPs and MIPs. If we restrict our
attention to a single constraint, or a small subset of constraints, even a general problem
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may exhibit some “local” structure. For example, all variables appearing in a constraint
may be 0–1 variables, or a small part of the MIP may be a network Mow problem.
Here, we look at ways to obtain stronger inequalities by using such local structure.

2.1. Knapsacks and cover inequalities

The concept of a cover has been used extensively in the literature to derive valid
inequalities for (mixed) integer sets. In this section, we 6rst show how to use this
concept to derive cover inequalities for the 0–1 knapsack set. We then discuss how to
extend these inequalities to more complex mixed integer sets.
Consider the 0–1 knapsack set

K =


x∈{0; 1}N :

∑
j∈N

ajxj6 b




with non-negative coe2cients, i.e., aj¿ 0 for j∈N and b¿ 0. The set C ⊆ N is a
cover if

-=
∑
j∈C

aj − b¿ 0: (13)

In addition, the cover C is said to be minimal if aj¿ - for all j∈C. To each cover
C, we can associate a simple valid inequality which states that “not all variables xj
for j∈C can be set to one simultaneously”.

Proposition 2.1 (Balas [7], Hammer et al. [57], Padberg [85], Wolsey [103]). Let
C ⊆ N be a cover. The cover inequality∑

j∈C

xj6 |C| − 1 (14)

is valid for K . Moreover; if C is minimal; then the inequality (14) de@nes a facet of
conv(KC) where KC = K ∩ {x: xj = 0; j∈N \ C}.

Example 2.2. Consider the 0–1 knapsack set

K = {x∈{0; 1}6: 5x1 + 5x2 + 5x3 + 5x4 + 3x5 + 8x66 17}:
C = {1; 2; 3; 4} is a minimal cover for K and the corresponding cover inequality

x1 + x2 + x3 + x46 3

de6nes a facet of conv({x∈{0; 1}4: 5x1 + 5x2 + 5x3 + 5x46 17}).

If a cover C is not minimal, then it is easily seen that the corresponding cover
inequality is redundant, i.e., it is the sum of a minimal cover inequality and some
upper bound constraints.
As described in the next subsection, lifting can be used to strengthen cover inequal-

ities and to obtain a large class of facet-de6ning inequalities for conv(K) called lifted
cover inequalities. Generalizations of cover inequalities can be found in [43,99,106]
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where the polyhedral structures of, respectively, the 0–1 knapsack set with general-
ized upper bounds constraints, the 0–1 knapsack with precedence constraints and the
multiple 0–1 knapsack set are studied. Lifted cover inequalities have been used suc-
cessfully in general purpose branch-and-cut algorithms to tighten the formulation of
0–1 integer programs [36,54]. In [13], it is shown how minimal covers, lifting and
complementation (replacing the binary variable xj by its complement 1 − Sxj) can be
used to obtain all the non-trivial facets of the 0–1 integer programming polytope with
positive coe2cients.
The concept of cover is also useful in the study of the polyhedral structure of

problems containing both 0–1, integer and continuous variables. Consider the mixed
0–1 knapsack set

S =


(x; s)∈{0; 1}N × R+:

∑
j∈N

ajxj6 b+ s




with non-negative coe2cients, i.e., aj¿ 0 for j∈N and b¿ 0.

Proposition 2.3 (Marchand and Wolsey [71]). Let C ⊆ N be a cover; i.e.; C is a
subset of N satisfying (13). The inequality∑

j∈C

min (aj; -)xj6
∑
j∈C

min (aj; -)− -+ s (15)

is valid for S. Moreover; the inequality (15) de@nes a facet of conv(SC) where SC =
S ∩ {x: xj = 0; j∈N \ C}.

Note here that each cover C gives rise to a cover inequality that de6nes a facet
of conv(SC). This is in contrast to the pure integer case where only minimal covers
induce facets.

Example 2.4. Consider the mixed 0–1 knapsack set

S = {(x; s)∈{0; 1}6 × R+: 5x1 + 5x2 + 5x3 + 5x4 + 3x5 + 8x66 17 + s}:

Taking C′ = {1; 2; 3; 6} a (non-minimal) cover for S; the associated cover inequality

5x1 + 5x2 + 5x3 + 6x66 15 + s

de6nes a facet of conv({(x; s)∈{0; 1}4 × R+: 5x1 + 5x2 + 5x3 + 8x66 17 + s}).

Cover inequalities of the form (15) can be used to derive valid inequalities for more
complex mixed integer sets. We illustrate this observation by showing how to derive
valid inequalities for an elementary Mow model consisting of inMow arcs with capacities
and 6xed costs, and a constraint on the total inMow.
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Consider the (Mow) set

X =


(x; y)∈{0; 1}N × RN

+:
∑
j∈N

yj6 b; yj6 ajxj; j∈N




and let C ⊆ N be a (Mow) cover, i.e., C is a subset of N satisfying (13). In∑
j∈N yj6 b, ignore yj for j∈N \ C and replace yj by ajxj − sj for j∈C where

sj¿ 0 is a slack variable. We obtain∑
j∈C

ajxj6 b+
∑
j∈C

sj:

Using Proposition 2.3, we have that the following inequality is valid for X∑
j∈C

min(aj; -)xj6
∑
j∈C

min(aj; -)− -+
∑
j∈C

sj;

or equivalently, substituting ajxj − yj for sj,∑
j∈C

[yj + (aj − -)+(1− xj)]6 b:

Proposition 2.5 (Padberg et al. [86]). Let C ⊆ N be a Cow cover (C is a subset of
N satisfying (13)) with maxj∈C aj ¿-. The Cow cover inequality∑

j∈C

[yj + (aj − -)+(1− xj)]6 b (16)

is a facet-de@ning inequality for conv(X ).

Flow models have been extensively studied in the literature. Various generalizations
of the Mow cover inequality (16) have been derived for more complex Mow models.
In [100], a family of Mow cover inequalities is described for a general single node
Mow model containing variable lower and upper bounds. Generalizations of Mow cover
inequalities to lot-sizing and capacitated facility location problems can also be found,
respectively, in [2,87]. Flow cover inequalities have been used successfully in gen-
eral purpose branch-and-cut algorithms to tighten formulations of mixed integer sets
[52,53,101]. See Example 2.8 and Section 3.
Cover inequalities appear also in other contexts. In [29] cover inequalities are de-

rived for the knapsack set with general integer variables. Unfortunately, in this case,
the resulting inequalities do not de6ne facets of the convex hull of the knapsack set
restricted to the variables de6ning the cover. More recently, the notion of cover has
been used to de6ne families of valid inequalities for the complementarity knapsack set
[39].

2.2. Lifting

The lifting technique is a general approach that has been used in a wide variety of
contexts to strengthen valid inequalities. For simplicity of exposition, we 6rst illustrate
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the main concepts related to this technique by lifting binary variables in a 0–1 knapsack
set.
Consider the 0–1 knapsack set

K =


x∈{0; 1}N :

∑
j∈N

ajxj6 b




and let M be a subset of N . Suppose that we have an inequality,∑
j∈M

1jxj6 10; (17)

which is valid for KM = K ∩ {x: xj = 0; j∈N \M}. The lifting problem is to 6nd the
lifting coe2cients {1j}j∈N\M so that∑

j∈N

1jxj6 10 (18)

is valid for K . Ideally, we would like inequality (18) to be “strong” (i.e., if inequality
(17) de6nes a face of high dimension of conv(KM ), we would like the inequality (18)
to de6ne a face of high dimension of conv(K)).

2.2.1. Sequential lifting
One way of obtaining coe2cients {1j}j∈N\M is to apply sequential lifting: lifting

coe2cients 1j are evaluated one after another. More speci6cally, the coe2cient 1k is
computed for a given k ∈N \M so that

1kxk +
∑
j∈M

1jxj6 10 (19)

is valid for KM∪{k}. This can be done by considering the lifting function

2M (u) = min


10 −

∑
j∈M

1jxj:
∑
j∈M

ajxj6 b− u; x∈{0; 1}|M |


 : (20)

Proposition 2.6 (Sequential lifting [85]). Suppose KM∪{k}∩{x: xk =1} �= ∅. Inequality
(19) is valid for KM∪{k} if 1k 62M (ak). Moreover; if 1k =2M (ak) and (17) de@nes
a face of dimension t of conv(KM ); then (19) de@nes a face of conv(KM∪{k}) of at
least dimension t + 1.

If one now intends to lift a second variable, then it becomes necessary to update the
function 2M . Speci6cally, if k ∈N \ M was introduced 6rst with a lifting coe2cient
1k , then the lifting function becomes

2M∪{k}(u) = min


10 −

∑
j∈M∪{k}

1jxj:
∑

j∈M∪{k}
ajxj6 b− u; x∈{0; 1}|M |+1


 ;

so in general, function 2M can decrease as more variables are lifted in. As a con-
sequence, lifting coe2cients depend on the order in which variables are lifted and
therefore diRerent lifting sequences often lead to diRerent valid inequalities.
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Example 2.7. Consider the 0–1 knapsack set

K = {x∈{0; 1}6: 5x1 + 5x2 + 5x3 + 5x4 + 3x5 + 8x66 17}
and let M = {1; 2; 3; 4}. The inequality

x1 + x2 + x3 + x46 3

is valid for K{1;2;3;4}. Lifting variable x5 and then variable x6 leads to

x1 + x2 + x3 + x4 + x5 + x66 3:

However; lifting variable x6 and then variable x5 leads to

x1 + x2 + x3 + x4 + 2x66 3:

It can be checked that both inequalities de6ne facets of conv(K).

One of the key questions to be dealt with when implementing such a lifting approach
is how to compute lifting coe2cients 1j. To perform “exact” sequential lifting (i.e.,
to compute at each step the lifting coe2cient given by the lifting function), we have
to solve a sequence of integer programs. In the case of the lifting of variables for the
0–1 knapsack set this can be done e2ciently using a dynamic programming approach
related to the following recursion formula:

2M∪{k}(u) = min[2M (u); 2M (u+ ak)− 2M (ak)]:

Using such a lifting approach, facet-de6ning inequalities for the 0–1 knapsack set have
been derived [14,7,57,103,85] and embedded in a branch-and-bound framework to solve
to optimality particular types of 0–1 integer programs [36].
We now indicate how the lifting ideas can be extended to treat variables 6xed to

values other than zero, and to handle more than one variable at a time.

Lifting a binary variable @xed to one
Consider the binary knapsack set

KM ∪{k} =


x∈{0; 1}|M |+1:

∑
M∪{k}

ajxj6 b+ ak


 :

Note that with xk =1, this reduces to the set KM for which a (facet-de6ning) inequality∑
j∈M 1jxj6 10 of conv(KM ) is given. So here we ask for what values of 1k , the

inequality∑
j∈M

1jxj + 1k(1− xk)6 10

is valid for KM ∪{k}.
The inequality is valid by construction when xk = 1, and when xk = 0, it is valid if

and only if 1k 62M (−ak). It follows that∑
j∈M

1jxj − 2M (−ak)xk 6 10 − 2M (−ak)
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is facet-de6ning for conv(KM ∪{k}). Note that an alternative way to derive this inequal-
ity is to work with the complemented variable Sxk = 1− xk , which is 6xed to zero and
then lifted.

Lifting a variable upper bound pair @xed to zero
Consider the set

XM ∪{k} =


(x; y)∈{0; 1}|M |+1 × R|M |+1

+ :
∑

M∪{k}
yj6 b; yj6 ajxj; j∈M ∪ {k}


 :

Note that with (xk ; yk) = (0; 0), this reduces to the Mow set over

XM =


(x; y)∈{0; 1}M × RM

+ :
∑
j∈M

yj6 b; yj6 ajxj; j∈M


 :

Now suppose that the inequality∑
j∈M

1jxj +
∑
j∈M

3jyj6 10

is valid and facet-de6ning for conv(XM ).
As before, let

4M (u) =min


10 −

∑
j∈M

1jxj −
∑
j∈M

3jyj:
∑
j∈M

yj6 b− u;

yj6 ajxj; j∈M; (x; y)∈{0; 1}|M | × R|M |
+


 :

Now the inequality∑
j∈M

1jxj −
∑
j∈M

3jyj + 1kxk + 3kyk 6 10

is valid if and only if 1k + 3ku64M (u) for all 06 u6 ak , ensuring that all the
feasible points with (xk ; yk) = (1; u) satisfy the inequality.
So the inequality de6nes a facet if the a2ne function 1k + 3ku lies below the

function 4M (u) in the interval [0; ak ] and touches it in two points diRerent from (0; 0),
thereby increasing the number of a2nely independent tight points by the number of
new variables. In [53] it is also shown how to lift the pair (xk ; yk) when yk has been
6xed to ak and xk to 1.

Example 2.8. (i) Consider the 0–1 knapsack set

K = {x∈{0; 1}5: 5x1 + 5x2 + 5x3 + 5x4 + 7x56 22}:
Fixing x5=1; we obtain as before that

∑4
j=1 xj6 3 is facet-de6ning for conv(K{1;2;3;4}).

As 2(−7) = 3− 4 =−1;

x1 + x2 + x3 + x4 + x56 4

is facet-de6ning for conv(K).
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Fig. 1. Functions 2C (u) and 4(u).

(ii) Consider the Mow set

X ′ = {(x; y)∈{0; 1}5 × R5
+ :

5∑
j=1

yj6 17; yj6 5xj; j = 1; : : : ; 4; y56 8x5}:

Fixing (x5; y5) = (0; 0), the Mow cover inequality (16)

y1 + y2 + y3 + y4 − 2x1 − 2x2 − 2x3 − 2x46 9

is facet-de6ning for the resulting set conv(XM ).
The function 4M (u) is readily seen to satisfy

4M (u) = 0 for 06 u6 2;

4M (u) = u− 2 for 26 u6 5;

4M (u) = 3 for 56 u6 7;

4M (u) = 3 + (u− 7) for 76 u6 10; etc:

Now for (�; 5) = (0; 0); (�; 5)(1; 1)T =4M (1) and (�; 5)(1; 2)T =4M (2).
For (�; 5) = (− 6

5 ;
3
5 ); (�; 5)(1; 2)

T =4M (2) and (�; 5)(1; 7)T =4M (7).
For (�; 5) = (−4; 1); (�; 5)(1; 7)T =4M (7) and (�; 5)(1; 8)T =4M (8).
So three facet-de6ning inequalities

y1 + y2 + y3 + y4 − 2x1 − 2x2 − 2x3 − 2x46 9;

y1 + y2 + y3 + y4 − 2x1 − 2x2 − 2x3 − 2x4 + 3
5y5 − 6

5x56 9

and

y1 + y2 + y3 + y4 − 2x1 − 2x2 − 2x3 − 2x4 + y5 − 4x56 9

are obtained for conv(X ′). In Fig. 1 the function 4 = -4M is shown.
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In theory, “exact” sequential lifting can be applied to derive valid inequalities for
any kind of mixed integer set. However, in practice, this approach is only useful to
generate valid inequalities for sets for which one can associate a lifting function that
can be evaluated e2ciently.
Lifting is applied in the context of set packing problems to obtain facets from

odd-hole inequalities [84], see Section 2.4. Other uses of sequential lifting can be
found in [29] where the lifting of continuous and integer variables is used to extend
the class of lifted cover inequalities to a mixed knapsack set with general integer
variables. In [72,73] lifting is used to de6ne (lifted) feasible set inequalities for an
integer set de6ned by multiple integer knapsack constraints, see Section 2.3.
Sequential lifting is not the only way of computing lifting coe2cients. We now

discuss a general approach in which an “a priori” characterization is used to compute
lifting coe2cients.

2.2.2. Sequence independent lifting and superadditivity
Returning to the 0− 1 knapsack set K , we show how to evaluate lifting coe2cients

{1j}j∈N\M when we want to lift all variables in N \M simultaneously.
Because the function 2M may decrease as more variables are lifted in, taking

{2M (aj)}j∈N\M as lifting coe2cients does not in general lead to a valid inequality
for K . Therefore to obtain a “sequence independent lifting”, we have to 6nd a function
4 :R→ R with 4(u)62M (u) so that∑

j∈N\M
4(aj)xj +

∑
j∈M

1jxj6 10 (21)

is valid for K . In the next proposition we characterize such a function 4. We 6rst
introduce a de6nition.

De(nition 2.9. A function F :R→ R is superadditive on R if F(d1)+F(d2)6F(d1+
d2) for all d1; d2 ∈R.

Proposition 2.10. Sequence independent lifting [52;104]. Let 4 :R→ R be a function.
If (i) 4(u)62M (u) for all u∈R and (ii) 4(u) is superadditive on R; then inequality
(21) is valid for K .

Condition (ii) is quite restrictive. However, by considering the lifting of variables
whose coe2cients in the knapsack constraint take particular values, one can relax as-
sumption (ii). In particular, if we suppose that all coe2cients aj are positive, condition
(ii) becomes 4(u) is superadditive on R+. We now illustrate this idea by deriving
particular lifted cover inequalities using a superadditive function.
Consider a 0–1 knapsack set K in which aj ¿ 0 for all j∈N . If C ⊆ N is a minimal

cover, the cover inequality∑
j∈C

xj6 |C| − 1
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is valid for KC = K ∩ {x: xj = 0; j∈N \ C}. The lifting function here is

2C(u) = min


|C| − 1−

∑
j∈C

xj

∣∣∣∣∣∣
∑
j∈C

ajxj6 b− u; x∈{0; 1}|C|

 :

Suppose C = {1; : : : ; r} and aj¿ aj+1 for all j∈{1; : : : ; r − 1}. Let Aj =
∑j

t=1 at and
let A0 = 0. The function

4(u) =




j if Aj6 u6Aj+1 − - for j = 0; : : : ; r − 1;

j + [u− Aj]=- if Aj − -6 u6Aj for j = 1; : : : ; r − 1;

r + [u− Ar]=- if Ar − -6 u

is dominated by 2C(u) and is superadditive on R+. Therefore∑
j∈N\C

4(aj)xj +
∑
j∈C

xj6 |C| − 1 (22)

is valid for K .

Example 2.7 (continued). The inequality (22) associated to C = {1; 2; 3; 4} is

x1 + x2 + x3 + x4 + 1
3x5 +

4
3x66 3:

The functions 2C(u) and 4(u) are shown in Fig. 1.

Again sequence independent lifting can be extended to the lifting of valid inequal-
ities for more general mixed integer sets [52]. In [53], simultaneous lifting of pairs
of variables (included in the same variable upper bound constraint) is studied. Se-
quence independent lifted Mow cover inequalities are obtained. In some of the cases
studied there, the lifting function itself is shown to be superadditive. In [71], classes
of facet-de6ning inequalities for the mixed knapsack set are obtained using the super-
additivity of the lifting function 6rst on R+ and then on R−, i.e., 6rst lifting variables
with positive coe2cients, and then those with negative coe2cients.
Other uses of lifting can be found in the literature. In [10,11], lift-and-project cuts

are generated in the space of the fractional variables. The cutting planes are then lifted
in the full space of variables. Lifting in this approach plays a central role because it
reduces the computational eRort required to generate lift-and-project cuts. A similar
idea is used in [3] where cutting planes for the symmetric travelling salesman problem
are generated from a polytope obtained by projection onto a small subset of the original
variables.

2.3. Knapsacks and feasible set inequalities

Section 1.1 showed a way to derive an elementary inequality by forbidding an in-
feasible subset of items of a 0–1 knapsack set. We now investigate a way of de6ning
valid inequalities for the 0–1 knapsack set starting with a feasible set and again using
sequential lifting. This yields a generalization of the cover inequalities.
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Consider again the 0–1 knapsack set

K =


x∈{0; 1}N :

∑
j∈N

ajxj6 b




with aj ¿ 0 for j∈N .
Let T ⊆ N be a feasible set, i.e.,

∑
j∈T aj6 b and w :T → Z+ \{0} a weighting of

the items in T . We denote the slack by r = b−∑j∈T aj¿ 0. Clearly, the inequality∑
i∈T wixi6w(T ) is valid for K∩{x: xi=0 for i∈N \T}. Then we carry out sequential

lifting as in the previous section.

Proposition 2.11 (Weismantel [102]). If T is a feasible set and w :T → Z+ \ {0}; the
inequality∑

i∈T

wixi +
∑

j∈N\T
1jxj6w(T )

is valid for K; where (31; : : : ; 3n−|T |) is a permutation of N \ T ; 2T is the lifting
function (20) with 1j = wj for j∈T and 10 = w(T ); and 13i = 2T∪{31 ;:::;3i−1} (a3i).

We observe that if wi = 1 for all i∈T , then 10 = |T | and

2T (u) = min


|S| : S ⊆ T;

∑
j∈S

aj¿ u− r


 :

It follows immediately in this case that 2T (u) = 0 for 06 u6 r, and thus 1j = 0
whenever j∈N \ T and aj6 r.

Example 2.12. Consider the knapsack polytope conv(K) de6ned as the convex hull
of all 0–1 vectors that satisfy the constraint

3x1 + 4x2 + 6x3 + 7x4 + 9x5 + 18x66 21:

Taking the feasible set T={1; 2; 3; 4}; we obtain a slack r=1. Choosing the permutation
(5,6); we obtain coe2cients 15 = 2 and 16 = 3. The resulting feasible set inequality

x1 + x2 + x3 + x4 + 2x5 + 3x66 4

de6nes a facet of conv(K).

Feasible set inequalities associated with a set T and weights wi = 1 for all i∈T
subsume the family of lifted cover and (1; k)-con6guration inequalities. Speci6cally, a
set T ∪ {z} ⊆ N with

∑
i∈T ai6 b is called a (1; k)-con6guration, if every k-element

subset of T together with the element z forms a minimal cover. This con6guration
gives rise to a valid inequality for K ,∑

i∈T

xi + (|T | − k + 1)xz6 |T |:



416 H. Marchand et al. / Discrete Applied Mathematics 123 (2002) 397–446

It is a characteristic of feasible set inequalities that lifting coe2cients can be com-
puted in polynomial time under modest assumptions on the weights wi of the items
i∈T , see [102]. Indeed, the exact lifting coe2cient of an item either equals a certain
lower bound or equals this lower bound plus one. This generalizes an earlier result
where this property was shown to hold for the lifting of minimal cover inequalities
[14].

Theorem 2.13. For i∈N\T with ai ¿ r; the coeDcient 1i in any feasible set inequality
associated with T and the weights wi = 1 for all i∈T satis@es

2T (ai)− 16 1i62T (ai):

In fact, Theorem 2.13 extends to more general families of feasible set inequalities
where the coe2cients of the items in the feasible set are not restricted to the value one,
see [102]. Another extension of feasible set inequalities in [72,73] applies to general
integer programs.

2.4. 0–1 matrices and valid inequalities

Integer and mixed integer programs often contain some constraints with only 0–1
coe2cients. In addition, many preprocessors for integer programs automatically gen-
erate logical inequalities of the form xi + xj6 1; xi6 xj, cover inequalities, etc. This
naturally leads to the study of integer programs with 0–1 matrices.
The study of such problems, and in particular the set packing and covering prob-

lems, plays a prominent role in combinatorial optimization. These problems are among
the most studied with a beautiful theory involving topics such as perfect, ideal, or
balanced matrices, perfect graphs, the theory of blocking and anti-blocking polyhedra,
independence systems and semide6nite programming.
The focus of this section is on a (partial) description of the associated polyhedra by

means of inequalities. Assuming that relaxations of various integer programs yield set
packing=covering problems, knowledge about these polyhedra can be used to strengthen
the formulation of the original problem.

De(nition 2.14. Let A∈{0; 1}m×n be a 0–1 matrix and c∈Rn. The 0–1 integer pro-
grams

max {cTx: Ax6 1; x∈{0; 1}n}; (23)

min {cTx: Ax¿ 1; x∈{0; 1}n} (24)

are called the set packing and set covering problems; respectively.

Each column j of A can be viewed as the incidence vector of a subset Fj of the
ground set {1; : : : ; m}, i.e., Fj:={i∈{1; : : : ; m}: Aij = 1}. With this interpretation, the
set packing problem consists of 6nding a collection of sets from F1; : : : ; Fn that are
mutually disjoint and maximal with respect to the objective function c. Analogously,
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the covering problem aims at 6nding a collection of subsets whose union yields the
ground set and is minimal with respect to c.

2.4.1. The set packing polytope
Feasible solutions of the set packing problem have a nice graph theoretic interpre-

tation. Introduce a node for each column index of A and an edge (i; j) between two
nodes i and j if their corresponding columns have a common non-zero entry in some
row. The resulting graph, denoted by G(A), is called (column) intersection graph.
Obviously, every feasible 0–1 vector x satisfying Ax6 1 is the incidence vector of a
stable set (U ⊆ V is a stable set if i; j∈U implies (i; j) �∈ E) in the graph G(A).
Conversely, the incidence vector of any stable set in G(A) is a feasible solution of
the set packing problem Ax6 1. So a study of stable sets in graphs is equivalent to a
study of the set packing problem.
Now consider some 0–1 matrix A and denote by

P(A) = conv{x∈{0; 1}N : Ax6 1}
the set packing polytope. Let G = (V; E) be the intersection graph G(A). From our
previous discussion it follows that P(A)=conv{x∈{0; 1}n: xi+xj6 1; (i; j)∈E}, where
the latter is an integer programming formulation of the stable set problem in G. In
other words, with two matrices A and A′ one may associate the same set packing
polytope if and only if their corresponding intersection graphs coincide. It is therefore
customary to study P(A) via the graph G and denote the set packing polytope and the
stable set polytope, respectively, by P(G).
The following observations about P(G) are immediate:
(i) P(G) is full dimensional.
(ii) P(G) is down monotone, i.e., x∈P(G) implies y∈P(G) for all 06y6 x. All

non-trivial facets of P(G) have non-negative coe2cients.
(iii) The non-negativity constraints xj¿ 0 induce facets of P(G).
It is also well known that the edge and non-negativity constraints su2ce to describe

P(G) if and only if G is bipartite (i.e., there is a partition (V1; V2) of the nodes such
that every edge has one endpoint in V1 and the other in V2).

Non-bipartite graphs contain odd cycles. Odd cycles give rise to new valid inequal-
ities that cannot be derived as linear combinations of the edge inequalities.

Proposition 2.15 (Padberg [84]). Let C ⊆ E be a cycle of odd cardinality in G. The
odd cycle inequality∑

i∈V (C)

xi6
|V (C)| − 1

2

is valid for P(G). It de@nes a facet of P((V (C)); E(V (C))) if and only if C is an
odd hole; i.e.; a cycle without chords.

Odd cycle inequalities can be separated in polynomial time using the algorithm of
Lemma 9:1:11 in [50] based on shortest paths. Graphs G = (V; E) for which P(G) is
completely described by the edge inequalities xi + xj6 1 for (i; j)∈E and the odd
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cycle inequalities are called t-perfect. This notion was introduced in [31] and includes
series parallel and bipartite graphs.
Another important class of valid inequalities for the stable set polytope are clique

inequalities.

Proposition 2.16 (Fulkerson [44], Padberg [84]). Let (C; E(C)) be a clique in G. The
inequality∑

i∈C

xi6 1

is valid for P(G). It de@nes a facet of P(G) if and only if (C; E(C)) is maximal with
respect to node-inclusion.

Graphs G=(V; E) for which P(G) is completely described by the clique inequalities
are called perfect, a notion going back to Berge [19].
Unlike the class of odd cycle inequalities, the separation problem for the class of

clique inequalities is NP-hard, see Theorem 9:2:9 in [50]. Surprisingly, however, there
exists a larger class of inequalities, called orthonormal representation inequalities (see
Proposition 3.5), that includes the clique inequalities and that can be separated in
polynomial time. See Section 2.3 for a further discussion. Besides cycle, clique and
OR-inequalities, there are many other inequalities known for the stable set polytope.
Among these are blossom, odd antihole, wheel, antiweb and web, wedge inequali-
ties and many more. Reference [23] gives a survey on these inequalities including a
discussion on their separability.

2.4.2. The independence system polytope
Independence systems provide a framework in combinatorial optimization that gen-

eralizes among others the feasible sets of knapsack and set packing problems. To see
this, let N be a 6nite ground set. A collection I of subsets of N is an independence
system if it is closed under taking subsets, i.e.,

F ∈I and G ⊆ F implies G ∈I:

Associated with an independence system is a second system C of subsets of N . C is
called the system of circuits. It includes all subsets of N of minimal cardinality that
do not belong to I.
From the de6nition of an independence system it is clear that, for instance, the

set of all feasible points in a 0–1 knapsack set forms an independence system, and
the minimal covers are the circuits. Also the set of stable sets in a graph forms an
independence system. Here the cardinality of each circuit is two, and the circuits are
precisely the edges of the graph.
More generally, let A∈Rm×n

+ be a non-negative matrix. The set of all 0–1 solutions
satisfying Ax6 b for b∈Rm forms an independence system I on the ground set
N = {1; : : : ; n}. Let

PI:=conv{x∈{0; 1}n: Ax6 b}:
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PI is called an independence system polyhedron. The following fact about the facet-
de6ning inequalities of PI is immediate.

Proposition 2.17. Let cTx6 < be a facet-de@ning inequality that is not a positive
multiple of one of the non-negativity constraints −xi6 0. Then c is a non-negative
vector and <¿ 0.

Observe that for the set packing problem Proposition 2.17 was stated in (ii) in
Section 2.4.1. An easy example of a valid inequality for the polyhedron of a general
independence system is the circuit constraint.

Proposition 2.18. Let I be an independence system and let C ⊆ N be a circuit. The
inequality∑

i∈C

xi6 |C| − 1

is valid for PI.

In fact the problem of 6nding a maximum weight set in an independence system
can be formulated as the integer program

max

{
cTx:

∑
i∈C

xi6 |C| − 1 for all C ∈C; x∈{0; 1}N
}

:

Except for special cases, a circuit constraint does not necessarily de6ne a facet of
the associated independence system polyhedron. Recall that this applies in particular to
the stable set problem for which clique constraints subsume the edge constraints. This
motivates the following de6nition.

De(nition 2.19. For T ⊆ N; the inequality∑
i∈T

xi6 r(T ):=max{|S|: S ⊆ T; S ∈I}

is called a rank inequality; since the right-hand side reMects the maximal cardinality
of an independence set with support in T .

Calculating the rank of a set is typically a di2cult problem. For instance for the
stable set problem, the rank inequality for an arbitrary graph G takes the form∑

i∈V

xi6 �(G);

where �(G) is the size of a maximum stable set in G, and it is NP-hard to calculate
its value.
If I is an arbitrary independence system, then one cannot expect to derive a system

of inequalities that describes PI. This motivates the search for a partial description. A
natural starting point is again the stable set polyhedron. Speci6cally, we can think of
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an odd cycle on {1; : : : ; 2k +1} as a set of adjacent pairs ei = (i; i+1) mod 2k +1 for
i = 1; : : : ; 2k + 1 such that at most one item can be chosen from each pair.
Generalizing, we now consider a set {1; : : : ; n} and the set of adjacent t-tuples Ni =

{i; i + 1; : : : ; i + t − 1} mod n for i = 1; : : : ; n. For q6 t, the set consisting of all sets
containing at most q−1 elements from each set Ni is an independence system, known
as an antiweb, denoted AW(n; t; q). Thus

AW(n; t; q):={I ⊆ N : |I ∩ Nj|6 q− 1 for all j = 1; : : : ; n}:

For example the antiweb AW(5; 3; 3) is the set of subsets represented by the feasible
incidence vectors of the 0–1 integer program with constraints



1 1 1 0 0

0 1 1 1 0

0 0 1 1 1

1 0 0 1 1

1 1 0 0 1




x6




2

2

2

2

2




:

The set C of all circuits of AW(n; t; q) is equal to

C:={C ⊆ N : |C|= q; C ⊆ Nj for some j∈{1; : : : ; n}}:

An antiweb gives rise to a valid inequality for the associated independence system
polyhedron PI. In the example of AW(5; 3; 3), the inequality reads

∑
i∈N xi6 3.

More generally, one obtains

Proposition 2.20. Let AW(n; t; q) be an antiweb and PI the associated polyhedron.
The inequality

∑
i∈N xi6 �n(q− 1)=t�; called an antiweb inequality; is valid for PI.

Proof. The sum of all constraints
∑

i∈Nj xi6 q−1 for j=0; : : : ; n−1 reads
∑

i∈N txi6
n(q− 1). Therefore; the antiweb inequality coincides with the ChvNatal–Gomory cutting
plane

∑
i∈N xi6 �n(q− 1)=t� that is valid for PI.

No polynomial time algorithms are known for the antiweb inequalities. For an an-
tiweb AW(n; t; q) the associated inequality always de6nes a facet if n= t. Hence we
may assume that n¿ t. In this case a necessary condition for the antiweb inequality
to de6ne a facet of PI is that t is not a divisor of n(q − 1). This condition is also
su2cient. This condition, the de6nition of an antiweb and Proposition 2.20 are taken
from Laurent [64]. The antiweb inequality in Laurent’s paper extends, in particular, the
generalized odd holes and antiholes of [42]. It also includes generalized cliques that
were introduced in [77]. There are various other families of inequalities known for the
independence system that we refrain from discussing here in detail.
Very special independence systems in which the rank inequalities and non-negativity

constraints su2ce to describe the convex hull PI include matroids, see [40]. A gener-
alization of the result to the intersection of two matroids can be found in [41].
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2.4.3. The set covering polytope
The feasible solutions of the set covering problem

{x∈{0; 1}n: Ax¿ 1}
are in one-to-one correspondence with the independent sets of the system I

 Sx∈{0; 1}n:
∑
j∈C

Sxj6 |C| − 1 for C ∈C


 ;

when the rows of A correspond to the incidence vectors of circuits C ∈C and Sxj=1−xj
for j∈N = {1; : : : ; n}.
Note that the antiweb inequality has an equivalent counterpart for the set covering

polytope that is derived by complementing every binary variable. In fact the (q; t) roses
of [93] are precisely Laurent’s antiweb inequalities, see also [80]. Further inequalities
for the set covering polytope have been derived, see [23] for a survey, but again all
separation algorithms known are of heuristic nature.

3. Extensions

So far we have tried to introduce various ways to derive cutting planes for in-
teger and mixed integer programs of potential computational value. There are many
further extensions that are algorithmically promising and worth further exploration. Be-
low we discuss three such topics: the idea of mixing MIR inequalities, the approach
of constructing discrete relaxations of integer programs, and the use of semide6nite
programming for separation issues.

3.1. Mixing MIR inequalities

Consider the mixed integer set

X = {(x; s)∈Z|P| × R+: s+ Cxi¿ bi; i∈P}; for P = {1; : : : ; p}:
Let 3i = �bi=C� and ri = bi − (3i − 1)C. We assume that the constraints de6ning X
are ordered in such a way that ri6 ri+1.
The MIR inequality associated with each constraint i∈P of X is

s¿ ri(3i − xi):

By “mixing” these inequalities, a new inequality is obtained.

Proposition 3.1 (GDunlDuk and Pochet [56]). Taking r0 = 0; the inequality

s¿
∑
i∈P

(ri − ri−1)(3i − xi)

is valid for X.

We illustrate the mixing procedure on two examples.
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Example 3.2. Consider an instance of a discrete constant capacity lot-sizing problem;

X = {(x; s)∈{0; 1}3 × R4
+: si−1 + Cxi = bi + si; i∈{1; 2; 3}};

where C=10; b1 =6; b2 =7 and b3 =8. Eliminating variables s1; s2 and s3; we obtain
the inequalities;

s0 + 10x1 + 10x2 + 10x3 ¿ 21;

s0 + 10x1 + 10x2 ¿ 13;

s0 + 10x1 ¿ 6;

to which we can associate the MIR inequalities

s0 ¿ 3− x1 − x2 − x3;

s0 ¿ 3(2− x1 − x2);

s0 ¿ 6(1− x1):

Applying Proposition 3.1; we obtain the mixed MIR inequality

S0¿ (3− x1 − x2 − x3) + 2(2− x1 − x2) + 3(1− x1):

In [56] it is shown that every (k; l; S; I) inequality for the constant capacity lot-sizing
problem can be obtained by mixing MIR inequalities. These inequalities su2ce to solve
the constant capacity lot-sizing problem by linear programming when the objective
function satis6es the Wagner–Whitin assumption [89]. See Section 3.2 for a more
extensive discussion of inequalities for lot-sizing problems.
Mixing can also be used to derive valid inequalities for general integer programs.

Example 3.3. Consider the following integer set

X = {x∈Z5
+: x1 + 3x2 + 10x4¿ 25; x1 + 2x3 + 10x5¿ 37}:

De6ning s= x1 + 3x2 + 2x3; the two constraints de6ning set X can be relaxed to give
a set

X ′ = {(x4; x5; s)∈Z2
+ × R1

+: s+ 10x4¿ 25; s+ 10x5¿ 37}:
Applying Proposition 3.1 to X ′; we obtain the mixed MIR inequality

s¿ 5(3− x4) + 2(4− x5)

or equivalently

x1 + 3x2 + 2x3¿ 5(3− x4) + 2(4− x5)

a valid inequality for X .

Other examples of application of the mixing idea can be found in [56].
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3.2. Set packing relaxations

In the introduction it was mentioned that knowledge about the set packing polytope
can be used to strengthen certain integer programming formulations. Below we show
by example how, by introducing additional variables, it is possible to derive a set
packing relaxation, generate one or more valid inequalities, and then project back into
the original space of variables. We then give a formal description of the approach.

Example 3.4. Let PI be the convex hull of all 0–1 vectors that satisfy the system of
inequalities

5x1 + 5x2+ 7x3 + 2x4 6 18;

8x3 + x4+ 6x5 + 5x6 6 19;

7x1 + 2x2+ 7x5 + x6 6 16:

De6ne variables w1=x1x2; w2=x3x4 and w3=x5x6; so that x1; x2¿w1; x1+x2−16w1;
etc. From the 6rst constraint we have that 10w1+9w26 18; w1; w2 ∈{0; 1} from which
we obtain the valid cover inequality w1 +w26 1. Similarly; from the second and third
constraints; we obtain w2 + w36 1 and w1 + w36 1. Now the odd cycle (or clique)
inequality w1 +w2 +w36 1 is valid; leading 6nally to a valid inequality in the original
variables (x1 + x2−1)+ (x3 + x4−1)+ (x5 + x6−1)6 1 or

∑6
i=1 xi6 4 which is valid

for PI .

In general consider a 0–1 integer program max{cTx: Ax 6 b; x∈{0; 1}n} and let
PI =conv{x∈Zn: Ax6 b; 06 x6 1}. We de6ne a set of a2ne functions fi : Rn �→ R
for i = 1; : : : ; M with the property that fi(x)6 1 and fi(x)∈Z for x∈PI ∩ ZN . We
de6ne a graph G, called the conCict graph, by introducing a node for each of these M
a2ne functions and edges (i; j) if fi(x) + fj(x)6 1 for all x∈PI . Now it is readily
seen that any valid inequality for the stable set polytope P(G) associated with the
conMict graph G yields a valid inequality for PI .
Natural a2ne functions that come up are fi(x)= xj or fi(x)= 1− xj. These are the

ones that are generally used in mixed integer programming solvers, see, for instance,
[5,36,61]. In the above example we have used the a2ne functions f1(x) = x1 + x2 −
1; f2(x) = x3 + x4 − 1; f3(x) = x5 + x6 − 1.
More complicated a2ne functions have been used in BorndDorfer and Weismantel

[25]. It is shown that various inequalities known for certain combinatorial optimization
problems can be interpreted as inequalities from a set packing relaxation. For instance,
it turns out that two-chorded cycle inequalities for the clique partitioning problem are
odd cycle inequalities of an appropriate set packing relaxation, and that a large class
of MDobius ladder inequalities and fence inequalities for the acyclic subdigraph problem
are cycle and clique inequalities, respectively, of suitable set packing relaxations.

3.3. Polynomial separation algorithms via matrix cuts

Coming back to our earlier discussions on the stable set polytope, we indicated that
there are polynomial time separation algorithms for various classes of valid inequalities,
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but that a polynomial time separation algorithm cannot be expected for the family of
clique constraints. More striking is the fact that clique constraints can be generalized,
and that this larger family can be separated in polynomial time. This result is one of the
most appealing applications of semide6nite programming in combinatorial optimization,
see [50,66].
Let G=(V; E) be a graph with |V |=n and P(G) the associated stable set polyhedron.

By P we denote the fractional stable set polytope. For s∈Z+ a sequence of vectors of
unit length, v1; : : : ; vn ∈Rs, ||vi||=1; i=1; : : : ; n is called an orthonormal representation
of G if (i; j) �∈ E implies that (vi)Tvj = 0.
An orthonormal representation of G and a vector of unit length c∈Rs; ||c||=1 lead

to a valid inequality for the stable set polyhedron.

Proposition 3.5. Let v1; : : : ; vn ∈Rs be an orthonormal representation of G and c∈Rs;
||c||= 1. The inequality

∑
i∈V

(cTvi)2xi6 1;

called an orthonormal representation (OR)-inequality; is valid for P(G); and every
clique inequality is an OR-inequality.

Proof. Let ?S be the incidence vector of a stable set S in G. Then (vi)Tvj = 0 for
all i; j∈ S; i �= j. We can express c as c =

∑
j∈S -jvj + c̃ with -∈RS and c̃ in the

orthogonal complement of the linear space induced by the vectors vj; j∈ S. Then

∑
i∈V

(cTvi)2?S
i =

∑
i∈S

(cTvi)2 =
∑
i∈S

-2i 6 1;

because ||c||= 1.
If Q is a clique in G we may set vi = c = e1 ∈Rn for all i∈Q; and vj = ej for all

j �∈ Q. The corresponding orthonormal representation constraint is precisely the clique
constraint

∑
i∈Q xi6 1.

In the following we denote

TH (G) = {x∈Rn
+: x satis6es all OR-constraints}:

TH (G) is a convex set that is a relaxation of P(G). It is polyhedral if and only if
G is perfect, see [50]. However, even when G is not perfect, one can optimize linear
functions over TH (G) in polynomial time. This in turn means that we can separate
over TH (G) in polynomial time, and thus satisfy all the OR-inequalities.
To get an impression why this is true, we indicate below how TH (G) can be char-

acterized via positive semide6nite matrices. This result is due to LovNasz and Schrijver



H. Marchand et al. / Discrete Applied Mathematics 123 (2002) 397–446 425

[66]. Let

H (G) = {Y ∈RV∪{v0} × RV∪{v0}:

Y symmetric;

Yii = Yi0 ∀i∈V;

Yij = 0 ∀(i; j)∈E;

Y positive semide6nite;

eT0Ye0 = 1

}:

Theorem 3.6.

TH (G) = {Ye0: Y ∈H (G)}:

It follows, for instance, from the theory of interior point algorithms that, subject
to certain conditions, linear functions can be optimized over the cone of symmetric
positive semide6nite matrices subject to linear constraints in polynomial time to within
a speci6ed error. Since the constraints in Theorem 3.6 are linear in the space of
(n+ 1)× (n+ 1) matrices and the conditions are satis6ed, this applies to TH (G).
In fact, TH (G) is the projection of a semide6nite relaxation of the stable set problem.

Notice that for any incidence vector x of a stable set we have that

xi + xj6 x0 ∀(i; j)∈E with x0 = 1:

Therefore, the symmetric (n+ 1)× (n+ 1) matrix

X̃ =

[
x20 x0xT

x0x xxT

]

satis6es the condition that
(a) X̃ ij = 0 for all (i; j)∈E.
(b) X̃ 00 = 1:
(c) X̃ ii = X̃ i0 for all i∈V .
(d) vTX̃ v¿ 0 for all v∈Rn+1, i.e., X̃ is positive semide6nite.
Neglecting the condition that the n × n submatrix of X̃ is of the form xxT, we

end up with a relaxation of the stable set problem in the space of the symmetric
(n + 1) × (n + 1) matrices. Projecting back to the space of x-variables (using the
standard lift-and-project approach) yields precisely TH (G). Important is the fact that
TH (G) can be strengthened by using further information in quadratic space about the
matrices associated with stable sets and projecting back to the space of x-variables.
This follows from the work of LovNasz and Schrijver [66] on matrix cuts. We also
refer to [50,65]. The conditions to be encountered in the quadratic space come from
multiplying each constraint of the fractional stable set problem in the original space by
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xi and by (1− xi), replacing the quadratic terms by the corresponding matrix variable
and requiring that x2i = xi.

Theorem 3.7. Let

T (G) = {Ye0: Y ∈H (G)

uTYei¿ 0 ∀u∈ cone({1} × P)′; i = 1; : : : ; n

uTY (e0 − ei)¿ 0 ∀u∈ cone({1} × P)′; i = 1; : : : ; n

};
where P denotes the fractional stable set polytope and cone({1} × P)′ denotes the
polar of the set cone({1} × P). Then the following is true:

T (G) ⊆ {x¿ 0 : x satisfies all edge constraints;

x satisfies all OR-constraints;

x satisfies all odd hole constraints;

x satisfies all odd antihole constraints;

x satisfies all odd wheel constraints

}:

4. Valid inequalities for some structured MIPs

Here, we look brieMy at four problem areas that provide a large variety of applica-
tions: 6xed charge network design, production planning, facility location and electric-
ity generator scheduling. As many of the ideas for generating inequalities for network
problems can be used in the other areas, we start with network design.

4.1. Fixed charge network design

Traditionally, single commodity 6xed charge network problems arose in designing
transport, water and electricity networks. In the last 10 years the design of telecom-
munication networks and VLSI have provided perhaps the bulk of applications in this
area—these include both single commodity problems, such as the construction of two
or multiply connected networks, and multicommodity problems which arise because
messages=communications between two nodes A and B are distinct from messages
being sent from C to D.
Below, we concentrate mainly on single commodity problems because the majority

of valid inequalities can be explained in this simpler context. We present a variety of
diRerent ways to derive inequalities. In particular, we 6rst look at the simplest sin-
gle node model considering diRerent variants, uncapacitated and capacitated, and with
0–1 or integer variables as appropriate. The same single node inequalities are then used
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when several nodes S are combined to form a macro-node, but the di2culty is now
how to choose the set S.
We then present four classes of inequalities that use more of the network structure,

such as the sparsity of the network, ways to combine diRerent dicut inequalities, or
submodularity.
Finally, we brieMy touch on multicommodity problems with a single source and sink

for each commodity. We look at a basic single arc model with both divisible and
indivisible Mows, and then again at how to choose a good macro-node set S on which
to generate a dicut or other inequality.

4.1.1. Single commodity problems
We consider a basic single commodity 6xed charge network Mow problem consisting

of a digraph D = (V; A) and a vector b∈Rn with
∑n

i=1 bi = 0, where n = |V |; T =
{i∈V : bi ¿ 0} is the set of demand nodes or terminals, and U={i∈V : bi ¡ 0} is the
set of sources. Given unit Mow costs pij and 6xed arc capacity installation costs fij

for an amount Cij of capacity on arc (i; j)∈A, the problem is to 6nd a feasible Mow
minimizing the sum of the Mow and capacity installation costs. Much of the literature
has been devoted to the special case of this problem without Mow costs—special cases
are the Steiner tree problem, or the problem of designing a two-connected network of
minimum cost, etc. [48,54].
Below we use the notation SS=V \S; V−(i)={j∈V : (j; i)∈A}; V+(i)={j∈V : (i; j)

∈A}, and C(S; SS) = {(i; j)∈A: i∈ S; j∈ SS}.
Letting yij denote the Mow in arc (i; j)∈A and xij the number of times the capacity

Cij is installed, we obtain the natural formulation

min
∑

(i; j)∈A

pijyij +
∑

(i; j)∈A

fijxij; (25)

∑
j∈V−(i)

yji −
∑

j∈V+(i)

yij = bi for i∈V; (26)

06yij6Cijxij for (i; j)∈A; (27)

xij ∈Z1
+ for (i; j)∈A: (28)

Here (26) are Mow conservation constraints and (27) are variable upper bound capacity
constraints. We will denote the feasible region (26)–(28) by X FC . In practice one also
encounters many variants such as
(i) xij ∈{0; 1} in place of (28),
(ii) Cij = C and also possibly fij = f for all (i; j)∈A when standard equipment is

installed throughout the network,
(iii) Capacity C0

ij already exists on certain arcs, and two or more diRerent types of
capacity can be installed, so we have 06yij6C0

ij + C1x1ij + C2x2ij in place of
(27),

(iv) Capacity is undirected, so we have 06yij + yji6Cexe in place of (27), where
e represents the edge (i; j).



428 H. Marchand et al. / Discrete Applied Mathematics 123 (2002) 397–446

Fig. 2. Single node Mow set.

4.1.2. Single node inequalities
If we just consider the Mow conservation constraint (26) for node i along with the

associated bounds on the Mows (27), we obtain the situation shown in Fig. 2 and the
corresponding single node Mow set

X SN =


(x; y)∈Zp+q

+ × Rp+q
+ :

∑
e∈P

ye −
∑
e∈Q

ye = b; ye6Cexe for e∈P ∪ Q




with p= |P| and q= |Q|, and its relaxation

X SN
¿ =

{
(x; y)∈Zp

+ × Rp
+:
∑
e∈P

ye¿ b; ye6Cexe for e∈P

}
:

The uncapacitated case. If the capacities are so large that the Mow on each arc is
unrestricted, xe can be restricted to be a 0–1 variable for all arcs e∈A. Now points in
X SN
¿ satisfy

∑
e∈P ye¿ b; C

∑
e∈P xe¿ b, and thus if b¿ 0, the cut inequality∑

e∈P

xe¿ 1

is valid for X SN
¿ . Note that if b¡ 0, a similar inequality is obtained with Q in place

of P.
More generally, if F is a subset of the arcs in P, feasible points in X SN

¿ satisfy∑
e∈P\F ye + C

∑
e∈F xe¿ b leading to the mixed cut inequality∑

e∈P\F
ye + b

∑
e∈F

xe¿ b:

The constant capacity case—integer batches. For simplicity, we assume that the
capacities Ce and demands b are integer. When b¿ 0 and Ce = C for all e∈F , the
inequality

∑
e∈P\F ye+C

∑
e∈F xe¿ b leads to the residual capacity or MIR inequality

(see Section 1.2) for X SN
¿∑

e∈P\F
ye + r

∑
e∈F

xe¿ r3; (29)

where 3 = �b=C� and r = b− (3 − 1)C.
For X SN , with G ⊆ Q, the inequality takes the more general form∑

e∈P\F
ye + r

∑
e∈F

xe¿ r3 +
∑
e∈G

[ye − (C − r)xe]; (30)

see [4].
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The capacitated 0–1 case. Rewriting the simple Mow cover inequalities for single
node Mow sets that have been described in Section 1.1, we 6rst present valid inequalities
for X SN

¿ ∩ {(x; y)∈{0; 1}p × Rp
+}. For F a cover, (

∑
e∈F Ce − b= -¿ 0), we obtain∑

e∈P\F
ye +

∑
e∈F

(Ce − -)+xe¿
∑
e∈F

(Ce − -)+:

Generalizing to include outMows, the basic inequality obtained for X SN ∩ {(x; y)∈
{0; 1}p+q × Rp+q

+ } is∑
e∈P\F1

ye +
∑
e∈F1

(Ce − -)+xe¿
∑
e∈F1

(Ce − -)+ +
∑
e∈F2

(ye − Ce) +
∑
e∈L2

(ye − -xe);

where F1 ⊆ P; F2; L2 ⊆ Q; F2 ∩ L2 = ∅ and
∑

e∈F1
Ce −

∑
e∈F2

Ce − b= -¿ 0.
In the constant capacity case, the inequalities for the 0–1 case take the same form

as (29) and (30), and are known to describe the convex hull of solutions, see [86,4].
More general capacity constraints. Suppose that the constraints

ye6C0
e + C1

e x
1
e + C2

e x
2
e

describe the potential capacities. Feasible points now satisfy
∑

e∈P\F ye+C1∑
e∈F x1e+

C2∑
e∈F x2e ¿ b−∑e∈F C0

e . Now assuming b−∑e∈F C0
e ¿ 0, and divisible capacities

(i.e., C1 divides C2), which is often the case in telecommunications applications, ex-
tensions of the residual capacity inequalities have been proposed in [20,67], and these
have been generalized to handle an arbitrary number of divisible capacities in [90].

4.1.3. Aggregate node inequalities
By summing the Mow conservation constraints (26) for i∈ S, we obtain the set X S :∑

e∈C( SS;S)

ye −
∑

e∈C(S; SS)

ye =
∑
i∈S

bi; (31)

06ye6Cexe; xe ∈{0; 1} for e∈ C( SS; S) ∪ C(S; SS) (32)

which is precisely in the form of the single node Mow set X SN . Thus, if
∑

i∈S bi ¿ 0,
all the inequalities presented above can be generalized to the set X S . In particular in
the uncapacitated case we obtain the dicut inequality∑

e∈C( SS;S)

xe¿ 1

and if F is a subset of C( SS; S), the mixed dicut inequality∑
e∈C( SS;S)\F

ye +

(∑
i∈S

bi

)∑
e∈F

xe¿
∑
i∈S

bi:

There is now however a major question to be answered before we can make use of
these inequalities. How should the set S of nodes be chosen, given the huge number
of possibilities?
The separation problem for dicut inequalities. Formally, we wish to solve the prob-

lem: given a solution (x∗; y∗) satisfying the linear programming relaxation of (25)–
(28), does there exist a non-empty subset S⊂V with

∑
i∈S bi¿0 and

∑
e∈C( SS;S) x∗e¡1?
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Fig. 3. Aggregate node set.

Special dicut inequalities: maximum Cow. First we restrict the choice of subsets
S. Remember the notation that T = {i: bi ¿ 0} and U = {i: bi ¡ 0}. Let S = {S ⊂
V : S ∩U =∅; S ∩T �= ∅}. Now if S ∈S, we are sure that

∑
i∈S bi ¿ 0. The separation

problem then reduces to |T | maximum Mow problems.
Speci6cally, choose s∈U and t ∈T . Let Dt be the value of a maximum s–t Mow in

the digraph D = (V; A) with capacities hij = ∞ if i; j∈U and hij = x∗ij otherwise. If
Dt¿ 1, there is no violated dicut inequality with s∈ S and t ∈T . Otherwise if Dt ¡ 1,
the resulting minimal s–t cut gives a violated dicut inequality.
Note that for single source problems with |U |=1, all dicuts of interest are included

in this procedure.
All dicut inequalities: quadratic 0–1 Knapsack. To model the general case, let zj=1

if j∈ S and zj = 0 otherwise. The resulting separation problem can now be written as

D=min
∑

(i; j)∈A

x∗ij(1− zi)zj;

∑
j∈V

bjzj ¿ 0;

zj ∈{0; 1} for j∈V:

If S is the set minimizing D, a violated dicut inequality has been found if D¡ 1, and in
any case we can look at the single node Mow set associated with S for other violated
inequalities.

4.1.4. Inequalities using structure
Uncapacitated: inCow–outCow inequalities. When all arcs are present in an uncapac-

itated network, Mow entering the network can reach any other node. However, when the
network is sparse, this is no longer true. Speci6cally, consider the subgraph induced
by the node set S as shown in Fig. 3. We will now take into account the internal
structure of DS = (S; AS). Write P = C( SS; S) and Q = C(S; SS). Also let R ⊆ AS be a
subset of the arcs in S. For an entering arc e∈P, let Se={i∈ S: bi ¿ 0 and there exists
a dipath in DS;R = (S; AS \ R) from the head of arc e to node i} and �e =

∑
i∈Se bi.
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Fig. 4. Network for multicut inequality.

The inCow–outCow inequality∑
e∈F

�exe +
∑

e∈(P\F)∪R

ye¿
∑
i∈S

bi

is valid for any F ⊆ P.
Uncapacitated: multi-dicut inequalities. Rather than use just a single dicut inequality,

here we show how to use several dicuts simultaneously. Suppose that for each t ∈T ,
a family of dicuts {C( SSk

t ; S
k
t )}Kt

k=1 is given with t ∈ Sk
t and Sk

t ∩ U = ∅ for all k and t.

Also take Fk
t ⊆ C( SS

k
t ; S

k
t ). The following multi-dicut inequality:∑

e∈A

max
t∈T

�e(t)ye +
∑
e∈A

∑
t∈T

5e(t)dtxe¿
∑
t∈T

Ktdt

is shown to be valid in [91], where, for e∈A,
�e(t) is the number of arc sets {Fk

t }Kt
k=1 containing e, and

5e(t) is the number of arc sets {C( SSk
t ; S

k
t ) \ Fk

t }Kt
k=1 containing e.

Example 4.1. Consider the network shown in Fig. 4 with T={6; 7}; d6=2 and d7=3.
Taking K6 =K7 = 2; S1

6 = {2567}; S2
6 = S1

7 = {3567}; S2
7 = {567}; F1

6 = {(37)}; F2
6 =

F1
7 = {(26)}; F2

7 = {(26); (37)}, we have �26(1) = �37(1) = �37(2) = 1; �26(2) = 2; and
we obtain the multi-dicut inequality

y37 + 2y26 + 2x12 + 10x45 + 5x13¿ 10:

0–1 Capacitated: submodular inequalities. An important, but rare structural property,
in discrete optimization problems, is submodularity, which is some discrete form of
non-increasing returns. Speci6cally, f : P(N ) → R is submodular if f(A) + f(B)¿



432 H. Marchand et al. / Discrete Applied Mathematics 123 (2002) 397–446

Fig. 5. Embedded node sets.

f(A ∩ B) +f(A ∪ B) for all A; B ⊆ N . Not surprisingly, this structure is reMected in a
family of valid inequalities. Consider again Fig. 3. For F ⊆ P, let v(F) be the maximum
Mow that can enter DS through the arcs of F , and leave via the demand nodes in S with
bi ¿ 0. It can be shown that v is submodular. De6ne Ej(T ) = v(T ∪ {j})− v(T ), and
let {1; 2; : : : ; p} be a chosen ordering of the elements of P. The following submodular
inequality:∑

j∈P

yj 6 v(F) +
∑

j∈P\F
Ej(F ∪ {j + 1; : : : ; p})xj

−
∑
j∈F

Ej(F ∩ {j + 1; : : : ; p} ∪ {1; : : : ; j − 1})(1− xj) +
∑
e∈Q

ye

is valid, see [109].
Capacitated: dynamic inequalities. Here, we use the idea of mixing to combine

cut inequalities from diRerent aggregate node sets, which can be viewed as gener-
alizing the use of sparsity in the input–output inequalities. Suppose we have node
sets S1 ⊂ S2 ⊂ · · · ⊂ St , and entering arcs P1; : : : ; Pt as shown in Fig. 5. Let
Qpq = {(i; j)∈A: i∈ Sp; j∈ Sq}. Considering the sets S1; S2; : : : ; St in turn, the inequal-
ities based on the inMow to Sk being at least equal to the demand give

k∑
i=1

∑
e∈Pi

Cexe +
∑

p;q:p¿k¿q

∑
e∈Qpq

ye¿
∑
i∈Sk

bi (33)

for k = 1; : : : ; t.
With constant capacities, the mixing theorem can be applied to give inequalities of

the form∑
p;q:p¿q

∑
e∈Qpq

ye¿ r[1](3[1] − X[1]) + · · ·+ (r[t] − r[t−1])(3[t] − X[t]);

where 3k = �∑i∈Sk bi=C�, rk =
∑

i∈Sk bi − (3k − 1)C; {[1]; : : : ; [t]} is a permutation of

{1; : : : ; t} with r[1]6 · · ·6 r[t], and X[k] =
∑[k]

i=1

∑
e∈Pi

xe.
Examples of such inequalities are given below both for lot-sizing and for facility

location problems.
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4.1.5. Multicommodity problems
In multicommodity problems feasible Mows have to be determined for each of k =

1; : : : ; K commodities satisfying demands bk
i at each node i∈V , where the commodities

share arc capacity. This can be formulated as

min
∑

(i; j)∈A

∑
k

pkyk
(ij) +

∑
(i; j)∈A

∑
k

fkxk(ij); (34)

Nyk = bk for k = 1; : : : ; K; (35)

06
∑
k

yk
ij6Cijxij for (i; j)∈A; (36)

xij ∈Z1 for (i; j)∈A; (37)

where N is the node-arc incidence matrix of D. In many instances each commodity k
has a single source ik and a single sink j k , in which case we write bk

jk =dk , bk
ik =−dk

and bk
i =0 otherwise. From now on we limit our attention to this case. We also consider

the network loading problem in which xij is integer rather than 0–1.

4.1.6. Single arc inequalities
Multiple routes: Consider Mow in a single arc (i; j)∈A. Let yk be the Mow of

commodity k in this arc, and x the associated capacity variable. The resulting set is

X SA =

{
(x; y)∈Z1

+ × RK
+:

K∑
k=1

yk 6Cx; yk 6dk for k = 1; : : : ; K

}
:

Taking an arbitrary set K ′ ⊆ {1; : : : ; K} of commodities and setting w=
∑

k∈K′ yk , we
have that w6Cx and w6

∑
k∈K′ dk leading to the arc residual capacity inequality∑

k∈K′
yk 6

∑
k∈K′

dk − r′(3′ − x);

where 3′= �∑k∈K′ dk=C� and r′=
∑

k∈K′ dk − (3′− 1)C. It is shown in [67] that this
family of inequalities completely describes the convex hull of X SA.
Mono-routing. When each commodity must Mow on a single path, the Mow of com-

modity k in arc (i; j) is either 0 or dk , and so we obtain the knapsack set

X SAM =

{
(x0; x)∈Z1

+ × {0; 1}K :
∑
k

dkxk 6Cx0

}
:

Valid inequalities for a more general model with capacities of the form x1 +Cx2 have
been derived in [26]. See also [98].

4.1.7. Multinode inequalities
If we choose a commodity k and a set S ⊂ V with ik ∈ SS and j k ∈ S, Mow conser-

vation for commodity k gives∑
e∈C( SS;S)

yk
e −

∑
e∈C(S; SS)

yk
e = dk :

One can 6rst check for a violated dicut inequality by 6nding a maximum (ik ; j k) Mow
with capacities min{dk ; Ce}x∗e on the arcs.
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More generally, with a constant capacity C and a subset K ′ of commodities, we
have that∑

k∈K′

∑
e∈C( SS;S)

yk
e ¿

∑
k∈K′:ik �∈S; j k∈S

dk ;

which after introduction of the capacity constraints gives∑
e∈C( SS;S)

xe¿

∑
k:ik �∈S; j k∈S dk

C

and then applying Gomory integer rounding gives∑
e∈C( SS;S)

xe¿

⌈∑
k:ik �∈S; j k∈S dk

C

⌉
:

Consider now the relaxed version of these inequalities without the round up of the
right-hand side term and with C = 1. They are automatically satis6ed by a point x∗ if
there exists a y such that (x∗; y) satis6es the linear programming relaxation of (34)–
(37). More precisely such points satisfy the metric inequalities∑

e

3exe¿
∑
k

1kdk ;

where 3∈R|E|
+ are arbitrary edge lengths, and 1k is the corresponding length of a

shortest path from ik to j k , see [59,82]. Note that if 3e =1 for e∈ C( SS; S), the relaxed
inequality above is obtained as a special case.
However, separation for the special case is a max dicut problem, which is NP-hard.

Speci6cally, it su2ces to put a weight −y∗
e on each arc of D, and a weight dk=C on

the arcs (ik ; j k) for k =1; : : : ; K , and 6nd a maximum dicut. This separation procedure
has been used in [15] in a model with edge capacities and no variable Mow costs.

4.2. Lot-sizing

A single-item lot-sizing problem is a very special case of a 6xed charge network
Mow problem, see Fig. 6.
The basic single-item lot-sizing problem is typically formulated as

min
∑
t

ptyt +
∑
t

htst +
∑
t

ftxt ; (38)

st−1 + yt = dt + st for t = 1; : : : ; n; (39)

yt6Ctxt for t = 1; : : : ; n; (40)

st ; yt¿ 0; xt ∈{0; 1} for t = 1; : : : ; n: (41)

Here dt is the demand, pt; ht ; ft are the variable production, storage and 6xed setup
costs, and Ct is the maximum amount that can be produced in period t. yt; st are
continuous variables denoting the production and end-stock in period t, and xt is a
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Fig. 6. Network for lot-sizing.

0–1 setup variable indicating whether the machine can produce in period t. Thus
yt ¿ 0 only if xt = 1. Constraints (39) are Mow balance constraints, and (40) are
capacity constraints linking the production and setup variables.
Much is known about the polyhedral structure of diRerent variants of this problem.

We will see below that all the valid inequalities can be derived using procedures that
we have seen earlier either for general 0–1 MIPs in Sections 1.2 and 2.1, or for 6xed
charge network problems. Later in this section we will also introduce a natural way to
derive valid inequalities for problems with start-ups. Let dkt =

∑t
j=k dj.

Uncapacitated lot-sizing. Let X ULS denote the set of feasible solutions of (39)–(41),
where again we assume that C is very large and does not limit the amount produced in
any period. Aggregating the Mow balance constraints (39) for t= k; : : : ; l, and choosing
a subset S ⊆ {k; : : : ; l}, of periods, leads to the relaxation

sk−1 +
∑

j �∈S;k6j6t

yj + C
∑

j∈S; j6t

xj¿dkt (42)

leading to the MIR inequalities

sk−1 +
∑

j �∈S;k6j6t

yj¿dkt


1−

∑
j∈S; j6t

xj


 (43)

and by the mixing procedure (Section 2.1) to the valid inequalities

sk−1 +
∑

j �∈S;k6j6t

yj¿
∑
j∈S

dj


1−

∑
t∈S;k6t6j

xt


 : (44)

These inequalities completely describe the convex hull of X ULS [16].
Constant capacity lot-sizing. An identical approach leads to a large number of

facet-de6ning inequalities when Ct = C for t = 1; : : : ; n. First from (42) we obtain
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the MIR inequality

sk−1 +
∑

j �∈S;k6j6t

yj¿ rkt


3kt −

∑
j∈S; j6t

xj


 ;

where 3kt = �dkt=C� and rkt = dkt − (3kt − 1)C.
Now if the rkt are placed in non-decreasing order, and written r[1]6 r[2] · · ·6 r[q],

and 3[i] and X S
[i] are the corresponding terms for 3 and

∑
j xj, the mixing procedure

gives

sk−1 +
∑

j �∈S;k6j6l

yj ¿ r[1](3[1] − X S
[1]) + (r[2] − r[1])(3[2] − X S

[2])

+ · · ·+ (r[q] − r[q−1])(3[q] − X S
[q]):

An example of this inequality has been shown in Example 3.2.
Varying capacity lot-sizing. Inequality (42) with varying capacities gives, setting

s′ = sk−1 +
∑

j �∈S;k6j6t yj, the relaxation

s′ +
∑

j∈S; j6t

Ctxj¿dkt ; s′¿ 0; xj ∈{0; 1} for j∈ S;

for which mixed knapsack inequalities can be generated, see Section 1.1. Alternatively,
aggregation of the Mow balance constraints gives the inequality

∑l
j=l yj6dkt + sl, the

bounds give us yj6Cjxj, and the uncapacitated inequality (43) gives yj6djlxj + sl.
Setting sl = 0 temporarily, we have a single node Mow set:

(x; y)∈{0; 1}k−l+1×Rk−l+1
+ :

l∑
j=k

yj6dkl; yj6min[Cj; djl]xj for j=k; : : : ; l


 :

Now it su2ces to add the term (+sl) to the right-hand side of any Mow cover inequality
to have a valid inequality for X ULS, see [91].

4.2.1. Modelling start-ups
If x1; x2; : : : ; xn ∈Zn

+ denote the number of machines set-up in periods 1; : : : ; n, it is
often important to know the number max[xt − xt−1; 0] of machines that start-up in
period t. If zt is a variable representing the number of start-ups, we use the constraints

zt¿ xt − xt−1; zt¿ 0

to get an upper bound on the number of start-ups, and

zt6 xt ; zt6 ut − xt−1

to try to make the upper bound tight, where ut is an upper bound on xt . This provides
an exact formulation if xt ; xt−1 ∈{0; 1}, but it is not tight otherwise.

Observation 4.2. Let ?kt =max{xk ; : : : ; xt}; then xk + zk+1 + · · ·+ zt¿ ?kt .

Lot-sizing with start-ups. Let zt be de6ned as above to take value 1 if and only
if xt = 1 and 0, and let ?kl denote the maximum of (xk ; : : : ; xl). The uncapacitated
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inequality (44) says essentially that the stock at the end of period k − 1 contains the
demand dt if there is no production in periods k; : : : ; t, or in other words if ?kt = 0.
This gives the valid inequality sk−1¿

∑l
t=k dt(1− ?kt), or using Observation 4.2

sk−1¿
l∑

t=k

dt(1− xk − zk+1 − · · · − zt):

In the constant capacity case, either ?j; l = 0 and

sk−1 + C

( j−1∑
i=k

xi + ?j; l

)
¿dkl = dk;j−1 + djl;

or ?j; l = 1 and so

sk−1 + C

( j−1∑
i=k

xi + ?j; l

)
¿dk;j−1 + C:

Thus, all feasible solutions to (42) satisfy sk−1+C(
∑j−1

i=k xi+?j; l)¿dk;j−1+min[C; djl],
and from this we obtain the valid MIR inequality

sk−1¿ r̃kl

(
3̃kl −

j−1∑
i=k

xi − xj − zj+1 − · · · − zl

)
;

where d̃kl =dk;j−1 +min[C; djl]; 3̃kl = �d̃kl=C� and r̃kl = d̃kl − (3̃kl − 1)C. Now varying
l and using mixing, one can obtain the left extended klSI inequalities from [32].

4.3. Facility location problems

The capacitated facility location problem is also a special case of the 6xed charge
network Mow problem. One particularity is that the 6xed costs are incurred on opening
nodes (locations) rather than arcs. We show that both Mow cover and dynamic inequal-
ities can be specialized for the special structure of this problem. A more combinatorial
class of inequalities, a generalization of inequalities from the uncapacitated case, is
also presented.
The feasible region is typically described as follows:∑

j∈N

yij = ai for i∈M; (45)

∑
i∈M

yij6Cjxj for j∈N; (46)

06yij6min[ai; Cj]xj for i∈M; j∈N; (47)

xj ∈{0; 1} for j∈N; (48)

where yij is the amount shipped from location j to client i, and xj = 1 indicates that
location j is in use.
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Fig. 7. Dynamic location set.

Letting vj = Wi∈Myij and summing up all the demand constraints (45) leads to a
single node Mow set X described by

(v; x)∈Rn
+ × {0; 1}n:

∑
j∈N

vj =
∑
i∈M

ai; 06 vj6Cjxj for j∈N




for which knapsack and Mow cover inequalities can be generated.
Next we consider the internal structure of the underlying digraph. Consider a subset

K ⊆ M of clients, a subset J ⊆ N of locations, and for each j∈ J a possibly smaller
subset Kj ⊆ K of clients. Restricted to this subset, the eIective capacity of location j
is SCj =min[Cj;

∑
i∈Kj

ai]. Now we obtain a modi6ed Mow cover set based on the new
variable ṽj =

∑
i∈Kj

yij, namely the set

X EC:=


(ṽ; x)∈R|J |

+ × {0; 1}|J |:
∑
j∈J

ṽj6
∑
i∈K

ai; ṽj6 SCjxj for j∈ J


 :

Speci6cally, if J is a cover with excess - =
∑

j∈J
SCj −

∑
i∈K ai ¿ 0, then we obtain

the eIective capacity Cow cover inequality∑
j∈J

∑
i∈Kj

yij +
∑
j∈J

( SCj − -)+(1− xj)6
∑
i∈K

ai:

Submodular inequalities can also be de6ned for this model leading to very similar
inequalities. The separation problem for the eRective capacity and submodular inequal-
ities involves a choice of the sets, J; K and Kj, and is necessarily heuristic, see [1].
Dynamic inequalities. When Kr ⊆ Kr−1 · · · ⊆ K1, we can use the embedded set

structure to obtain dynamic inequalities, see Section 3.1.

Example 4.3. Consider a problem with four clients and four locations as shown in
Fig. 7.
Speci6cally, we have J={1; 2; 3}; K1={1′; 2′; 3′}; K2={2′; 3′} and K3={3′}. This cor-

responds to an embedded node set with S1 = {1; 1′}; S2 = {1; 2; 1′; 2′};
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S1 = {1; 2; 1′; 2′; 3; 3′} giving the surrogate capacity constraints

v21 +v31 +v41 +5x1 ¿ 1

+v31 +v32 +v41 +v42 +5x1 +5x2 ¿ 3

v41 +v42 +v43 +5x1 +5x2 +5x3 ¿ 7

leading 6rst to the standard MIR inequalities and then the dynamic inequality

v21 + v31 + v32 + v41 + v42 + v43¿ 1(1− x1) + (2− 1)(2− x1 − x2 − x3)

+ (3− 2)(1− x1 − x2):

Combinatorial inequalities. With the same structure J; K and Kj of locations and
clients, let 5 be the minimum number of locations required to serve all the clients in
K if location j is restricted to serving clients in Kj. Then it is shown in [2] that∑

j∈J

∑
j∈Kj

1
ai
yij −

∑
j∈J

xj6 |K | − 5

is valid.

4.4. Unit commitment problems

The unit commitment problem (the problem of scheduling electricity generators to
satisfy hourly demands for a day or a week) is not a 6xed charge network Mow problem.
However, its formulation as a mixed integer program contains several constraints and
variables that have been encountered in this chapter for which cuts can be generated,
such as single node Mow models and start-up variables linking the generators between
time periods. A typical formulation involves the following variables:

xit is the number of generators of type i functioning at period (hour) t (often each
generator is distinct, and this is a 0–1 variable)

zit is the increase in the number of generators of type i active in period t
yi
t is the amount of electricity produced by generators of type i in period t, and as

basic constraints∑
i

yi
t = dt for all t; (49)

lixit6yi
t6Cixit for all i; t; (50)

zit ¿ xit − xit−1 for all i; t; (51)

zit 6 xit for all i; t; (52)

yi
t¿ 0; xit6 ui for all i; t; (53)

xit ; zit ∈Z1
+ for all i; t: (54)
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Typical models also contain ramping and reserve constraints, see [92]. Constraints
(49), (50), (53), (54) lead to single node Mow sets, or continuous knapsack sets on
which various inequalities presented in Section 1 can be generated. In contrast to
lot-sizing models, the Mow balance constraints are not linked over time, as electric-
ity cannot be stocked. However, the start-up variables provide a certain link between
periods. Speci6cally, if we aggregate (49) for periods t = k; : : : ; l and use (50), we
obtain

∑l
t=k

∑
i C

ixit¿dkl. Letting ?i
kt = max{xik ; : : : ; xit} and (I1; I2) be a partition of

the generator set, we obtain

∑
i∈I1

Ci
l∑

t=k

xit +
∑
i∈I2

(k − l+ 1)Ci?i
kl¿dkl

with xit ; ?
i
kl ∈Z1

+. Deriving valid inequalities for such knapsack sets, and then using
Observation 4.2 to replace ?i

kl by its upper bound xik + zik+1 + · · · + zil leads to new
valid inequalities.

Example 4.4 (Marchand [68]). Consider two generator types and two periods with
C1 = 4; C2 = 5; d1 = 12; d2 = 13 and u1 = u2 = 4. Taking I1 = {2} and I2 = {1};
we obtain the set

5x21 + 5x22 + 8?112¿ 25; 06 x21 ; x
2
2 ; ?

1
126 4 and integer:

A valid inequality for this set is

?112 + x21 + x22¿ 4:

Now using x11 + z12¿ ?112; we obtain the valid inequality

x11 + z12 + x21 + x22¿ 4:

This inequality cuts oR the extreme point solution x11 = 3; x12 = 3; z12 = 0 and x21 =
0; x22 =

1
5 ; z22 =

1
5 .

5. Note on computation with cutting planes

Several of the families of valid inequalities described above have been incorporated
into branch-and-bound systems in the last 6fteen years. If cuts are only added at the
top node, we speak of a cut-and-branch system, while if cuts are added at other nodes
in the enumeration tree, it is a branch-and-cut system. Introductions to branch-and-cut
can be found in [62,107]. For a survey on branch-and-cut systems for combinatorial
optimization problems, see [27,63].

5.1. General mixed integer programming systems

In [36] lifted cover inequalities for 0–1 knapsack inequalities were 6rst incorpo-
rated in a cut-and-branch system for 0–1 integer programs. Later Mow cover inequal-
ities and an uncapacitated version of the dynamic inequalities on paths were included
in MPSARX [101], a cut-and-branch system for MIPs. MINTO [75] was the 6rst
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branch-and-cut system for MIPs incorporating lifted cover and Mow cover inequalities,
and more recently lifted cover inequalities for knapsack constraints with generalized
upper bound constraints. Computational testing of lifted cover and Mow cover inequal-
ities has been reported in [54,53]. More recent systems include SIP [72,73] which also
generates feasible set inequalities, and BC-OPT [34] that includes integer knapsack
inequalities and recently also MIR inequalities. Taking a diRerent approach, MIPO
[11] is a branch-and-cut system for MIPs based on lift-and-project inequalities, where
the importance of 6nding the right balance between cutting and branching is clearly
demonstrated. With this system it has also been shown that Gomory mixed integer cuts
can be used eRectively [12].
Two of the commercial systems, CPLEX and XPRESS, have recently started incor-

porating lifted cover inequalities, Mow cover and MIR inequalities into their systems.
For those interested in testing new cuts, etc., a library of mixed integer programming
test instances is available [22]. ABACUS [97] is a branch-and-cut framework more
speci6cally suited to combinatorial optimization problems.

5.2. Packing and covering

Most set packing or covering inequalities are used in connection with the solution of
set partitioning problems, for instance, [58] exploits clique and cycle inequalities, [23]
uses aggregated cycle inequalities in addition. There seem to be virtually no e2cient
separation algorithms for set covering problems. To the best of our knowledge the only
exceptions are the cutting planes from conditional bounds by [9], a class of k-projection
inequalities by [81], and the mentioned aggregated cycle inequalities by [24], which
also apply to set covering. A cutting plane algorithm for set packing problems has been
developed in [76]. Note also that clique inequalities are used in many general mixed
integer programming systems [35,36,75].

5.3. Network design problems

There is little specialized computational work on single commodity network design
problems. However, the cutting planes in the general systems cited above signi6cantly
improve performance on some instances. In contrast there has been considerable work
on multicommodity problems arising from telecommunications networks. Among others
single arc sets [67] and MIR inequalities [26] have been used, and both heuristics
[20,21], total enumeration [20] and max cut [15] have been used to generate good cut
sets. See also [6,37,38,55].

5.4. Lot-sizing, facility location and other structured MIPs

A variety of multiitem and multilevel lot-sizing problems have been solved using
the cutting planes described above, see [32,88,18]. A variety of problem instances are
available.3;4

3Lot-sizing instances available at http://www.eng.auburn.edu/∼gaoyubo.
4(http://www.core.ucl.ac.be/wolsey/Lotsizeli.htm), a library of lot-sizing instances.

http://www.eng.auburn.edu/~gaoyubo.
http://www.core.ucl.ac.be/wolsey/Lotsizeli.htm
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Some computation on capacitated facility location problems is presented in [1]. The
library [17] contains a variety of instances.
Several instances in MIPLIB3.0 are unit commitment instances. For these and other

electricity generation applications [74], using knapsack and MIR inequalities signi6-
cantly improves solution performance [70].
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