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Integer Programming Methods.S1
Additive Algorithm for the Pure 0–1 Integer
Programming
We now present a B&B algorithm that can be used to solve a 0-1 integer program
without relying on linear programming to find upper bounds.  The approach is due to
Egon Balas and is referred to as the additive algorithm.

We write the model as

Maximize ∑
j=1

n
 cjxj

subject to ∑
j=1

n
 aijxj  ≤  bi,  i = 1, … , m

xj = 0 or 1,   j = 1, … , n

For reasons that will soon become apparent it is assumed that all
constraints are of the “less than or equal to” type.  If a model is not in this
form, the following transformations can be used to achieve it.

a. If some constraint i is of the “greater than or equal to” type, make
the following substitution.

∑
j=1

n
 aijxj  ≥ bi        ∑

j=1

n
 – aijxj  ≤ –bi

• If some constraint i is an equality, replace it with the following in-
equalities.

∑
j=1

n
 aijxj  = bi     





∑

j=1

n
 aijxj ≤ bi

 

∑
j=1

n
 – aijxj ≤ –bi 

 

It is also assumed that all coefficients cj in the objective function are

nonpositive.  If cj > 0, we replace xj with 1 – x̂j, where x̂j is a binary

variable.  This transformation introduces constants on the left-hand side of
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the constraints that must be moved to the right.  Constant terms in the
objective function are ignored during the optimization but added back
when the solution is found.

As an illustration of the variable transformation step, consider the
knapsack example below.

Maximize  z = 5x1 + 3x2 + 7x3

subject to 4x1 + 2x2 + 5x3 ≤ 8

xj = 0 or 1,   j = 1, 2, 3

To obtain negative coefficients in the objective, each of the variables must
be transformed.  The revised problem in the form required by the
algorithm is

Maximize  z = – 5x̂1 – 3x̂2 – 7x̂3 + 15

subject to – 4x̂1 – 2x̂2 – 5x̂3 ≤ 8 – 11 = – 3

x̂j = 0 or 1,   j = 1, 2, 3

To use implicit enumeration as the solution technique, it is necessary to
define a relaxation that will provide bounds and allow us to test for
feasibility.

Bound

A very simple relaxation of an integer program is one that requires only
addition to obtain a solution.  If we are at node k in the search tree with

sets S
+
k, S

–
k and S0

k, the problem under consideration can be written

z k
UB = Maximize ∑

j∈S0
k

 cjxj  + ∑
j∈S

+
k

 cj

subject to ∑
j∈S0

k

 aijxj  ≤  ri,   i = 1, … , m (6)
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xj = 0 or 1,  j ∈ S0
k

where the second term in the objective function is a constant. The constant
is the contribution of the variables set to 1. Of course the variables set to
zero do not affect the objective function.  To simplify the notation, we
have introduced ri to represent the right-hand side of constraint i; that is,

ri = bi – ∑
j∈S

+
k

 aij,  i = 1, … , m

The value ri is the original right-hand-side value less the coefficients of

the variables that are set to 1.

Because cj ≤ 0, a relaxed solution xk that maximizes the objective

is obtained by setting all the free variables xj = 0, j ∈ S0
k.  The

corresponding objective value is computed by summing the coefficients of

the variables fixed to 1; that is, z k
UB = Σj∈S+

k cj.  In addition, if r =

(r1, . . . , rm) ≥ 0 implying that all the constraints are satisfied, xk is optimal

to the IP at node k.  In this case, we update the incumbent by putting zB ←

max{zB, z k
UB} and backtrack.

If some of the constraints are not satisfied when all free variables
are set to zero, neglecting these constraints is a relaxation of the problem.
The objective value obtained is an upper bound.  The solution to this
relaxation is always integer, but some of the constraints in (6) may be
violated.

For the transformed knapsack example, when all variables are free

at node 0 the bound obtained is z 0
UB = 0 (the constant 15 will be ignored

for the remainder of this section).  Clearly, this is an upper bound on the
optimal objective value since all the objective coefficients are negative.
Given r1 = –3 for the constraint, we see, however, that the solution is not

feasible.

Approximate

This procedure is aimed at finding a feasible solution at a given node that
can be used in subsequent fathoming tests.  For the additive algorithm, we
simply examine the values of ri to see if each is positive.  If so, a feasible

solution has been found.
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Variable Fixing

For a 0-1 integer program, various logical tests may be included to
determine whether a particular node in the search tree can be fathomed
because it admits no feasible solutions.  Again assume that the
enumerative process has progressed to node k and consider constraint i.
Let ti be the sum of the negative coefficients of the free variables.  Thus

ti  = ∑
j∈S0

k

 min{0, aij}

represents the smallest possible left-hand-side value for constraint i and is
always nonpositive.  The right-hand-side value ri may be positive, zero, or
negative.  When all the ri are nonnegative, the solution to the relaxation is
feasible and optimum for the node.

If ri is negative for some constraint i and ti > ri, there is no feasible

solution in the set represented by the node.  This follows because
constraint i cannot be satisfied even if all the free variables with negative
structural coefficients are set to 1 and the remaining free variables set to 0.
This is one feasibility test.  If a node fails the test, it is fathomed and the
process backtracks.

For example, consider the constraint

∑
j∈S0

k

 aijxj  =  – 6x1 + 5x2 + 2x3 – 3x4  ≤  –12  =  ri

The computations give ti = – 9 > ri = – 12 so node k is fathomed.  For the

knapsack example at node 0, r1 = – 3 and t1 = – 4 – 2 – 5 = – 11 so the

feasibility test is satisfied.  This indicates that we must continue to
enumerate.

Similar reasoning can be used to determine when free variables
must be fixed to 1 or 0 to assure feasibility.

• If aij  > 0, j ∈ S0
k and aij + ti > ri,  xj must be set to 0 for feasibility.

• If aij  < 0, j ∈ S0
k and – aij + ti > ri,  xj must be set to 1 for

feasibility.

In this manner, variables may be fixed outside the usual enumeration
process thus reducing the size of the search tree.  For the knapsack
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example, these conditions do not indicate that any of the variables can be
fixed.

These tests together with the simple relaxation, can be incorporated
in an implicit enumeration scheme to solve the pure 0-1 IP.  Because only
addition is used at each step in the computations, the full procedure is
called the “additive” algorithm.

Branch

The enumeration procedure requires that a separation variable be chosen at
each live node.  One method is to choose the variable that most reduces
the infeasibility of the current solution.  To implement this idea let

Rk = {j : j ∈ S0
k and aij < 0 for some i such that ri < 0}

If there is no i such that ri < 0, the node is fathomed; otherwise, at least

one variable whose index is an element of Rk must equal 1 in any feasible

solution.  Therefore, we can separate on some xj, j ∈ Rk, and then branch

to the successor node corresponding to xj = 1.  The following rule chooses

such a j ∈ Rk in an attempt to move toward feasibility.  Define

Ik  =  ∑
i=1

m

 max{0, – ri}

to be the infeasibility of (6).  By choosing xj for branching, the
infeasibility at the successor node is

Ik(j)  =  ∑
i=1

m

 max{0, – ri + aij}

We choose xs to minimize this value; that is,

Ik(s)  = 
 

min
j∈Rk

Ik(j)

For example, if the constraints at node k are

– 6x1 – 2x2 + 2x3 ≤ – 3

– 3x1 – 4x2 + x3 ≤ – 2

7x1 + 5x2 – 5x3 ≤   4
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then Rk = {1, 2}, Ik(1) = 3 and Ik(2) = 2 so x3 is chosen as the separation

variable.  Adapting, once again, the depth-first rule for branching
simplifies the representation of the search tree.  A consequence of this rule
and of branching to xk = 1 is that the path vector Pk uniquely determines

the remaining enumeration required.

Example 4 (Knapsack Problem)

Consider the transformed knapsack problem introduced above.  Table 9
describes the solution obtained with additive algorithm.  At node 0, the
infeasibility index I0 = 3 and R0 = {1, 2, 3}.  Also, I0(1) = 0, I0(2) = 1 and

I0(3) = 0 implying that both x̂1 and x̂3 will reduce the infeasibility to 0 if

either is set to 1.  We arbitrarily choose x̂3.  At node 1, the value of r1 is

positive so a feasible solution has been obtained.  The algorithm thus
backtracks to node 2 where the variable fixing procedure indicates that x̂1
should be set to 1.  Branching to node 3 yields a second feasible solution
with P3 = (–3, +1).  Because all the components of P3 are underlined, the

termination criterion is met and the computations cease.  The optimal
solution is x̂ = (1, 0, 0) with zB = – 5.  In terms of the original problem

statement we have x = (0, 1, 1) with zIP = 10.

Table 9.  Additive algorithm results for knapsack example

Node, k Level, l Pk zUB t1 r1 zB x̂B
s Action

0 0 Ø 0 – 11 – 3 – M –– 3 Set x̂3 =1

1 1 (+3) – 7 – 6 2 – 7 (0, 0, 1) –– Backtrack

2 1 (–3) 0 – 6 – 3 – 7 (0, 0, 1) –– Fix variable

x̂1 = 1

3 2 (–3, +1) – 5 – 2 1 – 5 (1, 0, 0) –– Stop


