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Branch-and-cut

Sub-problems generated by branching in a branch-and-bound

algorithm are more and more restricted: the polyhedron of the linear

relaxation of each node is contained in the polyhedron of the linear
relaxation of its precedessor node.

A cut generated at a node P is guaranteed to be valid also for all

sub-problems in the sub-tree rooted at P. This is not true in general
for the nodes that do not belong to the subtree rooted at P.

For many years this was considered a main obstacle hampering the

use of Gomory cuts in branch-and-cut algorithms.

However, in the special case of mixed 0-1 linear programming it is

possible to generate Gomory cuts that are valid for the whole tree.



Example

MILP) minimize z =3x1 + x2 + 3x3 + 4x4

s.t. 2x1 + 3x2 + x3 + x4 = 4

x1, x2, x3 ∈ {0, 1}

x4 ≥ 0

The optimal solution of the linear relaxation is

x∗

LP =

[

1

2
1 0 0

]

z∗

LP =
5

2

Then, branching occurs on x1 which is fractional.



Example

MILP) minimize z =3x1 + x2 + 3x3 + 4x4

s.t. 2x1 + 3x2 + x3 + x4 = 4

x1, x2, x3 ∈ {0, 1}

x4 ≥ 0

After fixing x1 = 1 we have:

minimize z =3 + x2 + 3x3 + 4x4

s.t. 3x2 + x3 + x4 = 2

x2, x3 ∈ {0, 1}

x4 ≥ 0

The optimal solution of the linear

relaxation is

x∗

LP =

[

(1)
2

3
0 0

]

The Gomory cut generated from

constraint

x2 =
2

3
−

1

3
x3 −

1

3
x4

is
1

3
x3 +

1

3
x4 ≥

2

3

which is valid when x1 = 1 but is
not valid when x1 = 0.



Notation

Consider a generic node in the B&B tree. We use the following

notation:

• F0: index set of the variables fixed at 0 by branching,

• F1: index set of the variables fixed at 1 by branching,

• aij : coefficient on row i, column j in the tableau of the optimal
solution of the linear relaxation,

• B: index set of the basic variables,

• N: index set of the non-basic variables.

We also assume that the variables are numbered so that

• variables x1, . . . , xp are binary (in the relaxation they range in

[0, 1])

• variables with index larger than p are continuous and
non-negative.



Notation

The constraints set of a generic (relaxed) sub-problem in standard

form in the B&B tree is:

xi = ai0 +
∑

j∈N

aij(−xj) ∀i ∈ B

xk ≥ 0 ∀k ∈ B ∪ N

xk ≤ 0 ∀k ∈ F0

xk ≥ 1 ∀k ∈ F1

We can assume that all fixed variables have been fixed to 0.

Fixing a variable to 1 is equivalent to fixing its complement to 0.



The main result

Theorem. For any i ∈ B with i ≤ p the cut γx ≥ 1 cuts off x∗

LP and is

valid for MILP, where

γj =







































min

{

fij

fi0
,

1 − fij

1 − fi0

}

∀j ∈ N, j ≤ p

max

{

aij

fi0
,

−aij

1 − fi0

}

∀j ∈ N, j ≥ p + 1

0 ∀j ∈ B



Proof: notation

For proving the theorem we need the following notation to partition

the non-basic variables into four subsets, once a row i ∈ B has been

selected such that x∗

i is fractional, i.e. fi0 > 0:

• N1 = N ∩ {1, . . . , p}

• N2 = N\N1

• N+

1 = {j ∈ N1 : fij < fi0}

• N−

1 = N1\N+

1

• N+

2 = {j ∈ N2 : aij > 0}

• N−

2 = N2\N+

2



Proof: step 1

Assume F0 = ∅, i.e. no variables fixed.

By definition of integral and fractional part of a number,

aij = ⌊aij⌋+ fij ∀j ∈ N+

1 (1)

−aij = ⌊−aij⌋+ 1 − fij ∀j ∈ N−

1 . (2)

The constraint

xi = ai0 +
∑

j∈N

aij(−xj) (3)

can be rewritten as

fi0 =





∑

j∈N+

1

fijxj +
∑

j∈N−

1

(fij − 1)xj +
∑

j∈N+

2

aijxj +
∑

j∈N−

2

aijxj



 mod 1. (4)



Proof: step 2

From

fi0 =





∑

j∈N+

1

fijxj +
∑

j∈N−

1

(fij − 1)xj +
∑

j∈N+

2

aijxj +
∑

j∈N−

2

aijxj



 mod 1.

it follows that at least one of these two inequalities must be satisfied:

∑

j∈N+

1

fijxj +
∑

j∈N+

2

aijxj ≥ fi0 (5)

∑

j∈N−

1

(fij − 1)xj +
∑

j∈N−

2

aijxj ≤ fi0 − 1 (6)

because

• the left-hand-side coefficients in (5) are all non-negative,

• the left-hand-side coefficients in (6) are all non-positive,

• all variables are non-negative.



Proof: step 3

After reversing the second inequality and dividing both inequalites by

their right-hand-side, one obtains

∑

j∈N+

1

fij

fi0
xj +

∑

j∈N+

2

aij

fi0
xj ≥ 1 (7)

∑

j∈N−

1

1 − fij

1 − fi0
xj +

∑

j∈N−

2

−aij

1 − fi0
xj ≥ 1. (8)

All left-hand side coefficients are non-negative: hence, both

left-hand-sides are non-negative.

Since at least one of the inequalities is satisfied, the sum of the two
left-hand-sides is guaranteed to be ≥ 1.

Therefore:

∑

j∈N+

1

fij

fi0
xj +

∑

j∈N−

1

1 − fij

1 − fi0
xj +

∑

j∈N+

2

aij

fi0
xj +

∑

j∈N−

2

−aij

1 − fi0
xj ≥ 1. (9)



Proof: step 3

• For j ∈ N+

1 , since fij < fi0, then
fij

fi0
<

1 − fij

1 − fi0
.

• For j ∈ N−

1 , since fij ≥ fi0, then
fij

fi0
≥

1 − fij

1 − fi0
.

• Hence forall j ∈ N1, γj = min

{

fij

fi0
,

1 − fij

1 − fi0

}

.

• For j ∈ N+

2 , since aij > 0, then
aij

fi0
>

−aij

1 − fi0
.

• For j ∈ N−

2 , since aij ≤ 0, then
aij

fi0
≤

−aij

1 − fi0
.

• Hence forall j ∈ N2, γj = max

{

aij

fi0
,

−aij

1 − fi0

}

.

Therefore cut (9) is γx ≥ 1 as defined in the theorem statement.
This concludes the proof for the case F0 = ∅.



Proof: F0 6= ∅

Steps 1 and 3 involve only algebraic manipulations and their validity is

not affected by the possible presence of variables fixed at 0.

The theorem is valid also when F0 6= ∅, because Step 2 requires only
that all variables are non-negative in the linear relaxation.

If some variables have been fixed to 0 by constraints with the form

xk ≤ 0, the cut γx ≥ 1 remains valid also without the variable fixing
constraint, because xk is non-negative also in the other sub-problems

of the B&B tree .

Unfortunately, this argument no longer holds in case of MILPs,
because the slack variables of a variable fixing constraint, like

xk ≤ ⌊x∗

k ⌋ or xk ≥ ⌈x∗

k ⌉, are not guaranteed to be non-negative in

other sub-problems, where the variable xk is not bounded.



Cuts generation strategies

In general, it seems profitable to generate a Gomory cut from each

fractional basic variable before reoptimizing the linear relaxation,

instead of a single cut.

However, it may pay off not to generate Gomory cuts after a single

branching, but once every σ nodes are enumerated, where σ is called

skip factor. A heuristic rule of thumb to set it is

σ = min{σ,

⌈

f

c d log10 p

⌉

},

where

• f is the number of fractional variables in x∗

LP at the root node,

• d is the average Euclidean distance between the generated cuts

and x∗

LP at the root node,

• c and σ are two parameters.



Cuts management

All generated cuts are kept in a unique pool. For each sub-problem

the pool is scanned to search for cuts that are either tight or violated

at the optimal solution of the predecessor node.

When Gomory cuts are generated, the current LP is also “cleaned” by

deleting all Gomory cuts generated in previous iterations that are not

active at the current optimal solution. This keeps the size of the
tableau under control and helps avoiding numerical instabilities.


