Lifting Operational Research Complements

Giovanni Righini

Università degli Studi di Milano

Based on: H. Marchand, A. Martin, R. Weismantel, L. Wolsey, Cutting planes in integer and mixed-integer programming, Discrete Applied Mathematics 123 (2002) 397-446.

Extended valid inequalities

Valid inequalities can be made stronger by extension and lifting.

Valid inequalities are extended by inserting additional variables in their left-hand-side.

Example (Knapsack problem):

maximize
$$m{z} = \sum_{j \in N} c_j x_j$$

s.t. $\sum_{j \in N} a_j x_j \leq b$
 $m{x} \in \mathcal{B}^{|N|}$

All cover inequalities are valid:

$$\sum_{j\in C} x_j \leq |C| - 1 \quad \forall C \subseteq N : \sum_{j\in C} a_j > b.$$

For instance:

$$\mathcal{K} = \{ x \in \mathcal{B}^7 : 11x_1 + 6x_2 + 6x_3 + 5x_4 + 5x_5 + 4x_6 + x_7 \le 19 \}$$

Some minimal covers are:

{1,2,3}	$x_1 + x_2 + x_3$	≤ 2
$\{1, 2, 6\}$	$x_1 + x_2$	$x_6 \leq 2$
{1,5,6}	<i>x</i> ₁	$x_5 + x_6 \le 2$
$\{3, 4, 5, 6\}$		$x_3+x_4+x_5+x_6\leq 3$

For each cover *C* we have an extended cover inequality:

$$\sum_{j \in E(\mathcal{C})} x_j \leq |\mathcal{C}| - 1 \quad orall \mathcal{C} \subseteq \mathcal{N} : \sum_{j \in \mathcal{C}} a_j > b$$

where

$$E(C) = C \cup \{j \in N : a_j \ge a_i \ \forall i \in C\}.$$

For instance:

$$C = \{3, 4, 5, 6\} \rightarrow x_3 + x_4 + x_5 + x_6 \leq 3.$$

$$E(C) = \{1, 2, 3, 4, 5, 6\} \rightarrow x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \leq 3.$$

We insert two more variables x_1 and x_2 because their weights (11 and 6) are not smaller than those of the variables in *C* (6, 5, 5, 4).

Lifting: example

Lifting consists of inserting variables in the left-hand-side of a valid inequality, giving them the best possible coefficient.

Example (cover inequality):

$$\mathbf{C} = \{\mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}\} \rightarrow \pi_1 \mathbf{x}_1 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5 + \mathbf{x}_6 \leq \mathbf{3}.$$

What is the maximum value of π_1 for which this inequality still valid? The inequality

$$\pi_1 \mathbf{1} + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5 + \mathbf{x}_6 \le \mathbf{3}$$

must be valid for all integer points such that

$$11\ 1+6x_3+5x_4+5x_5+4x_6\leq 19.$$

To find the maximum value of π_1 , we must solve an auxiliary (smaller) discrete optimization problem:

$$\begin{array}{l} \text{maximize } \sigma = & x_3 + x_4 + x_5 + x_6 \\ \text{s.t. } 6x_3 + 5x_4 + 5x_5 + 4x_6 \leq 8 \\ x \in \mathcal{B} \end{array}$$

Lifting: example

We find $\sigma = 1$ and therefore $\pi_1 \leq 3 - \sigma = 2$. The lifted cover inequality is

$$2x_1 + x_3 + x_4 + x_5 + x_6 \le 3$$

The procedure can now be repeated to lift another variable into the inequality.

$$2x_1 + \pi_2 x_2 + x_3 + x_4 + x_5 + x_6 \le 3$$

It must be $\pi_2 \leq 3 - \sigma$, where

$$\begin{array}{l} \text{maximize } \sigma = & 2x_1 + x_3 + x_4 + x_5 + x_6 \\ \text{s.t. } 11x_1 + & 6x_3 + 5x_4 + 5x_5 + & 4x_6 \leq 13 \\ & x \in \mathcal{B} \end{array}$$

We find $\sigma = 2$ and hence we can set $\pi_2 = 1$ and obtain

$$2x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \le 3$$

(that dominates the extended cover inequalities obtained from the same cover).

Lifting: formal definition

Consider a 0-1 Knapsack polyhedron

$$\mathcal{K} = \{ \pmb{x} \in \{0,1\}^{|\mathcal{N}|} : \sum_{j \in \mathcal{N}} \pmb{a}_j \pmb{x}_j \leq \pmb{b} \}$$

and a subset $M \subseteq N$. Assume we know a valid inequality

$$\sum_{j\in M}\pi_j \mathbf{X}_j \leq \pi_0$$

valid for $K_M = K \cap \{x : x_j = 0 \ \forall j \in N \setminus M\}.$

We want to compute coefficients $\pi_j \ \forall j \in N \setminus M$ such that

$$\sum_{j\in N}\pi_j \mathbf{x}_j \leq \pi_0$$

be valid for K and we want such coefficients to be as large as possible, in order to make the resulting inequality as strong as possibile.

Sequential lifting

We select a variable to be lifted: $x_k : k \in N \setminus M$. We want

$$\pi_k \mathbf{x}_k + \sum_{j \in M} \pi_j \mathbf{x}_j \le \pi_0$$

be valid for $K_{M \cup \{k\}}$.

We define the following lifting function:

$$\Phi_M(u) = \min\{\pi_0 - \sum_{j \in M} \pi_j x_j : \sum_{j \in M} a_j x_j \le b - u, x \in \{0, 1\}^{|M|}\}.$$

Assume $K_{M\cup\{k\}} \neq \emptyset$.

Then $\pi_k \mathbf{x}_k + \sum_{j \in M} \pi_j \mathbf{x}_j \le \pi_0$ is valid for $K_{M \cup \{k\}}$ if $\pi_k \le \Phi_M(\mathbf{a}_k)$.

Furthermore, if we select $\pi_k = \Phi_M(a_k)$ and $\sum_{j \in M} \pi_j x_j \le \pi_0$ defines a face of dimension *t* of $conv(K_M)$, then the lifted inequality defines a face of dimension at least t + 1 of $conv(K_{M \cup \{k\}})$.

Sequential lifting

After lifting x_k into the inequality, the lifting function

$$\Phi_M(u) = \min\{\pi_0 - \sum_{j \in M} \pi_j x_j : \sum_{j \in M} a_j x_j \le b - u, x \in \{0, 1\}^{|M|}\}$$

must be replaced by

$$\Phi_{M\cup\{k\}}(u) = \min\{\pi_0 - \sum_{j \in M\cup\{k\}} \pi_j x_j : \sum_{j \in M\cup\{k\}} a_j x_j \le b - u, x \in \{0, 1\}^{|M|+1}\}.$$

Therefore the function decreases every time a variable is lifted.

The values of the coefficients obtained in this way depend on the order in which the variables are lifted.

The earlier a variable is lifted, the larger its coefficient can be.

From the same valid inequality, many lifted inequalities are obtained using different sequences.

Sequential lifting: example

 $K = \{x \in \{0,1\}^6 : 5x_1 + 5x_2 + 5x_3 + 5x_4 + 3x_5 + 8x_6 \le 17\}$ A cover is $M = \{1,2,3,4\}$. A cover inequality for K_M is

$$x_1 + x_2 + x_3 + x_4 \leq 3$$
.

Lifting x₅:

min
$$z = 3 - (x_1 + x_2 + x_3 + x_4)$$

s.t.5 $x_1 + 5x_2 + 5x_3 + 5x_4 \le 14$
x binary

which yields $\pi_5 = 1$. Lifting x_6 :

min
$$z = 3 - (x_1 + x_2 + x_3 + x_4 + x_5)$$

s.t.5 $x_1 + 5x_2 + 5x_3 + 5x_4 + 3x_5 \le 9$
x binary

which yields $\pi_6 = 1$.

Sequential lifting: example

Following a different order, different coefficients are obtained. Lifting x_6 :

min
$$z = 3 - (x_1 + x_2 + x_3 + x_4)$$

s.t.5 $x_1 + 5x_2 + 5x_3 + 5x_4 \le 9$
x binary

which yields $\pi_6 = 2$. Lifting x_5 :

min
$$z = 3 - (x_1 + x_2 + x_3 + x_4 + 2x_6)$$

s.t.5 $x_1 + 5x_2 + 5x_3 + 5x_4 + 8x_6 \le 14$
x binary

which yields $\pi_5 = 0$.

Simultaneous lifting

To simultaneously lift all coefficients of the missing variables into a valid inequality, we need a lifting function $\Psi : \Re \mapsto \Re$ such that

$$\sum_{i \in N \setminus M} \Psi(a_i) x_j + \sum_{j \in M} \pi_j x_j \le \pi_0$$

is valid for K.

Definition. A function $F : \Re \mapsto \Re$ is superadditive on \Re if

$$F(d_1) + F(d_2) \leq F(d_1 + d_2) \ \forall d_1, d_2 \in \Re.$$

Sufficient condition (Wolsey, 1977; Gu, Nemhauser, Salvesbergh, 2000) for $\sum_{j \in N \setminus M} \Psi(a_j) x_j + \sum_{j \in M} \pi_j x_j \le \pi_0$ to be valid for *K* is

- 1. $\Psi(u) \leq \Phi_M(u) \ \forall u \in \Re$.
- 2. $\Psi(u)$ is superadditive on \Re .

If $a_k \ge 0 \ \forall k \in N$ then it is enough that $\Psi(u)$ is superadditive on \Re_+ .

Lifted cover inequalities with a superadditive function

Given a Knapsack polyhedron *K* with $a_j > 0 \forall j \in N$, and given a minimal cover $C \subseteq N$,

$$\sum_{j\in C} x_j \le |C| - 1$$

is valid for $K_{\mathbf{C}} = \mathbf{K} \cap \{\mathbf{x} : \mathbf{x}_j = \mathbf{0} \ \forall j \in \mathbf{N} \setminus \mathbf{C}\}.$

The sequential lifting function is

$$\Phi_{C}(u) = \min\{|C| - 1 - \sum_{j \in C} x_{j} : \sum_{j \in C} a_{j}x_{j} \le b - u, x \in \{0, 1\}^{|C|}\}.$$

Assume $C = \{1, ..., r\}$ and $a_j \ge a_{j+1} \forall j = 1, ..., r-1$. Let $A_j = \sum_{t=1}^{j} a_t \forall j = 1, ..., r, A_0 = 0, \lambda = A_r - b$. A superadditive function for simultaneous lifting is

$$\Psi(u) = \begin{cases} j & \text{if } A_j \leq u \leq A_{j+1} - \lambda \ \forall j = 0, \dots, r-1 \\ j + \frac{u - A_j}{\lambda} & \text{if } A_j - \lambda \leq u \leq A_j \ \forall j = 1, \dots, r-1 \\ r + \frac{u - A_r}{\lambda} & \text{if } A_r - \lambda \leq u \end{cases}$$

 $K = \{x \in \{0,1\}^6: 5x_1 + 5x_2 + 5x_3 + 5x_4 + 3x_5 + 8x_6 \le 17\}.$ Cover $\{1,2,3,4\}$ yields the cover inequality

$$x_1 + x_2 + x_3 + x_4 \leq 3.$$

with $\lambda = 3$ and A = [0 5 10 15 20] for j = 0, ..., 4.

By simultaeous lifting one obtains

$$x_1 + x_2 + x_3 + x_4 + \frac{1}{3}x_5 + \frac{4}{3}x_6 \le 3.$$

The lifting function for sequential lifting is

$$\begin{split} \Phi_{C}(u) &= \min\{3 - (x_{1} + x_{2} + x_{3} + x_{4}) : 5x_{1} + 5x_{2} + 5x_{3} + 5x_{4} \leq 17 - u \\ & x \in \{0,1\}^{4}\} \end{split}$$

The superadditive function for simultaneous lifting is

$$\Psi(u) = \begin{cases} 0 & \text{if } 0 \le u \le 5 - 3\\ 1 + \frac{u - 5}{3} & \text{if } 5 - 3 \le u \le 5\\ 1 & \text{if } 5 \le u \le 10 - 3\\ 2 + \frac{u - 10}{3} & \text{if } 10 - 3 \le u \le 10\\ 2 & \text{if } 10 \le u \le 15 - 3\\ 3 + \frac{u - 15}{3} & \text{if } 15 - 3 \le u \le 15\\ 3 & \text{if } 15 \le u \le 20 - 3\\ 4 + \frac{u - 20}{3} & \text{if } 20 - 3 \le u \end{cases}$$

Feasible set inequalities

Consider a knapsack set *K*, as before, with $a_j > 0 \ \forall j \in N$. Assign an arbitrary weight $w_j > 0$ with each variable $j \in N$.

Definition. A subset $T \subset N$ is a feasible set if and only if

$$\sum_{j\in T} a_j \leq b$$

We indicate the non-negative slack as $r_T = b - \sum_{j \in T} a_j$. We also define $w(T) = \sum_{j \in T} w_j$. The inequality

$$\sum_{j\in T} w_j x_j \leq w(T)$$

is valid for $K_T = K \cap \{x : x_j = 0 \ \forall j \in N \setminus T\}$.

Feasible set inequalities

Consider a permutation $\mu_1, \mu_2, \dots, \mu_{|N|-|T|}$ of the variables not in *T*.

We carry out sequential lifting with the lifting function

$$\Phi_T(u) = \min\{w(T) - \sum_{j \in T} w_j x_j : \sum_{j \in T} a_j x_j \le b - u, x \in \{0, 1\}^{|T|}\}$$

and we obtain

$$\pi_{\mu_i} = \Phi_{T \cup \{\mu_1, \dots, \mu_{i-1}\}}(\boldsymbol{a}_{\mu_i}).$$

Then the feasible set inequality

$$\sum_{j\in T} w_j x_j + \sum_{j\in N\setminus T} \pi_j x_j \leq w(T)$$

is valid for K (Weismantel, 1997).

Feasible set inequalities

A special case occurs when we select $w_j = 1 \ \forall j \in N$ and hence w(T) = |T|. In this case the lifting function can be restated as follows:

$$\Phi_{T}(u) = \min\{|S| : S \subseteq T, \sum_{j \in S} a_{j} \ge u - r_{T}\}.$$

Intuitively, it represents the minimum number of elements that must be deleted from T to satisfy the capacity constraint when an additional element of weight u is inserted.

In this special case the following property holds

$$\Phi_T(a_j) - 1 \leq \pi_j \leq \Phi_T(a_j)$$

and this makes the computation of π_i values more efficient.

Consider the knapsack constraint

$$3x_1 + 4x_2 + 6x_3 + 7x_4 + 9x_5 + 18x_6 \le 21$$

and the feasible subset $T = \{1, 2, 3, 4\}$. We have $r_T = 1$ and w(T) = |T| = 4. Consider the permutation $\mu = (5, 6)$.

Lifting 5, we obtain

$$\pi_5 = \Phi_{\{1,\dots,4\}}(9) = \min\{|S| : S \subseteq \{1,\dots,4\}, \sum_{j \in S} a_j \ge 9 - 1\} = 2.$$

Lifting 6, we obtain

$$\pi_6 = \Phi_{\{1,...,5\}}(18) = \min\{|S| : S \subseteq \{1,...,5\}, \sum_{j \in S} a_j \ge 18 - 1\} = 3.$$

The resulting feasible set inequality is

$$x_1 + x_2 + x_3 + x_4 + 2x_5 + 3x_6 \le 4$$

(1, k)-configuration inequalities

Feasible set inequalities with unit weights $w_j = 1 \ \forall j \in N$ generalize lifted cover inequalities and (1, k)-configuration inequalities.

Definition. A pair (T, z) with $T \cup \{z\} \subseteq N$ and $\sum_{j \in T} a_j \leq b$ is a (1, *k*)-configuration if $S \cup \{z\}$ is a minimal cover for all $S \subseteq T : |S| = k$.

Then

$$\sum_{j\in T} x_j + (|T| - k + 1)x_z \leq |T|$$

is valid for K.