Lifting
 Operational Research Complements

Giovanni Righini

Università degli Studi di Milano

Based on: H. Marchand, A. Martin, R. Weismantel, L. Wolsey, Cutting planes in integer and mixed-integer programming, Discrete Applied Mathematics 123 (2002) 397-446.

Extended valid inequalities

Valid inequalities can be made stronger by extension and lifting.
Valid inequalities are extended by inserting additional variables in their left-hand-side.

Example (Knapsack problem):

$$
\begin{aligned}
\operatorname{maximize} & z= \\
\text { s.t. } & \sum_{j \in N} c_{j} x_{j} \\
& a_{j} x_{j} \leq b \\
& x \in \mathcal{B}^{|N|}
\end{aligned}
$$

All cover inequalities are valid:

$$
\sum_{j \in C} x_{j} \leq|C|-1 \quad \forall C \subseteq N: \sum_{j \in C} a_{j}>b
$$

Example

For instance:

$$
K=\left\{x \in \mathcal{B}^{7}: 11 x_{1}+6 x_{2}+6 x_{3}+5 x_{4}+5 x_{5}+4 x_{6}+x_{7} \leq 19\right\}
$$

Some minimal covers are:

$$
\begin{array}{llrl}
\{1,2,3\} & x_{1}+x_{2}+x_{3} & & \leq 2 \\
\{1,2,6\} & x_{1}+x_{2} & x_{6} & \leq 2 \\
\{1,5,6\} & x_{1} & x_{5}+x_{6} & \leq 2 \\
\{3,4,5,6\} & & x_{3}+x_{4}+x_{5}+x_{6} & \leq 3
\end{array}
$$

Example

For each cover C we have an extended cover inequality:

$$
\sum_{j \in E(C)} x_{j} \leq|C|-1 \quad \forall C \subseteq N: \sum_{j \in C} a_{j}>b
$$

where

$$
E(C)=C \cup\left\{j \in N: a_{j} \geq a_{i} \forall i \in C\right\}
$$

For instance:

$$
\begin{gathered}
C=\{3,4,5,6\} \rightarrow x_{3}+x_{4}+x_{5}+x_{6} \leq 3 . \\
E(C)=\{1,2,3,4,5,6\} \rightarrow x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \leq 3 .
\end{gathered}
$$

We insert two more variables x_{1} and x_{2} because their weights (11 and 6) are not smaller than those of the variables in $C(6,5,5,4)$.

Lifting: example

Lifting consists of inserting variables in the left-hand-side of a valid inequality, giving them the best possible coefficient.

Example (cover inequality):

$$
C=\{3,4,5,6\} \rightarrow \pi_{1} x_{1}+x_{3}+x_{4}+x_{5}+x_{6} \leq 3 .
$$

What is the maximum value of π_{1} for which this inequality still valid?
The inequality

$$
\pi_{1} 1+x_{3}+x_{4}+x_{5}+x_{6} \leq 3
$$

must be valid for all integer points such that

$$
111+6 x_{3}+5 x_{4}+5 x_{5}+4 x_{6} \leq 19 .
$$

To find the maximum value of π_{1}, we must solve an auxiliary (smaller) discrete optimization problem:

$$
\begin{gathered}
\operatorname{maximize} \sigma=x_{3}+x_{4}+x_{5}+x_{6} \\
\text { s.t. } 6 x_{3}+5 x_{4}+5 x_{5}+4 x_{6} \leq 8 \\
x \in \mathcal{B}
\end{gathered}
$$

Lifting: example

We find $\sigma=1$ and therefore $\pi_{1} \leq 3-\sigma=2$.
The lifted cover inequality is

$$
2 x_{1}+x_{3}+x_{4}+x_{5}+x_{6} \leq 3
$$

The procedure can now be repeated to lift another variable into the inequality.

$$
2 x_{1}+\pi_{2} x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \leq 3
$$

It must be $\pi_{2} \leq 3-\sigma$, where

$$
\begin{aligned}
\text { maximize } & \sigma=2 x_{1}+x_{3}+x_{4}+x_{5}+x_{6} \\
& \text { s.t. } \\
& 11 x_{1}+6 x_{3}+5 x_{4}+5 x_{5}+4 x_{6} \leq 13 \\
& x \in \mathcal{B}
\end{aligned}
$$

We find $\sigma=2$ and hence we can set $\pi_{2}=1$ and obtain

$$
2 x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6} \leq 3
$$

(that dominates the extended cover inequalities obtained from the same cover).

Lifting: formal definition

Consider a 0-1 Knapsack polyhedron

$$
K=\left\{x \in\{0,1\}^{|N|}: \sum_{j \in N} a_{j} x_{j} \leq b\right\}
$$

and a subset $M \subseteq N$. Assume we know a valid inequality

$$
\sum_{j \in M} \pi_{j} x_{j} \leq \pi_{0}
$$

valid for $K_{M}=K \cap\left\{x: x_{j}=0 \forall j \in N \backslash M\right\}$.
We want to compute coefficients $\pi_{j} \forall j \in N \backslash M$ such that

$$
\sum_{j \in N} \pi_{j} x_{j} \leq \pi_{0}
$$

be valid for K and we want such coefficients to be as large as possible, in order to make the resulting inequality as strong as possibile.

Sequential lifting

We select a variable to be lifted: $x_{k}: k \in N \backslash M$. We want

$$
\pi_{k} x_{k}+\sum_{j \in M} \pi_{j} x_{j} \leq \pi_{0}
$$

be valid for $K_{M \cup\{k\}}$.
We define the following lifting function:

$$
\Phi_{M}(u)=\min \left\{\pi_{0}-\sum_{j \in M} \pi_{j} x_{j}: \sum_{j \in M} a_{j} x_{j} \leq b-u, x \in\{0,1\}^{|M|}\right\} .
$$

Assume $K_{M \cup\{K\}} \neq \emptyset$.
Then $\pi_{k} x_{k}+\sum_{j \in M} \pi_{j} x_{j} \leq \pi_{0}$ is valid for $K_{M \cup\{k\}}$ if

$$
\pi_{k} \leq \Phi_{M}\left(a_{k}\right)
$$

Furthermore, if we select $\pi_{k}=\Phi_{M}\left(a_{k}\right)$ and $\sum_{j \in M} \pi_{j} x_{j} \leq \pi_{0}$ defines a face of dimension t of $\operatorname{conv}\left(K_{M}\right)$, then the lifted inequality defines a face of dimension at least $t+1$ of $\operatorname{conv}\left(K_{M \cup\{k\}}\right)$.

Sequential lifting

After lifting x_{k} into the inequality, the lifting function

$$
\Phi_{M}(u)=\min \left\{\pi_{0}-\sum_{j \in M} \pi_{j} x_{j}: \sum_{j \in M} a_{j} x_{j} \leq b-u, x \in\{0,1\}^{|M|}\right\}
$$

must be replaced by
$\Phi_{M \cup\{k\}}(u)=\min \left\{\pi_{0}-\sum_{j \in M \cup\{k\}} \pi_{j} x_{j}: \sum_{j \in M \cup\{k\}} a_{j} x_{j} \leq b-u, x \in\{0,1\}^{|M|+1}\right\}$.
Therefore the function decreases every time a variable is lifted.
The values of the coefficients obtained in this way depend on the order in which the variables are lifted.

The earlier a variable is lifted, the larger its coefficient can be.
From the same valid inequality, many lifted inequalities are obtained using different sequences.

Sequential lifting: example

$$
K=\left\{x \in\{0,1\}^{6}: 5 x_{1}+5 x_{2}+5 x_{3}+5 x_{4}+3 x_{5}+8 x_{6} \leq 17\right\}
$$

A cover is $M=\{1,2,3,4\}$. A cover inequality for K_{M} is

$$
x_{1}+x_{2}+x_{3}+x_{4} \leq 3
$$

Lifting x_{5} :

$$
\begin{aligned}
& \min z= 3-\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \\
& \text { s.t. } 5 x_{1}+5 x_{2}+5 x_{3}+5 x_{4} \leq 14 \\
& x \text { binary }
\end{aligned}
$$

which yields $\pi_{5}=1$. Lifting x_{6} :

$$
\begin{aligned}
\min & z=3-\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right) \\
& \text { s.t. } 5 x_{1}+5 x_{2}+5 x_{3}+5 x_{4}+3 x_{5} \leq 9 \\
& x \text { binary }
\end{aligned}
$$

which yields $\pi_{6}=1$.

Sequential lifting: example

Following a different order, different coefficients are obtained.
Lifting x_{6} :

$$
\begin{aligned}
\min z= & 3-\left(x_{1}+x_{2}+x_{3}+x_{4}\right) \\
& \text { s.t. } 5 x_{1}+5 x_{2}+5 x_{3}+5 x_{4} \leq 9 \\
& x \text { binary }
\end{aligned}
$$

which yields $\pi_{6}=2$.
Lifting x_{5} :

$$
\begin{aligned}
\min z= & 3-\left(x_{1}+x_{2}+x_{3}+x_{4}+2 x_{6}\right) \\
& \text { s.t. } 5 x_{1}+5 x_{2}+5 x_{3}+5 x_{4}+8 x_{6} \leq 14 \\
& x \text { binary }
\end{aligned}
$$

which yields $\pi_{5}=0$.

Simultaneous lifting

To simultaneously lift all coefficients of the missing variables into a valid inequality, we need a lifting function $\Psi: \Re \mapsto \Re$ such that

$$
\sum_{j \in N \backslash M} \Psi\left(a_{j}\right) x_{j}+\sum_{j \in M} \pi_{j} x_{j} \leq \pi_{0}
$$

is valid for K.
Definition. A function $F: \Re \mapsto \Re$ is superadditive on \Re if

$$
F\left(d_{1}\right)+F\left(d_{2}\right) \leq F\left(d_{1}+d_{2}\right) \forall d_{1}, d_{2} \in \Re .
$$

Sufficient condition (Wolsey, 1977; Gu, Nemhauser, Salvesbergh, 2000) for $\sum_{j \in N \backslash M} \Psi\left(a_{j}\right) x_{j}+\sum_{j \in M} \pi_{j} x_{j} \leq \pi_{0}$ to be valid for K is

1. $\Psi(u) \leq \Phi_{M}(u) \forall u \in \Re$.
2. $\Psi(u)$ is superadditive on \Re.

If $a_{k} \geq 0 \forall k \in N$ then it is enough that $\Psi(u)$ is superadditive on \Re_{+}.

Lifted cover inequalities with a superadditive function

Given a Knapsack polyhedron K with $a_{j}>0 \forall j \in N$, and given a minimal cover $C \subseteq N$,

$$
\sum_{j \in C} x_{j} \leq|C|-1
$$

is valid for $K_{C}=K \cap\left\{x: x_{j}=0 \forall j \in N \backslash C\right\}$.
The sequential lifting function is

$$
\Phi_{C}(u)=\min \left\{|C|-1-\sum_{j \in C} x_{j}: \sum_{j \in C} a_{j} x_{j} \leq b-u, x \in\{0,1\}^{|C|}\right\} .
$$

Assume $C=\{1, \ldots, r\}$ and $a_{j} \geq a_{j+1} \forall j=1, \ldots, r-1$.
Let $A_{j}=\sum_{t=1}^{j} a_{t} \forall j=1, \ldots, r, A_{0}=0, \lambda=A_{r}-b$.
A superadditive function for simultaneous lifting is

$$
\Psi(u)= \begin{cases}j & \text { if } A_{j} \leq u \leq A_{j+1}-\lambda \forall j=0, \ldots, r-1 \\ j+\frac{u-A_{j}}{\lambda} & \text { if } A_{j}-\lambda \leq u \leq A_{j} \forall j=1, \ldots, r-1 \\ r+\frac{u-A_{r}}{\lambda} & \text { if } A_{r}-\lambda \leq u\end{cases}
$$

Example

$$
K=\left\{x \in\{0,1\}^{6}: 5 x_{1}+5 x_{2}+5 x_{3}+5 x_{4}+3 x_{5}+8 x_{6} \leq 17\right\} .
$$

Cover $\{1,2,3,4\}$ yields the cover inequality

$$
x_{1}+x_{2}+x_{3}+x_{4} \leq 3 .
$$

with $\lambda=3$ and $A=\left[\begin{array}{llll}0 & 5 & 10 & 15\end{array} 20\right.$ for $j=0, \ldots, 4$.
By simultaeous lifting one obtains

$$
x_{1}+x_{2}+x_{3}+x_{4}+\frac{1}{3} x_{5}+\frac{4}{3} x_{6} \leq 3 .
$$

The lifting function for sequential lifting is

$$
\begin{gathered}
\Phi_{C}(u)=\min \left\{3-\left(x_{1}+x_{2}+x_{3}+x_{4}\right):\right. \\
x \in\left\{x_{1}+5 x_{2}+5 x_{3}+5 x_{4} \leq 17-u\right. \\
\\
\left.x \in\{0,1\}^{4}\right\}
\end{gathered}
$$

The superadditive function for simultaneous lifting is

$$
\Psi(u)= \begin{cases}0 & \text { if } 0 \leq u \leq 5-3 \\ 1+\frac{u-5}{3} & \text { if } 5-3 \leq u \leq 5 \\ 1 & \text { if } 5 \leq u \leq 10-3 \\ 2+\frac{u-10}{3} & \text { if } 10-3 \leq u \leq 10 \\ 2 & \text { if } 10 \leq u \leq 15-3 \\ 3+\frac{u-15}{3} & \text { if } 15-3 \leq u \leq 15 \\ 3 & \text { if } 15 \leq u \leq 20-3 \\ 4+\frac{u-20}{3} & \text { if } 20-3 \leq u\end{cases}
$$

Feasible set inequalities

Consider a knapsack set K, as before, with $a_{j}>0 \forall j \in N$. Assign an arbitrary weight $w_{j}>0$ with each variable $j \in N$.

Definition. A subset $T \subset N$ is a feasible set if and only if

$$
\sum_{j \in T} a_{j} \leq b .
$$

We indicate the non-negative slack as $r_{T}=b-\sum_{j \in T} a_{j}$. We also define $w(T)=\sum_{j \in T} w_{j}$.
The inequality

$$
\sum_{j \in T} w_{j} x_{j} \leq w(T)
$$

is valid for $K_{T}=K \cap\left\{x: x_{j}=0 \forall j \in N \backslash T\right\}$.

Feasible set inequalities

Consider a permutation $\mu_{1}, \mu_{2}, \ldots, \mu_{|N|-|T|}$ of the variables not in T.
We carry out sequential lifting with the lifting function

$$
\Phi_{T}(u)=\min \left\{w(T)-\sum_{j \in T} w_{j} x_{j}: \sum_{j \in T} a_{j} x_{j} \leq b-u, x \in\{0,1\}^{|T|}\right\}
$$

and we obtain

$$
\pi_{\mu_{i}}=\Phi_{T \cup\left\{\mu_{i}, \ldots, \mu_{i-1}\right\}}\left(a_{\mu_{i}}\right) .
$$

Then the feasible set inequality

$$
\sum_{j \in T} w_{j} x_{j}+\sum_{j \in N \backslash T} \pi_{j} x_{j} \leq w(T)
$$

is valid for K (Weismantel, 1997).

Feasible set inequalities

A special case occurs when we select $w_{j}=1 \forall j \in N$ and hence $w(T)=|T|$. In this case the lifting function can be restated as follows:

$$
\Phi_{T}(u)=\min \left\{|S|: S \subseteq T, \sum_{j \in S} a_{j} \geq u-r_{T}\right\}
$$

Intuitively, it represents the minimum number of elements that must be deleted from T to satisfy the capacity constraint when an additional element of weight u is inserted.

In this special case the following property holds

$$
\Phi_{T}\left(a_{j}\right)-1 \leq \pi_{j} \leq \Phi_{T}\left(a_{j}\right)
$$

and this makes the computation of π_{j} values more efficient.

Example

Consider the knapsack constraint

$$
3 x_{1}+4 x_{2}+6 x_{3}+7 x_{4}+9 x_{5}+18 x_{6} \leq 21
$$

and the feasible subset $T=\{1,2,3,4\}$.
We have $r_{T}=1$ and $w(T)=|T|=4$.
Consider the permutation $\mu=(5,6)$.
Lifting 5, we obtain

$$
\pi_{5}=\Phi_{\{1, \ldots, 4\}}(9)=\min \left\{|S|: S \subseteq\{1, \ldots, 4\}, \sum_{j \in S} a_{j} \geq 9-1\right\}=2
$$

Lifting 6, we obtain

$$
\pi_{6}=\Phi_{\{1, \ldots, 5\}}(18)=\min \left\{|S|: S \subseteq\{1, \ldots, 5\}, \sum_{j \in S} a_{j} \geq 18-1\right\}=3 .
$$

The resulting feasible set inequality is

$$
x_{1}+x_{2}+x_{3}+x_{4}+2 x_{5}+3 x_{6} \leq 4
$$

(1, k)-configuration inequalities

Feasible set inequalities with unit weights $w_{j}=1 \forall j \in N$ generalize lifted cover inequalities and ($1, k$)-configuration inequalities.

Definition. A pair (T, z) with $T \cup\{z\} \subseteq N$ and $\sum_{j \in T} a_{j} \leq b$ is a $(1, k)$-configuration if $S \cup\{z\}$ is a minimal cover for all $S \subseteq T:|S|=k$.

Then

$$
\sum_{j \in T} x_{j}+(|T|-k+1) x_{z} \leq|T|
$$

is valid for K.

