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Cover inequalities (0-1 programming)

Consider the 0-1 Knapsack set:

X_{xe{0,1}”:zn:a,-x,-§b}

=1

withg >0Vvj=1,...,nand b > 0.

Definition. The subset C C {1,...,n} is a cover if and only if
Z a; > b.
jec

C is minimal if and only if it does not contain any other cover, i.e.

a>)y a-b VkeC.
jec
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Cover inequalities

With each cover C we can associate a valid cover inequality:

> x<icl—1

jec
meaning that not all binary variables in the cover may be equal to 1 in
any feasible solution.

If C is minimal, than the corresponding cover inequality is also
facet-defining for X = XN {x € {0,1}" : x; =0 Vj & C}.

If C is not minimal, then the corresponding cover inequality is
redundant.
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Example

Consider
X ={x€{0,1}®:5x; +5x2 + 5x3 + 5x4 + 3x5 + 8x5 < 17}.

The subset C = {1,2,3,4} is a minimal cover.

The corresponding cover inequality
X1+ Xo+ X3+ X4 <3
is facet-defining for

Xo = {x€{0,1}*:5x; +5x2 + 5x3 + 5x4 < 17}
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Cover inequalities

Facets of X can be obtained from facets of X by a technique called
lifting.

Cover inequalities are commonly used by MILP solvers to strengthen
formulations.

Balas and Zemel (1984) proved that minimal covers, lifting and
complementation (replacing a binary variable x; by its complement
1 — x;) can be used to obtain all the non-trivial facets of any 0-1
programming polytope with positive coefficients.
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Cover inequalities (mixed 0-1 programming)

Consider the mixed 0-1 set X with a single continuous variable:

n
X = {(X,S)E {O,1}”><3%+:Za,-x,-§b+s}

j=1
withg >0Vvj=1,...,nand b > 0.
Consider a cover C C {1,...,n} and define A\c =3 ;.. g — b.

Marchand and Wolsey (1999) proved that

> min{a, Ac}x; < Y min{a;, Ac} — Ac+ S (1)

jeC jec

is valid for X and it defines a facet of
conv(Xe) =XnN{xe{0,1}": x;=0Vj ¢ C}.

In this context the result holds for all (not only minimal) covers.
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Example

Consider
X ={x€{0,1}8:5x; +5x2 + 5x3 + 5X4 + 3x5 + 8xs < 17 + s}.

The subset C = {1,2,3,6} is a (non-minimal) cover with A\¢ = 6.

The corresponding mixed-integer cover inequality
5x1 +5Xo +5x3 +6x5 <15+ s
is valid for X and it is facet-defining for

Xe={x€{0,1}*:5x; +5x2 + 5x3 + 8x5 < 17 + s}.
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Flow cover inequalities

Consider the flow set

n
X={(x,y) €{0,1}" xR :> "y < by <axVj=1,...,n}
=

where N = {1,...,n} is a set of arcs, each one carrying flow to a
node in a flow network, y; is the amount of flow on each arcj € N, b
is an upper limit to the total inflow the node can receive, g; is the
capacity of arc j € N and x; indicates whether arc j € N carries
non-zero flow or not.

Let C be a flow cover, i.e. a subset of N such that >°, - a; > b.
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Flow cover inequalities

In the constraint .
D2 y<b
j=1
let ignore the contribution of arcs not in the cover. We obtain
> y<hb (2)
jec
Rewrite constraints
yi<axvjeC

as
yi+si=axVvjecC

where s; > 0 is a slack variable.
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Flow cover inequalities

Now replacing y; in (2) one obtains
dax<b+> s
jeC jeC

Using (1) and treating 3, - sj as a single aggregate continuous
variable, we know that the inequality

Z min{a;, A\c}X; < Z min{a;, A\c} — A¢c + Z s;
jeC jec jec
> min{a, Actx < Y min{a, Act —Ac+ D> ax— Y ¥

jeC jec jec jec

Z [min{aj, A\c} — & x;+ Zyj < Z min{a;, A\c} — Ac

jecC jec jec
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Flow cover inequalities
From
> [min{a; Ak —a] x+) y <) min{a, A}~ Ac
jeC jeC jecC

replacing A\c = >_;c¢ @ — b, one obtains

Z [min{a,-, Act — a,} Xj + Zy, < Z min{a,-, Act — Z a+ b

jec jecC jecC jec
> [minfa, Ack —a] X+ y <> [min{a;Ac} - a] +b
jec jec jec

> g —min{a el (1-x)+> y<b

jeC jeC

and finally the flow cover inequality is obtained:

3 [y + max{a; — Ac,0}(1 — x))] < b.
jeC
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Flow cover inequalities

Padberg, van Roy and Wolsey (1985) proved that for any cover C
such that maxjcc{a;} > Ac the flow cover inequality

3" [y + max{a — Ac,0H(1 — x)] < b
jecC

is facet-defining for X.

Van Roy and Wolsey (1987) and Gu, Nemhauser, Savelsbergh
(1999,2000) successfully used lifted flow cover inequalities in
branch-and-cut algorithms for general mixed 0-1 programming.

Céria, Cordier, Marchand and Wolsey (1998) derived cover
inequalities for pure integer problems. Unfortunately, in this case
cover inequalities are not facet-defining in general.
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Binary matrices

Integer and mixed integer programs often contain constraints with
only 0-1 coefficients.

In addition, many MILP solvers automatically generate constraints
with this characteristic in a pre-processing step.

Therefore it is of interest to study the polytopes described by these
constraints, i.e. integer programs with 0-1 matrices, with the aim of
deriving valid inequalities.

We consider
e set packing
e independence system
e set covering



Binary matrices
©00000

The Set Packing problem

Let A€ {0,1}™" be a 0-1 matrix and ¢ € R".
The 0-1 program

max{c'x : Ax <1,x € {0,1}"}
is called Set Packing Problem (SPP).

Every column j=1,...,nof Acan be viewed as the incidence vector
of a subset F; of the ground set {1,..., m}.

The SPP requires to find a maximum weight collection of disjoint
subsets.
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The Max Independent Set problem

Associate a vertex of a graph G(A) = (V(A), E(A)) with each column
of A and introduce an edge [/, j] for each pair of vertices that share at
least one element of the ground seti.e. 3k =1,... , m: A = Ay = 1.

The resulting graph G(A), with vertex set V(A) and edge set E(A), is
called intersection graph.

Feasible solutions of the set packing problem are in 1-to-1
correspondence with independent sets of G(A).

Hence, the Set Packing Problem is equivalent to the Max
Independent Set Problem.



Binary matrices
00@000

The Max Independent Set polytope

The max independent set polytope (P(G(A))) has the following
properties:

e it is full-dimensional
¢ all non-trivial facets have non-negative coefficients
e the bounds x; > 0 are facet-defining.
Edge constraints
Xi+x; <1 V[i,j] € E(A)

and non-negativity constraints completely describe the polytope if
and only if G(A) is bipartite.
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Odd cycle inequalities

Non-bipartite graphs contain odd cycles, that originate valid
inequalites.

Let C be a subset of columns of A corresponding to an odd cycle in
G(A).

Padberg (1973) proved that the odd cycle inequality

S < VIO
A 2
jev(C)

is valid. It defines a facet of P(V(C), E(C)) if and only if C is an odd
hole, i.e. an odd cycle without chords.

Odd cycle inequalities can be separated in polynomial time
(Grotschel, Lovasz, Schrijver, 1988).
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Clique inequalities

Let (C, E(C)) be a clique in the intersection graph G.
Fulkerson (1971) and Padberg (1973) proved that the clique
inequality
> X<t
jec
is valid for P(G) and it is facet-defining if and only if C is maximal.

Intersection graphs for which the correspondinng polytope is
completely described by clique inequalities are called perfect graphs.

The separation of clique inequalities is NP-hard.
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Other set packing inequalities

There exists a larger class of inequalities, called orthonormal
representation inequalities, that includes clique inequalities as a
special case and that can be separated in polynomial time.

Other inequalities for the independent set polytope are known:
blossom, odd antihole, wheel, antiweb and web, wedge inequalities
and many more (Borndérfer, 1998).
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Independence systems

An independence system generalizes, among others, the feasible
sets of the 0-1 knapsack problem and the set packing problems.

Let N be a ground set and let Z be a collection of subsets of N. Then
7 is an independence system if

FeZl = GeZ VGCF.

Associated with an independence system Z there is another
collection C of subsets of N, called circuits.

It includes all subsets of N of minimal cardinality that do not belong to
7.

Knapsack problem: minimal covers are the circuits.
Stable set problem: edges are the circuits.
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Circuit constraints

More generally, let A € 7" a non-negative matrix and let b € R™ be
a vector.

The set of all 0-1 solutions to Ax < b form an independence system
with a corresponding independence system polyhedron

Pz = conv({x € {0,1}": Ax < b}).

Property. Apart from lower bounds x > 0, all inequalities o’ x < g
that are facet-defining of Pz have « > 0 and g > 0.

Given any circuit C, the circuit constraint
> <01
jec

is valid for Pz (but not facet-defining, in general).
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Rank inequalities

For any given subset T C N, the valid inequality

> x<max{|§|: SCT,Se1}
jeT

is called rank inequality.

In general it is NP-hard to compute the rank (the right-hand-side of
the inequality).
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Antiweb inequalities

Consider a set {1,..., n} and the set of adjacent t-tuples N; of
consecutive vertices, i.e. {i,i+1,...,i+ t— 1}, (where indices are
computed modulo n).

For instance (with t = 4): {1,2,3,4}, {2,3,4,5}, {3,4,5,6} and so
on.

Assume it is allowed to select at most g — 1 elements from each
tuple, with g < t.

The resulting antiweb AW(n, t, q) is an independence system.
AW(nt,q)={ICN:|InN;|<q-1Vi=1,...,n}
The set of all circuits is

C={CCN:|Cl=q3ie{l,....n}: CC N}
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Antiweb inequalities

Let AW(n, t, q) an antiweb and let Pz be the associated polyhedron.
Then the antiweb inequality

> x < n(g-1)/t|

jeN
is valid for Pz (Laurent, 1989).

Proof. Summing up all constraints 3y, X; < g — 1, we obtain the
aggregate constraint
Y tx<n(g-1)

jeN
and, since x variables are binary, the right-hand-side can be rounded
down.

An antiweb inequality is facet-defining if and only if n(q — 1)/t ¢ Z.

No polynomial-time algorithms are known to separate antiweb
inequalities.
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Example
The antiweb AW(5,3,3) is
11100 2
01110 2
00111 [ x< | 2
10011 2
11001 2

and the corresponding antiweb inequality is

> x<3.

jeN
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The Set Covering problem

Let A€ {0,1}™" be a 0-1 matrix and ¢ € ®". The 0-1 program
min{c"x : Ax > 1,x € {0,1}"}
is called Set Covering Problem (SCP).

It can be restated using complemented variables x; = 1 — x;. The
covering constraints are

S X <IN[—-1Vi=1,....n
JEN;

meaning that it is forbidden to discard all columns covering row /.

These inequalities are analogous to cover inequalities for the
knapsack problem.

Antiweb inequalities also have a counterpart for the Set Covering
polytope.
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