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Cover inequalities (0-1 programming)

Consider the 0-1 Knapsack set:

X =







x ∈ {0, 1}n :

n
∑

j=1

ajxj ≤ b







with aj ≥ 0 ∀j = 1, . . . , n and b ≥ 0.

Definition. The subset C ⊆ {1, . . . , n} is a cover if and only if

∑

j∈C

aj > b.

C is minimal if and only if it does not contain any other cover, i.e.

ak ≥
∑

j∈C

aj − b ∀k ∈ C.
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Cover inequalities

With each cover C we can associate a valid cover inequality:

∑

j∈C

xj ≤ |C| − 1

meaning that not all binary variables in the cover may be equal to 1 in
any feasible solution.

If C is minimal, than the corresponding cover inequality is also

facet-defining for XC = X ∩ {x ∈ {0, 1}n : xj = 0 ∀j 6∈ C}.

If C is not minimal, then the corresponding cover inequality is
redundant.
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Example

Consider

X = {x ∈ {0, 1}6 : 5x1 + 5x2 + 5x3 + 5x4 + 3x5 + 8x6 ≤ 17}.

The subset C = {1, 2, 3, 4} is a minimal cover.

The corresponding cover inequality

x1 + x2 + x3 + x4 ≤ 3

is facet-defining for

XC = {x ∈ {0, 1}4 : 5x1 + 5x2 + 5x3 + 5x4 ≤ 17}
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Cover inequalities

Facets of X can be obtained from facets of XC by a technique called

lifting.

Cover inequalities are commonly used by MILP solvers to strengthen
formulations.

Balas and Zemel (1984) proved that minimal covers, lifting and

complementation (replacing a binary variable xj by its complement
1 − xj) can be used to obtain all the non-trivial facets of any 0-1

programming polytope with positive coefficients.
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Cover inequalities (mixed 0-1 programming)

Consider the mixed 0-1 set X with a single continuous variable:

X =







(x , s) ∈ {0, 1}n ×ℜ+ :
n

∑

j=1

ajxj ≤ b + s







with aj ≥ 0 ∀j = 1, . . . , n and b ≥ 0.

Consider a cover C ⊆ {1, . . . , n} and define λC =
∑

j∈C aj − b.

Marchand and Wolsey (1999) proved that

∑

j∈C

min{aj , λC}xj ≤
∑

j∈C

min{aj , λC} − λC + s (1)

is valid for X and it defines a facet of

conv(XC) = X ∩ {x ∈ {0, 1}n : xj = 0 ∀j 6∈ C}.

In this context the result holds for all (not only minimal) covers.
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Example

Consider

X = {x ∈ {0, 1}6 : 5x1 + 5x2 + 5x3 + 5x4 + 3x5 + 8x6 ≤ 17 + s}.

The subset C = {1, 2, 3, 6} is a (non-minimal) cover with λC = 6.

The corresponding mixed-integer cover inequality

5x1 + 5x2 + 5x3 + 6x6 ≤ 15 + s

is valid for X and it is facet-defining for

XC = {x ∈ {0, 1}4 : 5x1 + 5x2 + 5x3 + 8x6 ≤ 17 + s}.
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Flow cover inequalities

Consider the flow set

X = {(x , y) ∈ {0, 1}n ×ℜn
+ :

n
∑

j=1

yj ≤ b, yj ≤ ajxj ∀j = 1, . . . , n},

where N = {1, . . . , n} is a set of arcs, each one carrying flow to a

node in a flow network, yj is the amount of flow on each arc j ∈ N, b
is an upper limit to the total inflow the node can receive, aj is the

capacity of arc j ∈ N and xj indicates whether arc j ∈ N carries

non-zero flow or not.

Let C be a flow cover, i.e. a subset of N such that
∑

j∈C aj > b.
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Flow cover inequalities

In the constraint
n

∑

j=1

yj ≤ b

let ignore the contribution of arcs not in the cover. We obtain

∑

j∈C

yj ≤ b. (2)

Rewrite constraints

yj ≤ aj xj ∀j ∈ C

as

yj + sj = ajxj ∀j ∈ C

where sj ≥ 0 is a slack variable.
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Flow cover inequalities

Now replacing yj in (2) one obtains

∑

j∈C

ajxj ≤ b +
∑

j∈C

sj . (3)

Using (1) and treating
∑

j∈C sj as a single aggregate continuous

variable, we know that the inequality
∑

j∈C

min{aj , λC}xj ≤
∑

j∈C

min{aj , λC} − λC +
∑

j∈C

sj

is valid. Replacing sj = ajxj − yj one obtains

∑

j∈C

min{aj , λC}xj ≤
∑

j∈C

min{aj , λC} − λC +
∑

j∈C

ajxj −
∑

j∈C

yj

∑

j∈C

[

min{aj , λC} − aj

]

xj +
∑

j∈C

yj ≤
∑

j∈C

min{aj , λC} − λC
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Flow cover inequalities

From
∑

j∈C

[

min{aj , λC} − aj

]

xj +
∑

j∈C

yj ≤
∑

j∈C

min{aj , λC} − λC

replacing λC =
∑

j∈C aj − b, one obtains
∑

j∈C

[

min{aj , λC} − aj

]

xj +
∑

j∈C

yj ≤
∑

j∈C

min{aj , λC} −
∑

j∈C

aj + b

∑

j∈C

[

min{aj , λC} − aj

]

xj +
∑

j∈C

yj ≤
∑

j∈C

[

min{aj , λC} − aj

]

+ b

∑

j∈C

[

aj −min{aj , λC}
]

(1 − xj) +
∑

j∈C

yj ≤ b

and finally the flow cover inequality is obtained:
∑

j∈C

[

yj +max{aj − λC , 0}(1 − xj)
]

≤ b.
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Flow cover inequalities

Padberg, van Roy and Wolsey (1985) proved that for any cover C

such that maxj∈C{aj} > λC the flow cover inequality

∑

j∈C

[

yj +max{aj − λC , 0}(1 − xj)
]

≤ b

is facet-defining for X .

Van Roy and Wolsey (1987) and Gu, Nemhauser, Savelsbergh

(1999,2000) successfully used lifted flow cover inequalities in

branch-and-cut algorithms for general mixed 0-1 programming.

Céria, Cordier, Marchand and Wolsey (1998) derived cover

inequalities for pure integer problems. Unfortunately, in this case

cover inequalities are not facet-defining in general.
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Binary matrices

Integer and mixed integer programs often contain constraints with

only 0-1 coefficients.

In addition, many MILP solvers automatically generate constraints
with this characteristic in a pre-processing step.

Therefore it is of interest to study the polytopes described by these

constraints, i.e. integer programs with 0-1 matrices, with the aim of
deriving valid inequalities.

We consider

• set packing

• independence system

• set covering



Single constraints Binary matrices

The Set Packing problem

Let A ∈ {0, 1}m×n be a 0-1 matrix and c ∈ ℜn.

The 0-1 program

max{cT x : Ax ≤ 1, x ∈ {0, 1}n}

is called Set Packing Problem (SPP).

Every column j = 1, . . . , n of A can be viewed as the incidence vector

of a subset Fj of the ground set {1, . . . ,m}.

The SPP requires to find a maximum weight collection of disjoint
subsets.
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The Max Independent Set problem

Associate a vertex of a graph G(A) = (V (A),E(A)) with each column

of A and introduce an edge [i, j] for each pair of vertices that share at

least one element of the ground set i.e. ∃k = 1, . . . ,m : Aki = Akj = 1.

The resulting graph G(A), with vertex set V (A) and edge set E(A), is

called intersection graph.

Feasible solutions of the set packing problem are in 1-to-1
correspondence with independent sets of G(A).

Hence, the Set Packing Problem is equivalent to the Max

Independent Set Problem.
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The Max Independent Set polytope

The max independent set polytope (P(G(A))) has the following

properties:

• it is full-dimensional

• all non-trivial facets have non-negative coefficients

• the bounds xj ≥ 0 are facet-defining.

Edge constraints

xi + xj ≤ 1 ∀[i, j] ∈ E(A)

and non-negativity constraints completely describe the polytope if

and only if G(A) is bipartite.
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Odd cycle inequalities

Non-bipartite graphs contain odd cycles, that originate valid

inequalites.

Let C be a subset of columns of A corresponding to an odd cycle in
G(A).

Padberg (1973) proved that the odd cycle inequality

∑

j∈V (C)

xj ≤
|V (C)| − 1

2

is valid. It defines a facet of P(V (C),E(C)) if and only if C is an odd

hole, i.e. an odd cycle without chords.

Odd cycle inequalities can be separated in polynomial time

(Grötschel, Lovász, Schrijver, 1988).
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Clique inequalities

Let (C,E(C)) be a clique in the intersection graph G.

Fulkerson (1971) and Padberg (1973) proved that the clique

inequality
∑

j∈C

xj ≤ 1

is valid for P(G) and it is facet-defining if and only if C is maximal.

Intersection graphs for which the correspondinng polytope is

completely described by clique inequalities are called perfect graphs.

The separation of clique inequalities is NP-hard.
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Other set packing inequalities

There exists a larger class of inequalities, called orthonormal

representation inequalities, that includes clique inequalities as a

special case and that can be separated in polynomial time.

Other inequalities for the independent set polytope are known:

blossom, odd antihole, wheel, antiweb and web, wedge inequalities

and many more (Borndörfer, 1998).
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Independence systems

An independence system generalizes, among others, the feasible

sets of the 0-1 knapsack problem and the set packing problems.

Let N be a ground set and let I be a collection of subsets of N. Then
I is an independence system if

F ∈ I ⇒ G ∈ I ∀G ⊆ F .

Associated with an independence system I there is another
collection C of subsets of N, called circuits.

It includes all subsets of N of minimal cardinality that do not belong to

I.

Knapsack problem: minimal covers are the circuits.

Stable set problem: edges are the circuits.
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Circuit constraints

More generally, let A ∈ ℜm×n
+ a non-negative matrix and let b ∈ ℜm be

a vector.

The set of all 0-1 solutions to Ax ≤ b form an independence system
with a corresponding independence system polyhedron

PI = conv({x ∈ {0, 1}n : Ax ≤ b}).

Property. Apart from lower bounds x ≥ 0, all inequalities αT x ≤ β
that are facet-defining of PI have α ≥ 0 and β > 0.

Given any circuit C, the circuit constraint

∑

j∈C

xj ≤ |C| − 1

is valid for PI (but not facet-defining, in general).
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Rank inequalities

For any given subset T ⊆ N, the valid inequality

∑

j∈T

xj ≤ max{|S| : S ⊆ T ,S ∈ I}

is called rank inequality.

In general it is NP-hard to compute the rank (the right-hand-side of

the inequality).
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Antiweb inequalities

Consider a set {1, . . . , n} and the set of adjacent t-tuples Ni of
consecutive vertices, i.e. {i, i + 1, . . . , i + t − 1}, (where indices are

computed modulo n).

For instance (with t = 4): {1, 2, 3, 4}, {2, 3, 4, 5}, {3, 4, 5, 6} and so

on.

Assume it is allowed to select at most q − 1 elements from each

tuple, with q ≤ t.

The resulting antiweb AW(n, t , q) is an independence system.

AW(n, t , q) = {I ⊆ N : |I ∩ Ni | ≤ q − 1 ∀i = 1, . . . , n}

The set of all circuits is

C = {C ⊆ N : |C| = q, ∃i ∈ {1, . . . , n} : C ⊆ Ni}.
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Antiweb inequalities

Let AW(n, t , q) an antiweb and let PI be the associated polyhedron.

Then the antiweb inequality
∑

j∈N

xj ≤ ⌊n(q − 1)/t⌋

is valid for PI (Laurent, 1989).

Proof. Summing up all constraints
∑

j∈Ni
xj ≤ q − 1, we obtain the

aggregate constraint
∑

j∈N

t xj ≤ n(q − 1)

and, since x variables are binary, the right-hand-side can be rounded

down.

An antiweb inequality is facet-defining if and only if n(q − 1)/t 6∈ Z.

No polynomial-time algorithms are known to separate antiweb
inequalities.
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Example

The antiweb AW(5, 3, 3) is













1 1 1 0 0

0 1 1 1 0

0 0 1 1 1
1 0 0 1 1

1 1 0 0 1













x ≤













2

2

2
2

2













and the corresponding antiweb inequality is

∑

j∈N

xj ≤ 3.
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The Set Covering problem

Let A ∈ {0, 1}m×n be a 0-1 matrix and c ∈ ℜn. The 0-1 program

min{cT x : Ax ≥ 1, x ∈ {0, 1}n}

is called Set Covering Problem (SCP).

It can be restated using complemented variables x j = 1 − xj . The
covering constraints are

∑

j∈Ni

x j ≤ |Ni | − 1 ∀i = 1, . . . , n

meaning that it is forbidden to discard all columns covering row i.

These inequalities are analogous to cover inequalities for the

knapsack problem.

Antiweb inequalities also have a counterpart for the Set Covering

polytope.
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