

Special cutting planes for ILP and MILP Operational Research Complements

Giovanni Righini

Università degli Studi di Milano

Based on: H. Marchand, A. Martin, R. Weismantel, L. Wolsey, *Cutting planes in integer and mixed-integer programming*, Discrete Applied Mathematics 123 (2002) 397-446.

Cover inequalities (0-1 programming)

Consider the 0-1 Knapsack set:

$$X = \left\{ x \in \{0,1\}^n : \sum_{j=1}^n a_j x_j \le b \right\}$$

with $a_j \ge 0 \ \forall j = 1, \ldots, n$ and $b \ge 0$.

Definition. The subset $C \subseteq \{1, \ldots, n\}$ is a cover if and only if

$$\sum_{j\in C}a_j>b.$$

C is minimal if and only if it does not contain any other cover, i.e.

$$a_k \geq \sum_{j \in C} a_j - b \quad orall k \in C.$$

Cover inequalities

With each cover *C* we can associate a valid cover inequality:

$$\sum_{j\in C} x_j \leq |C|-1$$

meaning that not all binary variables in the cover may be equal to 1 in any feasible solution.

If *C* is minimal, than the corresponding cover inequality is also facet-defining for $X_C = X \cap \{x \in \{0, 1\}^n : x_j = 0 \ \forall j \notin C\}$.

If C is not minimal, then the corresponding cover inequality is redundant.

Example

Consider

 $X = \{x \in \{0,1\}^6 : 5x_1 + 5x_2 + 5x_3 + 5x_4 + 3x_5 + 8x_6 \le 17\}.$

The subset $C = \{1, 2, 3, 4\}$ is a minimal cover.

The corresponding cover inequality

$$x_1 + x_2 + x_3 + x_4 \le 3$$

is facet-defining for

$$X_C = \{x \in \{0,1\}^4 : 5x_1 + 5x_2 + 5x_3 + 5x_4 \le 17\}$$

Cover inequalities

Facets of X can be obtained from facets of X_C by a technique called lifting.

Cover inequalities are commonly used by MILP solvers to strengthen formulations.

Balas and Zemel (1984) proved that minimal covers, lifting and complementation (replacing a binary variable x_j by its complement $1 - x_j$) can be used to obtain all the non-trivial facets of any 0-1 programming polytope with positive coefficients.

Cover inequalities (mixed 0-1 programming)

Consider the mixed 0-1 set X with a single continuous variable:

$$X = \left\{ (x, s) \in \{0, 1\}^n \times \Re_+ : \sum_{j=1}^n a_j x_j \le b + s \right\}$$

with $a_j \ge 0 \ \forall j = 1, \dots, n \text{ and } b \ge 0$.

Consider a cover $C \subseteq \{1, ..., n\}$ and define $\lambda_C = \sum_{j \in C} a_j - b$.

Marchand and Wolsey (1999) proved that

$$\sum_{j \in C} \min\{a_j, \lambda_C\} x_j \le \sum_{j \in C} \min\{a_j, \lambda_C\} - \lambda_C + s$$
(1)

is valid for X and it defines a facet of $conv(X_C) = X \cap \{x \in \{0,1\}^n : x_j = 0 \ \forall j \notin C\}.$

In this context the result holds for all (not only minimal) covers.

Example

Consider

 $X = \{x \in \{0,1\}^6 : 5x_1 + 5x_2 + 5x_3 + 5x_4 + 3x_5 + 8x_6 \le 17 + s\}.$

The subset $C = \{1, 2, 3, 6\}$ is a (non-minimal) cover with $\lambda_C = 6$.

The corresponding mixed-integer cover inequality

$$5x_1 + 5x_2 + 5x_3 + 6x_6 \le 15 + s$$

is valid for X and it is facet-defining for

 $X_C = \{x \in \{0,1\}^4 : 5x_1 + 5x_2 + 5x_3 + 8x_6 \le 17 + s\}.$

Consider the flow set

$$X = \{(x, y) \in \{0, 1\}^n \times \Re^n_+ : \sum_{j=1}^n y_j \le b, y_j \le a_j x_j \ \forall j = 1, \dots, n\},$$

where $N = \{1, ..., n\}$ is a set of arcs, each one carrying flow to a node in a flow network, y_j is the amount of flow on each arc $j \in N$, b is an upper limit to the total inflow the node can receive, a_j is the capacity of arc $j \in N$ and x_j indicates whether arc $j \in N$ carries non-zero flow or not.

Let *C* be a flow cover, i.e. a subset of *N* such that $\sum_{i \in C} a_i > b$.

Flow cover inequalities

In the constraint

$$\sum_{j=1}^{n} y_j \leq b$$

let ignore the contribution of arcs not in the cover. We obtain

n

$$\sum_{j\in C} y_j \leq b.$$
 (2)

Rewrite constraints

$$y_j \leq a_j x_j \ \forall j \in C$$

as

$$y_j + s_j = a_j x_j \ \forall j \in C$$

where $s_j \ge 0$ is a slack variable.

Now replacing y_i in (2) one obtains

$$\sum_{j\in C} a_j x_j \leq b + \sum_{j\in C} s_j.$$
(3)

Using (1) and treating $\sum_{j \in C} s_j$ as a single aggregate continuous variable, we know that the inequality

$$\sum_{j \in \mathcal{C}} \min\{a_j, \lambda_{\mathcal{C}}\} x_j \le \sum_{j \in \mathcal{C}} \min\{a_j, \lambda_{\mathcal{C}}\} - \lambda_{\mathcal{C}} + \sum_{j \in \mathcal{C}} s_j$$

is valid. Replacing $s_j = a_j x_j - y_j$ one obtains

$$\sum_{j \in C} \min\{a_j, \lambda_C\} x_j \le \sum_{j \in C} \min\{a_j, \lambda_C\} - \lambda_C + \sum_{j \in C} a_j x_j - \sum_{j \in C} y_j$$
$$\sum_{j \in C} \left[\min\{a_j, \lambda_C\} - a_j\right] x_j + \sum_{j \in C} y_j \le \sum_{j \in C} \min\{a_j, \lambda_C\} - \lambda_C$$

From

$$\sum_{j \in C} \left[\min\{a_j, \lambda_C\} - a_j \right] x_j + \sum_{j \in C} y_j \le \sum_{j \in C} \min\{a_j, \lambda_C\} - \lambda_C$$

replacing $\lambda_{C} = \sum_{j \in C} a_{j} - b$, one obtains

$$\sum_{j \in C} \left[\min\{a_j, \lambda_C\} - a_j \right] x_j + \sum_{j \in C} y_j \le \sum_{j \in C} \min\{a_j, \lambda_C\} - \sum_{j \in C} a_j + b$$
$$\sum_{j \in C} \left[\min\{a_j, \lambda_C\} - a_j \right] x_j + \sum_{j \in C} y_j \le \sum_{j \in C} \left[\min\{a_j, \lambda_C\} - a_j \right] + b$$
$$\sum_{j \in C} \left[a_j - \min\{a_j, \lambda_C\} \right] (1 - x_j) + \sum_{j \in C} y_j \le b$$

and finally the flow cover inequality is obtained:

$$\sum_{j\in \mathcal{C}} \left[y_j + \max\{a_j - \lambda_{\mathcal{C}}, \mathbf{0}\}(1-x_j) \right] \leq b.$$

Padberg, van Roy and Wolsey (1985) proved that for any cover *C* such that $\max_{j \in C} \{a_j\} > \lambda_C$ the flow cover inequality

$$\sum_{j \in C} \left[y_j + \max\{a_j - \lambda_C, 0\} (1 - x_j) \right] \le b$$

is facet-defining for X.

Van Roy and Wolsey (1987) and Gu, Nemhauser, Savelsbergh (1999,2000) successfully used lifted flow cover inequalities in branch-and-cut algorithms for general mixed 0-1 programming.

Céria, Cordier, Marchand and Wolsey (1998) derived cover inequalities for pure integer problems. Unfortunately, in this case cover inequalities are not facet-defining in general.

Binary matrices

Integer and mixed integer programs often contain constraints with only 0-1 coefficients.

In addition, many MILP solvers automatically generate constraints with this characteristic in a pre-processing step.

Therefore it is of interest to study the polytopes described by these constraints, i.e. integer programs with 0-1 matrices, with the aim of deriving valid inequalities.

We consider

- set packing
- independence system
- set covering

The Set Packing problem

Let $A \in \{0, 1\}^{m \times n}$ be a 0-1 matrix and $c \in \Re^n$.

The 0-1 program

$$\max\{c^T x : Ax \le 1, x \in \{0, 1\}^n\}$$

is called Set Packing Problem (SPP).

Every column j = 1, ..., n of A can be viewed as the incidence vector of a subset F_j of the ground set $\{1, ..., m\}$.

The SPP requires to find a maximum weight collection of disjoint subsets.

The Max Independent Set problem

Associate a vertex of a graph G(A) = (V(A), E(A)) with each column of *A* and introduce an edge [i, j] for each pair of vertices that share at least one element of the ground set i.e. $\exists k = 1, ..., m : A_{ki} = A_{kj} = 1$.

The resulting graph G(A), with vertex set V(A) and edge set E(A), is called intersection graph.

Feasible solutions of the set packing problem are in 1-to-1 correspondence with independent sets of G(A).

Hence, the Set Packing Problem is equivalent to the Max Independent Set Problem.

The Max Independent Set polytope

The max independent set polytope (P(G(A))) has the following properties:

- it is full-dimensional
- all non-trivial facets have non-negative coefficients
- the bounds $x_i \ge 0$ are facet-defining.

Edge constraints

$$x_i + x_j \leq 1 \quad \forall [i, j] \in E(A)$$

and non-negativity constraints completely describe the polytope if and only if G(A) is bipartite.

Odd cycle inequalities

Non-bipartite graphs contain odd cycles, that originate valid inequalites.

Let C be a subset of columns of A corresponding to an odd cycle in G(A).

Padberg (1973) proved that the odd cycle inequality

$$\sum_{j\in V(\mathcal{C})} x_j \leq \frac{|V(\mathcal{C})|-1}{2}$$

is valid. It defines a facet of P(V(C), E(C)) if and only if C is an odd hole, i.e. an odd cycle without chords.

Odd cycle inequalities can be separated in polynomial time (Grötschel, Lovász, Schrijver, 1988).

Clique inequalities

Let (C, E(C)) be a clique in the intersection graph *G*.

Fulkerson (1971) and Padberg (1973) proved that the clique inequality

$$\sum_{j\in C} x_j \leq 1$$

is valid for P(G) and it is facet-defining if and only if C is maximal.

Intersection graphs for which the correspondinng polytope is completely described by clique inequalities are called perfect graphs.

The separation of clique inequalities is NP-hard.

Other set packing inequalities

There exists a larger class of inequalities, called orthonormal representation inequalities, that includes clique inequalities as a special case and that can be separated in polynomial time.

Other inequalities for the independent set polytope are known: blossom, odd antihole, wheel, antiweb and web, wedge inequalities and many more (Borndörfer, 1998).

Independence systems

An independence system generalizes, among others, the feasible sets of the 0-1 knapsack problem and the set packing problems.

Let *N* be a ground set and let \mathcal{I} be a collection of subsets of *N*. Then \mathcal{I} is an independence system if

$$F \in \mathcal{I} \Rightarrow G \in \mathcal{I} \quad \forall G \subseteq F.$$

Associated with an independence system \mathcal{I} there is another collection \mathcal{C} of subsets of *N*, called circuits.

It includes all subsets of *N* of minimal cardinality that do not belong to \mathcal{I} .

Knapsack problem: minimal covers are the circuits. Stable set problem: edges are the circuits.

Circuit constraints

More generally, let $A \in \Re^{m \times n}_+$ a non-negative matrix and let $b \in \Re^m$ be a vector.

The set of all 0-1 solutions to $Ax \le b$ form an independence system with a corresponding independence system polyhedron

$$P_{\mathcal{I}} = conv(\{x \in \{0,1\}^n : Ax \le b\}).$$

Property. Apart from lower bounds $x \ge 0$, all inequalities $\alpha^T x \le \beta$ that are facet-defining of $P_{\mathcal{I}}$ have $\alpha \ge 0$ and $\beta > 0$.

Given any circuit *C*, the circuit constraint

$$\sum_{j\in C} x_j \le |C|-1$$

is valid for $P_{\mathcal{I}}$ (but not facet-defining, in general).

Rank inequalities

For any given subset $T \subseteq N$, the valid inequality

$$\sum_{j \in T} x_j \le \max\{|S| : S \subseteq T, S \in \mathcal{I}\}$$

is called rank inequality.

In general it is *NP*-hard to compute the rank (the right-hand-side of the inequality).

Antiweb inequalities

Consider a set $\{1, ..., n\}$ and the set of adjacent *t*-tuples N_i of consecutive vertices, i.e. $\{i, i + 1, ..., i + t - 1\}$, (where indices are computed modulo *n*).

For instance (with t = 4): {1,2,3,4}, {2,3,4,5}, {3,4,5,6} and so on.

Assume it is allowed to select at most q - 1 elements from each tuple, with $q \le t$.

The resulting antiweb AW(n, t, q) is an independence system.

$$\mathcal{AW}(n,t,q) = \{I \subseteq N : |I \cap N_i| \le q-1 \ \forall i=1,\ldots,n\}$$

The set of all circuits is

$$\mathcal{C} = \{ \boldsymbol{C} \subseteq \boldsymbol{N} : |\boldsymbol{C}| = \boldsymbol{q}, \exists i \in \{1, \dots, n\} : \boldsymbol{C} \subseteq \boldsymbol{N}_i \}.$$

Antiweb inequalities

Let $\mathcal{AW}(n, t, q)$ an antiweb and let $P_{\mathcal{I}}$ be the associated polyhedron. Then the antiweb inequality

$$\sum_{j\in N} x_j \leq \lfloor n(q-1)/t \rfloor$$

is valid for $P_{\mathcal{I}}$ (Laurent, 1989).

Proof. Summing up all constraints $\sum_{j \in N_i} x_j \le q - 1$, we obtain the aggregate constraint

$$\sum_{j\in N} t x_j \le n(q-1)$$

and, since *x* variables are binary, the right-hand-side can be rounded down.

An antiweb inequality is facet-defining if and only if $n(q-1)/t \notin \mathbb{Z}$.

No polynomial-time algorithms are known to separate antiweb inequalities.

Example

The antiweb $\mathcal{AW}(5,3,3)$ is

$$\left[\begin{array}{c}1 & 1 & 1 & 0 & 0\\ 0 & 1 & 1 & 1 & 0\\ 0 & 0 & 1 & 1 & 1\\ 1 & 0 & 0 & 1 & 1\\ 1 & 1 & 0 & 0 & 1\end{array}\right] x \leq \left[\begin{array}{c}2\\2\\2\\2\\2\end{array}\right]$$

and the corresponding antiweb inequality is

$$\sum_{j\in N} x_j \leq 3.$$

The Set Covering problem

Let $A \in \{0, 1\}^{m \times n}$ be a 0-1 matrix and $c \in \Re^n$. The 0-1 program

 $\min\{c^T x : Ax \ge 1, x \in \{0, 1\}^n\}$

is called Set Covering Problem (SCP).

It can be restated using complemented variables $\overline{x}_j = 1 - x_j$. The covering constraints are

$$\sum_{j \in N_i} \overline{x}_j \le |N_i| - 1 \ \forall i = 1, \dots, n$$

meaning that it is forbidden to discard all columns covering row *i*.

These inequalities are analogous to cover inequalities for the knapsack problem.

Antiweb inequalities also have a counterpart for the Set Covering polytope.