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Chvatal-Gomory cuts

A generic pure ILP is
min{c'x :x € X} X ={z¢€ 2} :Ax =b}
with A and b integer.
The linear relaxation is characterized by the polyhedron
P={xe®R]:Ax =b}.
Goal: strengthening the formulation.

Idea: shift each constraint towards conv (X) until it encounters an
integer point.
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Geometric approach (Chvatal)

A supporting hyperplane of a set S in a Euclidean space R" is a
hyperplane such that
® S is entirely contained in one of the two closed half-spaces
bounded by the hyperplane;
¢ S has at least one boundary-point on the hyperplane.
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Geometric approach (Chvatal)

Let {x € R : hTx = 6} be a supporting hyperplane of P with h
integer.

Then P C {x e R : hx < 6}.

Let ©(P) the set of all supporting hyperplanes of P with integer Ihs.
Now consider a restriction R(P) or P defined as follows:

R(P):= () {xeRl:h"x<|6]}
(h,0)e©(P)
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Geometric approach (Chvatal)

Supporting hyperplane:
2X1 + 3X2 < 9.6

passing through vertex
(1.8,2.0).

Shifted hyperplane:

2X1 + 3%, <9

passing through integer points
(0,3), (3,1)...
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Geometric approach (Chvatal)

Although there may exist infinitely many supporting hyperplanes in
©(P), it can be shown that R(P) is still a polyhedron.

Obviously
conv (X) C R(P).

Therefore the process can be repeated iteratively, generating a
sequence of polyhedra:

[ ] QO = P

° Qt+1 _ R(Qt) Yt >0
and

P=Q°2>Q!D>... >conv(X).

Chvatal (1973) proved that conv(X) is eventually obtained in a finite
number of steps when P is a polytope.

Schrijvers (1980) proved that the result also applies to general
polyhedra.



Pure ILP
0O0000e00

Algoritmic approach (Gomory)

Given a fractional solution x* of the linear relaxation of an ILP
problem, we strengthen the constraint associated with a fractional
variable: we obtain a valid inequality violated by x* and we iterate.

Given a discrete optimization problem
P) max{cx :Ax =b,x > 0,x € Z1}
and its continuous linear relaxation
LP) max{cx : Ax =b,x > 0}
let x* and z* be the optimal solution of LP and its value.
2" =8+ Y _ agX'
jeN~

Xgei + 2jen- QX =@ Vi=1,....m o
x*>0

where B* and N* are the set of indices of basic and non-basic

variables in x*.
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Gomory cuts

If x* is not integer, there exists at least one constraint ist. a, is not
integer. Applying Chvatal-Gomory procedure to it, we obtain:

B* + Z JXJ |0J
jeEN~
Subtracting this inequality from the equality constraint
Xgii D FX =
jeN~
we obtain the Gomory cut:
Z fixi = fio
jeN*

where ffj = éﬁ — LﬁfjJ and ffo = 5?0 — LE;OJ.

The slack variable associated with this new inequality is also integer.
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Gomory cuts

Gomory (1969) proved that with a particular choice of the generating
row Gomory cuts lead to a finite algorithm, i.e., after adding a finite
number of inequalities, an integer optimal solution is found.
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Extension to MILP

The extension of Gomory'’s technique to mixed-integer problems is
not trivial.

Observation. Let u®x < v(® and u®@x < v(2 be two valid
inequalities, where the former one is valid for a polyhedron P(*) and
the latter one for a polyhedron P(?), Then,

Zmin{uj(l), Uj(z)}Xj < max{vH v@}

jeN
is valid for P(*) U P() and for conv (P U P(?).

Obviously, the same idea holds with reversed inequalities and
swapping min and max.
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Geometric interpretation

X2

—2X1 + X2 <10

—2X1 + 3X2 < 0

X1+ X2 <10

\ 4

X1
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Gomory mixed-integer cuts

Assume we have solved an LP to optimality.
We indicate by M the set of indices of the constraints (rows).

We indicate by B is the set of indices of basic variables (columns) and
by N is the set of indices of non-basic variables (columns).

We indicate by a; the coefficient in the tableau on row i and column j.

We indicate by f; the fractional part of a;j, so that:

a; = a+f; for some integer o



Gomory mixed-integer cuts

Consider a basic variable x,x and the row i of the tableau where
ﬁik =1.

From linear programming we know that:
Xk = @jp — Zainj vk € B,Vi eM:ax =1
jeN
The requirement
Xk integer

is equivalent to the requirement that ajo and ZjeN ajjx; have the same
fractional part, i.e.

Zainj =a+fig

jeN

for some integer a.
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Gomory mixed-integer cuts

We partition the set N into two subsets:
Ni+:{j eN:a@; >0}
Ni_:{j €N : g < 0}
and we consider two cases.
If Z]EN ﬁinj > 0, then
Zainj =a+fig = Z 5inj > fip.
jeN jent
If EieN ﬁinj < 0, then

Zainj =a+fig = Z ainj < —1+fip.
JeN jeN”
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Gomory mixed-integer cuts

We define two polyhedra
D= {xeP: Zainj >0}
jeN
2) = {X eP: Zainj < 0}
jeN
For P() inequality >, \+ &jXj > fio is valid.
For P(?) inequality Y7, .- @ < —1 + fio is valid.
We rewrite the latter one as _1f—'—0fio ZjeN* a;X; > fio.

Now we use the observation above to obtain the valid inequality
(mixed-integer Gomory cut)

Z ajjXj — — fo Z ajjX; > fio.

jeNT jeN”



Strengthening the cuts

We indicate by N’ C N the set of the integer variables.
The requirement

Zﬁinj mod 1 = in
JEN

is equivalent to

( Z a;jXj + Z(ﬁij + kij)Xj) mod 1 = fig

JENN’ jeN’

with kj integer Vj € N’.

(2)
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Strengthening the cuts

Example:

1 1
(1—0X) mod 1 = 5
has the same integer solutions x =5,15,25,... as

11 1 21 1

9 1 19 1
(—1—OX> mOdlfz, <—1—0X) mod 1—5,

and



Strengthening the cuts

Therefore we can optimally select an integer k; for each j € N’ to
modify the coefficients of the integer variables in the resulting cut in
order to make the cut as strong as possible.

The cut in > form is made stronger, when the coefficients in its
left-hand-side are minimized.

By adding or subtracting a suitable integer k; we can make the
coefficient of x; in (2) positive or negative, so that we can putj in N*
orin N—.
We indicate with aj the modified coefficient of x; in (2):

a{f = 5”‘ + kij-

Now we examine two possible cases.
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Strengthening the cuts

Case 1: a; > 0. Since j remains in N* or enters N, the coefficient
of x; in the cut left-hand-side is aj.

minimize a;f =a; + kj
s.t. aj + kij >0
kj integer
which is equivalent to
minimize kj
s.t. kij > —5"-
kj integer

whose optimal solution is ki = [—a;| = —[&],
yielding a cut coefficient aj = & + kj = a; — [&;| = fj.
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Strengthening the cuts

Case 2: aj < 0. Since j remains in N~ or goes in N, the coefficient

of x; in the cut left-hand-side is % (—a;).

R fi _
minimize —°—(— (& + k;j))

1—fio

s.t. ﬁij + kij <0

ki integer

which is equivalent to
maximize k;;
s.t. kij < g
ki integer

whose optimal solution is ki = [—a;] — 1 = —|a&;] — 1, yielding a cut

coefficient {%—(—ar) = {%(—a; + & + 1) = £5-(1 — ;).
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Strengthening the cuts

Finally, the choice between f; and fio 1 —f;) is trivial: the
) (1 )

— fio)
former is the minimum when f;; < fio, the latter when f; > fio.

So, the strengthened form of a mixed-integer Gomory cut is

f
Z finj + Z 1 IO_ (1—fij)Xj +

jEN/3f|J§f|D jeN,:fu >fio

_ fio _
+ Z aijX; + Z —1 _l fio(—ai,—)x,- > fio.

JEN’ jeN JEN jENT
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Mixed-integer rounding cuts

Consider a mixed-integer problem with just two variables, one
discrete and one continuous:
X={(x,y)€ Zx R, :x -y <b}

where b € R.

Nembhauser and Wolsey (1988) proved that

Ty < b

is valid for X, where f(b) indicates the fractional part of b.
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Mixed-integer rounding cuts

Proof. Consider these two polyhedra:
PW = {(x,y) e X:x < [b]}

P@ ={(x,y)eX :x > [b] +1}

Clearl
’ X =PByp®

Furthermore, rewrite the inequality

x— Ty < b

as the equivalent inequality
(x = [b])(1 —f(b)) <.

This inequality is valid for both P(Y) and P(2) and hence for X.
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Mixed-integer rounding cuts

Consider P = {(x,y) € X : x < |b]}.
The following two inequalities hold:

{X—l_bJ <0
0 <y

Combining these inequalities with non-negative weights 1 — f(b) and

1, one obtains
(x —[b]) (1—1(b)) <y.
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Mixed-integer rounding cuts

Consider P@) = {(x,y) € X : x > [b| + 1}.
The following two inequalities hold:

{ —(x = [b]) 1

VANIVAN

X—y b
Combining these inequalities with non-negative weights f(b) and 1,
one obtains

—x f(b) + |b] f(b) +x —y < —f(b) +b
—x f(b) + [b] f(b) +x —y < [b]
—x f(b) + [b] f(b) +x — [b] <y
x (1-f(b)) = [b] (1 —F(b)) <y

(x = [b]) (1 =f(b)) <v.
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Mixed-integer rounding cuts
Now we consider a more general MILP with several discrete variables
and a single continuous variable:
X={(x,y)€ 2! xR, :ax —y <b}

where a ¢ R" and b € R.

Nembhauser and Wolsey (1988) proved that the following
Mixed-Integer Rounding (MIR) inequality

> (e + T ) - g v < Lo

j=1

is valid for X, where (-)* indicates max{0, -}.
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Mixed-integer rounding cuts

We define NV = {j € {1,...,n} : f(a) < f(b)} and N® = N\N®.

Since all variables are non-negative, then
laj] % < x VjeN (3)
When f(a;) > 0, we also have
a = [g] —(1—f(y)) vieN:f(g)>0 (4)

We use mequallty (3) for the terms in N1 and equality (4) for the
terms in N, so that ax —y < b implies

Do lalx+ > Taly— > (L-f(&))x -y <b.

jeN® jEN® JEN®@)
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Mixed-integer rounding cuts

Do lalx+ Y [alx— ) (1-f@)x-y<b.

jEN®) JEN®@) JEN®@)
We define
w= > la]x+ Y [a]x
jEN® JEN®@
z=y+ Y (1-f(y))
JEN®@)

and we observe that z > 0.

Therefore we can use the previous result to prove that
z
—— __<1b
1-f(b) — [b]

that corresponds to the MIR inequality (by substitution).
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Lift-and-project cuts

Idea: represent the original polyhedron in a higher dimensional
space (lifting), to obtain a valid inequality in the lifted space; then,
project it back to the original space.

It only applies to mixed 0-1 linear programming.

Consider a mixed 0-1 linear program
min{cx : x € X} X ={x € {0,1}P x R""P: Ax < b}
where Ax < b includes the bounds 0 < x; <1Vi=1,...,p.

Let P = {x € R": Ax < b} be the polyhedron of the linear relaxation
and P, = conv(X) the ideal formulation.
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Lift-and-project cuts

An iteration of the lift-and-project algorithm (Balas, Céria, Cornuéjols,
1993) is made by three steps:

1. Selectj € {1,...,p}.
2. Generate the two valid inequalities:

(AX) x; < b X;
{ (Ax) (1 =x) < b (1-x)

and replace y; = X; X; Vi #jand x; = x].2. Let Lj(P) the lifted
polyhedron obtained in this way.
3. Project L;(P) back by eliminating the y variables. Let P; be the

polyhedron obtained. The j" component of each vertex of P; is
binary.
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Lift-and-project cuts

Repeating the iteration for all j produces P, independently of the
order.

To cut off the current fractional optimal solution x* of the linear
relaxation with a lift-and-project cut, it is sufficient to select j in step 1
so that x;" is fractional.

Step 3 requires to eliminate the y variables, i.e. to project a
polyhedron
Li(P) = {(x,y) : Dx + By <d}

into a polyhedron
Pj={x:(u'D)x <u'd,vueC}

where C = {u: u"B = 0,u > 0} is a polyhedral cone.



Validity of the cuts

In contrast to the pure integer case, none of the cutting plane
procedures presented (mixed-integer Gomory cuts, MIR,
Lift-and-project cuts) yields a finite algorithm for MILP.

Adding Gomory cuts allows to reach the optimal solution of a MILP in
a finite number of steps but this guarantee holds only if the values of
the objective function are integer in all feasible solutions.

MIR inequalities provide a complete description of the polyhedron for
any mixed 0-1 polyhedron.

Also Lift-and-project provides a finite algorithm only for mixed 0-1
programs.
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