General cutting planes for ILP and MILP Operational Research Complements

Giovanni Righini

Università degli Studi di Milano

Chvátal-Gomory cuts

A generic pure ILP is

$$
\min \left\{c^{\top} x: x \in X\right\} \quad X=\left\{z \in \mathcal{Z}_{+}^{n}: A x=b\right\}
$$

with A and b integer.
The linear relaxation is characterized by the polyhedron

$$
P=\left\{x \in \Re_{+}^{n}: A x=b\right\} .
$$

Goal: strengthening the formulation.
Idea: shift each constraint towards $\operatorname{conv}(X)$ until it encounters an integer point.

Geometric approach (Chvátal)

A supporting hyperplane of a set S in a Euclidean space \Re^{n} is a hyperplane such that

- S is entirely contained in one of the two closed half-spaces bounded by the hyperplane;
- S has at least one boundary-point on the hyperplane.

Geometric approach (Chvátal)

Let $\left\{x \in \Re_{+}^{n}: h^{T} x=\theta\right\}$ be a supporting hyperplane of P with h integer.

Then $P \subseteq\left\{x \in \Re_{+}^{n}: h x \leq \theta\right\}$.
Let $\Theta(P)$ the set of all supporting hyperplanes of P with integer Ihs. Now consider a restriction $R(P)$ or P defined as follows:

$$
R(P):=\bigcap_{(h, \theta) \in \Theta(P)}\left\{x \in \Re_{+}^{n}: h^{T} x \leq\lfloor\theta\rfloor\right\}
$$

Geometric approach (Chvátal)

Supporting hyperplane:

$$
2 x_{1}+3 x_{2} \leq 9.6
$$

passing through vertex
(1.8, 2.0).

Shifted hyperplane:

$$
2 x_{1}+3 x_{2} \leq 9
$$

passing through integer points $(0,3),(3,1) \ldots$

Geometric approach (Chvátal)

Although there may exist infinitely many supporting hyperplanes in $\Theta(P)$, it can be shown that $R(P)$ is still a polyhedron.

Obviously

$$
\operatorname{conv}(X) \subseteq R(P)
$$

Therefore the process can be repeated iteratively, generating a sequence of polyhedra:

- $Q^{0}=P$
- $Q^{t+1}=R\left(Q^{t}\right) \forall t \geq 0$
and

$$
P=Q^{0} \supseteq Q^{1} \supseteq \ldots \supseteq \operatorname{conv}(X)
$$

Chvátal (1973) proved that $\operatorname{conv}(X)$ is eventually obtained in a finite number of steps when P is a polytope.
Schrijvers (1980) proved that the result also applies to general polyhedra.

Algoritmic approach (Gomory)

Given a fractional solution x^{*} of the linear relaxation of an ILP problem, we strengthen the constraint associated with a fractional variable: we obtain a valid inequality violated by x^{*} and we iterate.
Given a discrete optimization problem

$$
\text { P) } \max \left\{c x: A x=b, x \geq 0, x \in \mathcal{Z}_{+}^{n}\right\}
$$

and its continuous linear relaxation

$$
L P) \max \{c x: A x=b, x \geq 0\}
$$

let x^{*} and z^{*} be the optimal solution of $L P$ and its value.

$$
\begin{align*}
z^{*}= & \bar{a}_{00}+\sum_{j \in N^{*}} \bar{a}_{0 j} x_{j}^{*} \\
& \left\{\begin{array}{l}
x_{B^{*}}^{*}+\sum_{j \in N^{*}} \bar{a}_{i j} x_{j}^{*}=\bar{a}_{i 0} \quad \forall i=1, \ldots, m \\
x^{*} \geq 0
\end{array}\right. \tag{1}
\end{align*}
$$

where B^{*} and N^{*} are the set of indices of basic and non-basic variables in x^{*}.

Gomory cuts

If x^{*} is not integer, there exists at least one constraint \hat{i} s.t. $\overline{\mathrm{a}}_{i 0}$ is not integer. Applying Chvátal-Gomory procedure to it, we obtain:

$$
x_{B^{*} \hat{i}}+\sum_{j \in N^{*}}\left\lfloor\bar{a}_{i j}\right\rfloor x_{j} \leq\left\lfloor\bar{a}_{i 0}\right\rfloor .
$$

Subtracting this inequality from the equality constraint

$$
x_{B^{*} \hat{i}}^{*}+\sum_{j \in N^{*}} \bar{a}_{i j} x_{j}^{*}=\bar{a}_{i 0}
$$

we obtain the Gomory cut:

$$
\sum_{j \in N^{*}} f_{i j} x_{j} \geq f_{i 0}
$$

where $f_{i j}=\bar{a}_{i j}-\left\lfloor\bar{a}_{i j}\right\rfloor$ and $f_{i 0}=\bar{a}_{i 0}-\left\lfloor\bar{a}_{i 0}\right\rfloor$.
The slack variable associated with this new inequality is also integer.

Gomory cuts

Gomory (1969) proved that with a particular choice of the generating row Gomory cuts lead to a finite algorithm, i.e., after adding a finite number of inequalities, an integer optimal solution is found.

Extension to MILP

The extension of Gomory's technique to mixed-integer problems is not trivial.

Observation. Let $u^{(1)} x \leq v^{(1)}$ and $u^{(2)} x \leq v^{(2)}$ be two valid inequalities, where the former one is valid for a polyhedron $P^{(1)}$ and the latter one for a polyhedron $P^{(2)}$. Then,

$$
\sum_{j \in N} \min \left\{u_{j}^{(1)}, u_{j}^{(2)}\right\} x_{j} \leq \max \left\{v^{(1)}, v^{(2)}\right\}
$$

is valid for $P^{(1)} \cup P^{(2)}$ and for $\operatorname{conv}\left(P^{(1)} \cup P^{(2)}\right)$.
Obviously, the same idea holds with reversed inequalities and swapping min and max.

Geometric interpretation

Gomory mixed-integer cuts

Assume we have solved an LP to optimality.
We indicate by M the set of indices of the constraints (rows).
We indicate by B is the set of indices of basic variables (columns) and by N is the set of indices of non-basic variables (columns).

We indicate by $\overline{\mathrm{a}}_{i j}$ the coefficient in the tableau on row i and column j.
We indicate by $f_{i j}$ the fractional part of $\bar{a}_{i j}$, so that:

$$
\overline{\mathbf{a}}_{i j}=\alpha+f_{i j} \quad \text { for some integer } \alpha
$$

Gomory mixed-integer cuts

Consider a basic variable x_{k} and the row i of the tableau where $\bar{a}_{i k}=1$.

From linear programming we know that:

$$
x_{k}=\overline{\mathrm{a}}_{i 0}-\sum_{j \in N} \overline{\mathrm{a}}_{i j} x_{j} \forall k \in B, \forall i \in M: \overline{\mathrm{a}}_{i k}=1 .
$$

The requirement

$$
x_{k} \text { integer }
$$

is equivalent to the requirement that $\bar{a}_{i 0}$ and $\sum_{j \in N} \bar{a}_{i j} x_{j}$ have the same fractional part, i.e.

$$
\sum_{j \in N} \bar{a}_{i j} x_{j}=\alpha+f_{i 0}
$$

for some integer α.

Gomory mixed-integer cuts

We partition the set N into two subsets:

$$
\begin{aligned}
& N_{i}^{+}=\left\{j \in N: \overline{\boldsymbol{a}}_{i j} \geq 0\right\} \\
& N_{i}^{-}=\left\{j \in N: \overline{\mathbf{a}}_{i j}<0\right\}
\end{aligned}
$$

and we consider two cases.

If $\sum_{j \in N} \overline{\mathrm{a}}_{i j} x_{j} \geq 0$, then

$$
\sum_{j \in N} \bar{a}_{i j} x_{j}=\alpha+f_{i 0} \Rightarrow \sum_{j \in N_{i}^{+}} \bar{a}_{i j} x_{j} \geq f_{i 0} .
$$

If $\sum_{j \in N} \overline{\mathrm{a}}_{i j} x_{j}<0$, then

$$
\sum_{j \in N} \bar{a}_{i j} x_{j}=\alpha+f_{i 0} \Rightarrow \sum_{j \in N_{i}^{-}} \bar{a}_{i j} x_{j} \leq-1+f_{i 0} .
$$

Gomory mixed-integer cuts

We define two polyhedra

$$
\begin{aligned}
& P^{(1)}=\left\{x \in P: \sum_{j \in N} \overline{\mathrm{a}}_{i j} x_{j} \geq 0\right\} \\
& P^{(2)}=\left\{x \in P: \sum_{j \in N} \overline{\mathrm{a}}_{i j} x_{j}<0\right\}
\end{aligned}
$$

For $P^{(1)}$ inequality $\sum_{j \in N_{i}^{+}} \bar{a}_{i j} x_{j} \geq f_{i 0}$ is valid.
For $P^{(2)}$ inequality $\sum_{j \in N_{i}^{-}} \bar{a}_{i j} x_{j} \leq-1+f_{i 0}$ is valid.
We rewrite the latter one as $-\frac{f_{i 0}}{1-f_{i 0}} \sum_{j \in N_{i}^{-}} \overline{\mathrm{a}}_{i j} x_{j} \geq f_{i 0}$.
Now we use the observation above to obtain the valid inequality (mixed-integer Gomory cut)

$$
\sum_{j \in N_{i}^{+}} \overline{\mathrm{a}}_{i j} x_{j}-\frac{f_{i 0}}{1-f_{i 0}} \sum_{j \in N_{i}^{-}} \overline{\mathrm{a}}_{i j} x_{j} \geq f_{i 0}
$$

Strengthening the cuts

We indicate by $N^{\prime} \subseteq N$ the set of the integer variables.
The requirement

$$
\left(\sum_{j \in N} \bar{a}_{i j} x_{j}\right) \quad \bmod 1=f_{i 0}
$$

is equivalent to

$$
\begin{equation*}
\left(\sum_{j \in N \backslash N^{\prime}} \bar{a}_{i j} x_{j}+\sum_{j \in N^{\prime}}\left(\bar{a}_{i j}+k_{i j}\right) x_{j}\right) \quad \bmod 1=f_{i 0} \tag{2}
\end{equation*}
$$

with $k_{i j}$ integer $\forall j \in N^{\prime}$.

Strengthening the cuts

Example:

$$
\left(\frac{1}{10} x\right) \quad \bmod 1=\frac{1}{2}
$$

has the same integer solutions $x=5,15,25, \ldots$ as

$$
\left(\frac{11}{10} x\right) \quad \bmod 1=\frac{1}{2}, \quad\left(\frac{21}{10} x\right) \quad \bmod 1=\frac{1}{2}, \ldots
$$

and

$$
\left(-\frac{9}{10} x\right) \quad \bmod 1=\frac{1}{2}, \quad\left(-\frac{19}{10} x\right) \quad \bmod 1=\frac{1}{2}, \ldots
$$

Strengthening the cuts

Therefore we can optimally select an integer $k_{i j}$ for each $j \in N^{\prime}$ to modify the coefficients of the integer variables in the resulting cut in order to make the cut as strong as possible.

The cut in \geq form is made stronger, when the coefficients in its left-hand-side are minimized.

By adding or subtracting a suitable integer $k_{i j}$ we can make the coefficient of x_{j} in (2) positive or negative, so that we can put j in N^{+} or in N^{-}.

We indicate with $a_{i j}^{*}$ the modified coefficient of x_{j} in (2):

$$
a_{i j}^{*}=\bar{a}_{i j}+k_{i j} .
$$

Now we examine two possible cases.

Strengthening the cuts

Case 1: $a_{i j}^{*} \geq 0$. Since j remains in N^{+}or enters N^{+}, the coefficient of x_{j} in the cut left-hand-side is $a_{i j}^{*}$.

$$
\begin{aligned}
& \operatorname{minimize} a_{i j}^{*}=\bar{a}_{i j}+k_{i j} \\
& \text { s.t. } \bar{a}_{i j}+k_{i j} \geq 0 \\
& k_{i j} \text { integer }
\end{aligned}
$$

which is equivalent to

$$
\begin{aligned}
& \operatorname{minimize} k_{i j} \\
& \text { s.t. } k_{i j} \geq-\bar{a}_{i j} \\
& k_{i j} \text { integer }
\end{aligned}
$$

whose optimal solution is $k_{i j}^{*}=\left\lceil-\bar{a}_{i j}\right\rceil=-\left\lfloor\bar{a}_{i j}\right\rfloor$, yielding a cut coefficient $a_{i j}^{*}=\bar{a}_{i j}+k_{i j}=\bar{a}_{i j}-\left\lfloor\bar{a}_{i j}\right\rfloor=f_{i j}$.

Strengthening the cuts

Case 2: $a_{i j}^{*}<0$. Since j remains in N^{-}or goes in N^{-}, the coefficient of x_{j} in the cut left-hand-side is $\frac{f_{i 0}}{1-t_{i j}}\left(-a_{i j}^{*}\right)$.

$$
\begin{gathered}
\operatorname{minimize} \frac{f_{i 0}}{1-f_{i 0}}\left(-\left(\bar{a}_{i j}+k_{i j}\right)\right) \\
\text { s.t. } \bar{a}_{i j}+k_{i j}<0 \\
k_{i j} \text { integer }
\end{gathered}
$$

which is equivalent to

$$
\begin{aligned}
\operatorname{maximize} & k_{i j} \\
\text { s.t. } & k_{i j}<-\bar{a}_{i j} \\
& k_{i j} \text { integer }
\end{aligned}
$$

whose optimal solution is $k_{i j}^{*}=\left\lceil-\bar{a}_{i j}\right\rceil-1=-\left\lfloor\bar{a}_{i j}\right\rfloor-1$, yielding a cut coefficient $\frac{f_{i 0}}{1-f_{i 0}}\left(-a_{i j}^{*}\right)=\frac{t_{i 0}}{1-f_{i 0}}\left(-\bar{a}_{i j}+\left\lfloor\bar{a}_{i j}\right\rfloor+1\right)=\frac{f_{i 0}}{1-f_{i 0}}\left(1-f_{i j}\right)$.

Strengthening the cuts

Finally, the choice between $f_{i j}$ and $\frac{f_{i 0}}{\left(1-f_{i 0}\right)}\left(1-f_{i j}\right)$ is trivial: the former is the minimum when $f_{i j} \leq f_{i 0}$, the latter when $f_{i j} \geq f_{i 0}$.

So, the strengthened form of a mixed-integer Gomory cut is

$$
\begin{aligned}
& \sum_{j \in N^{\prime}: f_{j i} \leq f_{i 0}} f_{i j} x_{j}+\sum_{j \in N^{\prime}: f_{i j}>f_{i 0}} \frac{f_{i 0}}{1-f_{i 0}}\left(1-f_{i j}\right) x_{j}+ \\
& +\sum_{j \notin N^{\prime}, j \in N_{i}^{+}} \bar{a}_{i j} x_{j}+\sum_{j \notin N^{\prime}, j \in N_{i}^{-}} \frac{f_{i 0}}{1-f_{i 0}}\left(-\bar{a}_{i j}\right) x_{j} \geq f_{i 0} .
\end{aligned}
$$

Mixed-integer rounding cuts

Consider a mixed-integer problem with just two variables, one discrete and one continuous:

$$
X=\left\{(x, y) \in \mathcal{Z} \times \Re_{+}: x-y \leq b\right\}
$$

where $b \in \Re$.

Nemhauser and Wolsey (1988) proved that

$$
x-\frac{1}{1-f(b)} y \leq\lfloor b\rfloor
$$

is valid for X, where $f(b)$ indicates the fractional part of b.

Mixed-integer rounding cuts

Proof. Consider these two polyhedra:

$$
\begin{gathered}
P^{(1)}=\{(x, y) \in X: x \leq\lfloor b\rfloor\} \\
P^{(2)}=\{(x, y) \in X: x \geq\lfloor b\rfloor+1\}
\end{gathered}
$$

Clearly

$$
X=P^{(1)} \cup P^{(2)}
$$

Furthermore, rewrite the inequality

$$
x-\frac{1}{1-f(b)} y \leq\lfloor b\rfloor
$$

as the equivalent inequality

$$
(x-\lfloor b\rfloor)(1-f(b)) \leq y
$$

This inequality is valid for both $P^{(1)}$ and $P^{(2)}$ and hence for X.

Mixed-integer rounding cuts

Consider $P^{(1)}=\{(x, y) \in X: x \leq\lfloor b\rfloor\}$. The following two inequalities hold:

$$
\begin{cases}x-\lfloor b\rfloor & \leq 0 \\ 0 & \leq y\end{cases}
$$

Combining these inequalities with non-negative weights $1-f(b)$ and 1, one obtains

$$
(x-\lfloor b\rfloor)(1-f(b)) \leq y
$$

Mixed-integer rounding cuts

Consider $P^{(2)}=\{(x, y) \in X: x \geq\lfloor b\rfloor+1\}$.
The following two inequalities hold:

$$
\begin{cases}-(x-\lfloor b\rfloor) & \leq-1 \\ x-y & \leq b\end{cases}
$$

Combining these inequalities with non-negative weights $f(b)$ and 1 , one obtains

$$
\begin{aligned}
& -x f(b)+\lfloor b\rfloor f(b)+x-y \leq-f(b)+b \\
& -x f(b)+\lfloor b\rfloor f(b)+x-y \leq\lfloor b\rfloor \\
& -x f(b)+\lfloor b\rfloor f(b)+x-\lfloor b\rfloor \leq y \\
& x(1-f(b))-\lfloor b\rfloor(1-f(b)) \leq y
\end{aligned}
$$

$$
(x-\lfloor b\rfloor)(1-f(b)) \leq y .
$$

Mixed-integer rounding cuts

Now we consider a more general MILP with several discrete variables and a single continuous variable:

$$
X=\left\{(x, y) \in \mathcal{Z}_{+}^{n} \times \Re_{+}: a x-y \leq b\right\}
$$

where $a \in \Re^{n}$ and $b \in \Re$.
Nemhauser and Wolsey (1988) proved that the following Mixed-Integer Rounding (MIR) inequality

$$
\sum_{j=1}^{n}\left(\left\lfloor a_{j}\right\rfloor+\frac{\left(f\left(a_{j}\right)-f(b)\right)^{+}}{1-f(b)}\right) x_{j}-\frac{1}{1-f(b)} y \leq\lfloor b\rfloor
$$

is valid for X, where $(\cdot)^{+}$indicates $\max \{0, \cdot\}$.

Mixed-integer rounding cuts

We define $N^{(1)}=\left\{j \in\{1, \ldots, n\}: f\left(a_{j}\right) \leq f(b)\right\}$ and $N^{(2)}=N \backslash N^{(1)}$.
Since all variables are non-negative, then

$$
\begin{equation*}
\left\lfloor a_{j}\right\rfloor x_{j} \leq a_{j} x_{j} \forall j \in N \tag{3}
\end{equation*}
$$

When $f\left(a_{j}\right)>0$, we also have

$$
\begin{equation*}
a_{j}=\left\lceil a_{j}\right\rceil-\left(1-f\left(a_{j}\right)\right) \forall j \in N: f\left(a_{j}\right)>0 \tag{4}
\end{equation*}
$$

We use inequality (3) for the terms in $N^{(1)}$ and equality (4) for the terms in $N^{(2)}$, so that $a x-y \leq b$ implies

$$
\sum_{j \in N^{(1)}}\left\lfloor a_{j}\right\rfloor x_{j}+\sum_{j \in N^{(2)}}\left\lceil a_{j}\right\rceil x_{j}-\sum_{j \in N^{(2)}}\left(1-f\left(a_{j}\right)\right) x_{j}-y \leq b
$$

Mixed-integer rounding cuts

$$
\sum_{j \in N^{(1)}}\left\lfloor a_{j}\right\rfloor x_{j}+\sum_{j \in N^{(2)}}\left\lceil a_{j}\right\rceil x_{j}-\sum_{j \in N^{(2)}}\left(1-f\left(a_{j}\right)\right) x_{j}-y \leq b
$$

We define

$$
\begin{gathered}
w=\sum_{j \in N^{(1)}}\left\lfloor a_{j}\right\rfloor x_{j}+\sum_{j \in N^{(2)}}\left\lceil a_{j}\right\rceil x_{j} \\
z=y+\sum_{j \in N^{(2)}}\left(1-f\left(a_{j}\right)\right) x_{j}
\end{gathered}
$$

and we observe that $z \geq 0$.
Therefore we can use the previous result to prove that

$$
w-\frac{z}{1-f(b)} \leq\lfloor b\rfloor
$$

that corresponds to the MIR inequality (by substitution).

Lift-and-project cuts

Idea: represent the original polyhedron in a higher dimensional space (lifting), to obtain a valid inequality in the lifted space; then, project it back to the original space.

It only applies to mixed 0-1 linear programming.
Consider a mixed 0-1 linear program

$$
\min \{c x: x \in X\} \quad X=\left\{x \in\{0,1\}^{p} \times \Re^{n-p}: A x \leq b\right\}
$$

where $A x \leq b$ includes the bounds $0 \leq x_{i} \leq 1 \forall i=1, \ldots, p$.
Let $P=\left\{x \in \Re^{n}: A x \leq b\right\}$ be the polyhedron of the linear relaxation and $P_{l}=\operatorname{conv}(X)$ the ideal formulation.

Lift-and-project cuts

An iteration of the lift-and-project algorithm (Balas, Céria, Cornuéjols, 1993) is made by three steps:

1. Select $j \in\{1, \ldots, p\}$.
2. Generate the two valid inequalities:

$$
\left\{\begin{array}{l}
(A x) x_{j} \leq b x_{j} \\
(A x)\left(1-x_{j}\right) \leq b\left(1-x_{j}\right)
\end{array}\right.
$$

and replace $y_{i}=x_{i} x_{j} \forall i \neq j$ and $x_{j}=x_{j}^{2}$. Let $L_{j}(P)$ the lifted polyhedron obtained in this way.
3. Project $L_{j}(P)$ back by eliminating the y variables. Let P_{j} be the polyhedron obtained. The $j^{\text {th }}$ component of each vertex of P_{j} is binary.

Lift-and-project cuts

Repeating the iteration for all j produces P_{l}, independently of the order.

To cut off the current fractional optimal solution x^{*} of the linear relaxation with a lift-and-project cut, it is sufficient to select j in step 1 so that x_{j}^{*} is fractional.

Step 3 requires to eliminate the y variables, i.e. to project a polyhedron

$$
L_{j}(P)=\{(x, y): D x+B y \leq d\}
$$

into a polyhedron

$$
P_{j}=\left\{x:\left(u^{T} D\right) x \leq u^{T} d, \forall u \in C\right\}
$$

where $C=\left\{u: u^{\top} B=0, u \geq 0\right\}$ is a polyhedral cone.

Validity of the cuts

In contrast to the pure integer case, none of the cutting plane procedures presented (mixed-integer Gomory cuts, MIR, Lift-and-project cuts) yields a finite algorithm for MILP.

Adding Gomory cuts allows to reach the optimal solution of a MILP in a finite number of steps but this guarantee holds only if the values of the objective function are integer in all feasible solutions.

MIR inequalities provide a complete description of the polyhedron for any mixed 0-1 polyhedron.

Also Lift-and-project provides a finite algorithm only for mixed 0-1 programs.

