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Chvátal-Gomory cuts

A generic pure ILP is

min{cT x : x ∈ X} X = {z ∈ Zn
+ : Ax = b}

with A and b integer.

The linear relaxation is characterized by the polyhedron

P = {x ∈ ℜn
+ : Ax = b}.

Goal: strengthening the formulation.

Idea: shift each constraint towards conv(X) until it encounters an
integer point.
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Geometric approach (Chvátal)

A supporting hyperplane of a set S in a Euclidean space ℜn is a
hyperplane such that
• S is entirely contained in one of the two closed half-spaces

bounded by the hyperplane;
• S has at least one boundary-point on the hyperplane.
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Geometric approach (Chvátal)

Let {x ∈ ℜn
+ : hT x = θ} be a supporting hyperplane of P with h

integer.

Then P ⊆ {x ∈ ℜn
+ : hx ≤ θ}.

Let Θ(P) the set of all supporting hyperplanes of P with integer lhs.
Now consider a restriction R(P) or P defined as follows:

R(P) :=
⋂

(h,θ)∈Θ(P)

{x ∈ ℜn
+ : hT x ≤ ⌊θ⌋}
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Geometric approach (Chvátal)

x1

x2
Supporting hyperplane:

2x1 + 3x2 ≤ 9.6

passing through vertex
(1.8, 2.0).

Shifted hyperplane:

2x1 + 3x2 ≤ 9

passing through integer points
(0, 3), (3, 1)...
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Geometric approach (Chvátal)

Although there may exist infinitely many supporting hyperplanes in
Θ(P), it can be shown that R(P) is still a polyhedron.

Obviously
conv(X) ⊆ R(P).

Therefore the process can be repeated iteratively, generating a
sequence of polyhedra:
• Q0 = P
• Qt+1 = R(Qt ) ∀t ≥ 0

and
P = Q0 ⊇ Q1 ⊇ . . . ⊇ conv(X).

Chvátal (1973) proved that conv(X) is eventually obtained in a finite
number of steps when P is a polytope.
Schrijvers (1980) proved that the result also applies to general
polyhedra.
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Algoritmic approach (Gomory)
Given a fractional solution x∗ of the linear relaxation of an ILP
problem, we strengthen the constraint associated with a fractional
variable: we obtain a valid inequality violated by x∗ and we iterate.

Given a discrete optimization problem

P) max{cx : Ax = b, x ≥ 0, x ∈ Zn
+}

and its continuous linear relaxation

LP) max{cx : Ax = b, x ≥ 0}

let x∗ and z∗ be the optimal solution of LP and its value.

z∗ =a00 +
∑

j∈N∗

a0jx
∗
j

{

x∗
B∗i +

∑

j∈N∗ aijx∗
j = ai0 ∀i = 1, . . . ,m

x∗ ≥ 0
(1)

where B∗ and N∗ are the set of indices of basic and non-basic
variables in x∗.
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Gomory cuts

If x∗ is not integer, there exists at least one constraint î s.t. âi0 is not
integer. Applying Chvátal-Gomory procedure to it, we obtain:

xB∗ î +
∑

j∈N∗

⌊aî j⌋xj ≤ ⌊âi0⌋.

Subtracting this inequality from the equality constraint

x∗
B∗ î

+
∑

j∈N∗

âi jx
∗
j = aî0

we obtain the Gomory cut:
∑

j∈N∗

f̂i jxj ≥ f̂i0

where f̂i j = aî j − ⌊aî j⌋ and f̂i0 = aî0 − ⌊aî0⌋.

The slack variable associated with this new inequality is also integer.
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Gomory cuts

Gomory (1969) proved that with a particular choice of the generating
row Gomory cuts lead to a finite algorithm, i.e., after adding a finite
number of inequalities, an integer optimal solution is found.
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Extension to MILP

The extension of Gomory’s technique to mixed-integer problems is
not trivial.

Observation. Let u(1)x ≤ v (1) and u(2)x ≤ v (2) be two valid
inequalities, where the former one is valid for a polyhedron P(1) and
the latter one for a polyhedron P(2). Then,

∑

j∈N

min{u(1)
j , u(2)

j }xj ≤ max{v (1), v (2)}

is valid for P(1) ∪ P(2) and for conv(P(1) ∪ P(2)).

Obviously, the same idea holds with reversed inequalities and
swapping min and max.
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Geometric interpretation

x1

x2

−2x1 + 3x2 ≤ 0

x1 + x2 ≤ 10

−2x1 + x2 ≤ 10

P(1)

P(2)



Pure ILP MILP

Gomory mixed-integer cuts

Assume we have solved an LP to optimality.

We indicate by M the set of indices of the constraints (rows).

We indicate by B is the set of indices of basic variables (columns) and
by N is the set of indices of non-basic variables (columns).

We indicate by aij the coefficient in the tableau on row i and column j.

We indicate by fij the fractional part of aij , so that:

aij = α+ fij for some integer α
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Gomory mixed-integer cuts

Consider a basic variable xk and the row i of the tableau where
aik = 1.

From linear programming we know that:

xk = ai0 −
∑

j∈N

aijxj ∀k ∈ B, ∀i ∈ M : aik = 1.

The requirement
xk integer

is equivalent to the requirement that ai0 and
∑

j∈N aijxj have the same
fractional part, i.e.

∑

j∈N

aijxj = α+ fi0

for some integer α.
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Gomory mixed-integer cuts

We partition the set N into two subsets:

N+
i = {j ∈ N : aij ≥ 0}

N−
i = {j ∈ N : aij < 0}

and we consider two cases.

If
∑

j∈N aijxj ≥ 0, then

∑

j∈N

aijxj = α+ fi0 ⇒
∑

j∈N+
i

aijxj ≥ fi0.

If
∑

j∈N aijxj < 0, then

∑

j∈N

aijxj = α+ fi0 ⇒
∑

j∈N−

i

aijxj ≤ −1 + fi0.
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Gomory mixed-integer cuts

We define two polyhedra

P(1) = {x ∈ P :
∑

j∈N

aijxj ≥ 0}

P(2) = {x ∈ P :
∑

j∈N

aijxj < 0}

For P(1) inequality
∑

j∈N+
i

aijxj ≥ fi0 is valid.

For P(2) inequality
∑

j∈N−

i
aijxj ≤ −1 + fi0 is valid.

We rewrite the latter one as − fi0
1−fi0

∑

j∈N−

i
aijxj ≥ fi0.

Now we use the observation above to obtain the valid inequality
(mixed-integer Gomory cut)

∑

j∈N+
i

aijxj −
fi0

1 − fi0

∑

j∈N−

i

aijxj ≥ fi0.
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Strengthening the cuts

We indicate by N ′ ⊆ N the set of the integer variables.

The requirement




∑

j∈N

aijxj



 mod 1 = fi0

is equivalent to




∑

j∈N\N′

aijxj +
∑

j∈N′

(aij + kij)xj



 mod 1 = fi0 (2)

with kij integer ∀j ∈ N ′.
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Strengthening the cuts

Example:
(

1
10

x
)

mod 1 =
1
2

has the same integer solutions x = 5, 15, 25, . . . as
(

11
10

x
)

mod 1 =
1
2
,

(

21
10

x
)

mod 1 =
1
2
, . . .

and
(

−
9
10

x
)

mod 1 =
1
2
,

(

−
19
10

x
)

mod 1 =
1
2
, . . .
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Strengthening the cuts

Therefore we can optimally select an integer kij for each j ∈ N ′ to
modify the coefficients of the integer variables in the resulting cut in
order to make the cut as strong as possible.

The cut in ≥ form is made stronger, when the coefficients in its
left-hand-side are minimized.

By adding or subtracting a suitable integer kij we can make the
coefficient of xj in (2) positive or negative, so that we can put j in N+

or in N−.

We indicate with a∗
ij the modified coefficient of xj in (2):

a∗
ij = aij + kij .

Now we examine two possible cases.
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Strengthening the cuts

Case 1: a∗
ij ≥ 0. Since j remains in N+ or enters N+, the coefficient

of xj in the cut left-hand-side is a∗
ij .

minimize a∗
ij =aij + kij

s.t. aij + kij ≥ 0

kij integer

which is equivalent to

minimize kij

s.t. kij ≥ −aij

kij integer

whose optimal solution is k∗
ij = ⌈−aij⌉ = −⌊aij⌋,

yielding a cut coefficient a∗
ij = aij + kij = aij − ⌊aij⌋ = fij .
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Strengthening the cuts

Case 2: a∗
ij < 0. Since j remains in N− or goes in N−, the coefficient

of xj in the cut left-hand-side is fi0
1−fi0

(−a∗
ij ).

minimize
fi0

1 − fi0
(−(aij + kij))

s.t. aij + kij < 0

kij integer

which is equivalent to

maximize kij

s.t. kij < −aij

kij integer

whose optimal solution is k∗
ij = ⌈−aij⌉ − 1 = −⌊aij⌋ − 1, yielding a cut

coefficient fi0
1−fi0

(−a∗
ij ) =

fi0
1−fi0

(−aij + ⌊aij⌋+ 1) = fi0
1−fi0

(1 − fij).
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Strengthening the cuts

Finally, the choice between fij and
fi0

(1 − fi0)
(1 − fij) is trivial: the

former is the minimum when fij ≤ fi0, the latter when fij ≥ fi0.

So, the strengthened form of a mixed-integer Gomory cut is

∑

j∈N′:fij≤fi0

fijxj +
∑

j∈N′:fij>fi0

fi0
1 − fi0

(1 − fij)xj +

+
∑

j 6∈N′,j∈N+
i

aijxj +
∑

j 6∈N′,j∈N−

i

fi0
1 − fi0

(−aij)xj ≥ fi0.



Pure ILP MILP

Mixed-integer rounding cuts

Consider a mixed-integer problem with just two variables, one
discrete and one continuous:

X = {(x , y) ∈ Z × ℜ+ : x − y ≤ b}

where b ∈ ℜ.

Nemhauser and Wolsey (1988) proved that

x −
1

1 − f (b)
y ≤ ⌊b⌋

is valid for X , where f (b) indicates the fractional part of b.
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Mixed-integer rounding cuts

Proof. Consider these two polyhedra:

P(1) = {(x , y) ∈ X : x ≤ ⌊b⌋}

P(2) = {(x , y) ∈ X : x ≥ ⌊b⌋+ 1}

Clearly
X = P(1) ∪ P(2)

Furthermore, rewrite the inequality

x −
1

1 − f (b)
y ≤ ⌊b⌋

as the equivalent inequality

(x − ⌊b⌋)(1 − f (b)) ≤ y .

This inequality is valid for both P(1) and P(2) and hence for X .
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Mixed-integer rounding cuts

Consider P(1) = {(x , y) ∈ X : x ≤ ⌊b⌋}.
The following two inequalities hold:

{

x − ⌊b⌋ ≤ 0
0 ≤ y

Combining these inequalities with non-negative weights 1 − f (b) and
1, one obtains

(x − ⌊b⌋) (1 − f (b)) ≤ y .



Pure ILP MILP

Mixed-integer rounding cuts

Consider P(2) = {(x , y) ∈ X : x ≥ ⌊b⌋+ 1}.
The following two inequalities hold:

{

−(x − ⌊b⌋) ≤ −1
x − y ≤ b

Combining these inequalities with non-negative weights f (b) and 1,
one obtains
−x f (b) + ⌊b⌋ f (b) + x − y ≤ −f (b) + b
−x f (b) + ⌊b⌋ f (b) + x − y ≤ ⌊b⌋
−x f (b) + ⌊b⌋ f (b) + x − ⌊b⌋ ≤ y
x (1 − f (b)) − ⌊b⌋ (1 − f (b)) ≤ y

(x − ⌊b⌋) (1 − f (b)) ≤ y .
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Mixed-integer rounding cuts

Now we consider a more general MILP with several discrete variables
and a single continuous variable:

X = {(x , y) ∈ Zn
+ ×ℜ+ : ax − y ≤ b}

where a ∈ ℜn and b ∈ ℜ.

Nemhauser and Wolsey (1988) proved that the following
Mixed-Integer Rounding (MIR) inequality

n
∑

j=1

(

⌊aj⌋+
(f (aj )− f (b))+

1 − f (b)

)

xj −
1

1 − f (b)
y ≤ ⌊b⌋.

is valid for X , where (·)+ indicates max{0, ·}.
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Mixed-integer rounding cuts

We define N(1) = {j ∈ {1, . . . , n} : f (aj ) ≤ f (b)} and N(2) = N\N(1).

Since all variables are non-negative, then

⌊aj⌋ xj ≤ aj xj ∀j ∈ N (3)

When f (aj ) > 0, we also have

aj = ⌈aj⌉ − (1 − f (aj )) ∀j ∈ N : f (aj ) > 0 (4)

We use inequality (3) for the terms in N(1) and equality (4) for the
terms in N(2), so that ax − y ≤ b implies

∑

j∈N(1)

⌊aj⌋xj +
∑

j∈N(2)

⌈aj⌉xj −
∑

j∈N(2)

(1 − f (aj )) xj − y ≤ b.
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Mixed-integer rounding cuts

∑

j∈N(1)

⌊aj⌋ xj +
∑

j∈N(2)

⌈aj⌉ xj−
∑

j∈N(2)

(1 − f (aj )) xj − y ≤ b.

We define
w =

∑

j∈N(1)

⌊aj⌋ xj +
∑

j∈N(2)

⌈aj⌉ xj

z = y +
∑

j∈N(2)

(1 − f (aj )) xj

and we observe that z ≥ 0.

Therefore we can use the previous result to prove that

w −
z

1 − f (b)
≤ ⌊b⌋

that corresponds to the MIR inequality (by substitution).
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Lift-and-project cuts

Idea: represent the original polyhedron in a higher dimensional
space (lifting), to obtain a valid inequality in the lifted space; then,
project it back to the original space.

It only applies to mixed 0-1 linear programming.

Consider a mixed 0-1 linear program

min{cx : x ∈ X} X = {x ∈ {0, 1}p ×ℜn−p : Ax ≤ b}

where Ax ≤ b includes the bounds 0 ≤ xi ≤ 1 ∀i = 1, . . . , p.

Let P = {x ∈ ℜn : Ax ≤ b} be the polyhedron of the linear relaxation
and PI = conv(X) the ideal formulation.
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Lift-and-project cuts

An iteration of the lift-and-project algorithm (Balas, Céria, Cornuéjols,
1993) is made by three steps:

1. Select j ∈ {1, . . . , p}.

2. Generate the two valid inequalities:
{

(Ax) xj ≤ b xj

(Ax) (1 − xj) ≤ b (1 − xj)

and replace yi = xi xj ∀i 6= j and xj = x2
j . Let Lj (P) the lifted

polyhedron obtained in this way.

3. Project Lj(P) back by eliminating the y variables. Let Pj be the
polyhedron obtained. The j th component of each vertex of Pj is
binary.
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Lift-and-project cuts

Repeating the iteration for all j produces PI , independently of the
order.

To cut off the current fractional optimal solution x∗ of the linear
relaxation with a lift-and-project cut, it is sufficient to select j in step 1
so that x∗

j is fractional.

Step 3 requires to eliminate the y variables, i.e. to project a
polyhedron

Lj(P) = {(x , y) : Dx + By ≤ d}

into a polyhedron

Pj = {x : (uT D)x ≤ uT d , ∀u ∈ C}

where C = {u : uT B = 0, u ≥ 0} is a polyhedral cone.
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Validity of the cuts

In contrast to the pure integer case, none of the cutting plane
procedures presented (mixed-integer Gomory cuts, MIR,
Lift-and-project cuts) yields a finite algorithm for MILP.

Adding Gomory cuts allows to reach the optimal solution of a MILP in
a finite number of steps but this guarantee holds only if the values of
the objective function are integer in all feasible solutions.

MIR inequalities provide a complete description of the polyhedron for
any mixed 0-1 polyhedron.

Also Lift-and-project provides a finite algorithm only for mixed 0-1
programs.
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