Gomory cuts
 Operational Research Complements

Giovanni Righini

Università degli Studi di Milano

Chvátal-Gomory procedure

Consider an IP problem with feasible set

$$
X=\left\{x \in \mathcal{Z}_{+}^{n}: A x \leq b\right\}
$$

where A has m rows and n columns.
Choose a vector $u \in \Re_{+}^{m}$:

- $\sum_{j=1}^{n} u a_{j} x_{j} \leq u b$ is valid because $a x \leq b$ and $u \geq 0$.
- $\sum_{j=1}^{n}\left\lfloor u a_{j}\right\rfloor x_{j} \leq u b$ is valid because $x \geq 0$.
- $\sum_{j=1}^{n}\left\lfloor u a_{j}\right\rfloor x_{j} \leq\lfloor u b\rfloor$ is valid because x is integer.

Any valid inequality can be generated with this procedure in a finite number of steps.

The effectiveness of the procedure depends on the choice of u.

Gomory cuts

Given a fractional solution x^{*} of the linear relaxation of a discrete optimization problem, we apply Chvátal-Gomory procedure to the constraint associated with a fractional variable: we obtain a valid inequality violated by x^{*} and we iterate.

Given a discrete optimization problem

$$
\text { P) } \max \left\{c x: a x=b, x \geq 0, x \in \mathcal{Z}^{n}\right\}
$$

and its continuous linear relaxation

$$
L P) \max \{c x: a x=b, x \geq 0\}
$$

let x^{*} and z^{*} be the optimal solution of $L P$ and its value.

$$
\begin{align*}
z^{*}= & \bar{a}_{00}+\sum_{j \in N B^{*}} \bar{a}_{0 j} x_{j}^{*} \\
& \left\{\begin{array}{l}
x_{B^{*} i}^{*}+\sum_{j \in N B^{*}} \bar{a}_{i j} x_{j}^{*}=\overline{\mathrm{a}}_{i 0} \quad \forall i=1, \ldots, m \\
x^{*} \geq 0
\end{array}\right. \tag{1}
\end{align*}
$$

where B^{*} and $N B^{*}$ are the set of indices of basic and non-basic variables in x^{*}.

Gomory cuts

If x^{*} is not integer, there exists at least one constraint \hat{i} s.t. $\bar{a}_{i 0}$ is not integer.

Applying Chvátal-Gomory procedure to it, we obtain:

$$
x_{B^{*} \hat{i}}+\sum_{j \in N B^{*}}\left\lfloor\overline{\mathrm{a}}_{i j}\right\rfloor x_{j} \leq\left\lfloor\overline{\mathrm{a}}_{\hat{i} \hat{0}}\right\rfloor .
$$

Subtracting this inequality from the equality constraint

$$
x_{B^{*} \hat{i}}^{*}+\sum_{j \in N B^{*}} \bar{a}_{i j} x_{j}^{*}=\bar{a}_{i 0}
$$

we obtain the Gomory cut:

$$
\sum_{j \in N B^{*}} t_{i j} x_{j} \geq f_{i 0}
$$

where $f_{i j}=\bar{a}_{i j}-\left\lfloor\bar{a}_{i j}\right\rfloor$ and $f_{i 0}=\bar{a}_{i 0}-\left\lfloor\bar{a}_{i 0}\right\rfloor$.
The slack variable associated with this new inequality is also integer.

An example

$$
\begin{aligned}
\operatorname{maximize} z= & 4 x_{1}-x_{2} \\
& 7 x_{1}-2 x_{2} \leq 14 \\
& x_{2} \leq 3 \\
& 2 x_{1}-2 x_{2} \leq 3 \\
& x \geq 0 \text { (integer) }
\end{aligned}
$$

Solving the linear relaxation, we obtain $B^{*}=\{1,2,5\}, N B^{*}=\{3,4\}$:

$$
\begin{aligned}
z=\frac{59}{7} \quad & -\frac{4}{7} x_{3}-\frac{1}{7} x_{4} \\
x_{1} \quad+\frac{1}{7} x_{3}+\frac{2}{7} x_{4} & =\frac{20}{7} \\
x_{2} \quad & +x_{4} \\
& =3 \\
& -\frac{2}{7} x_{3}+\frac{10}{7} x_{4}+x_{5}
\end{aligned}=\frac{23}{7}
$$

An example

An example

$$
\begin{array}{cc}
z=\frac{59}{7} \quad-\frac{4}{7} x_{3}-\frac{1}{7} x_{4} \\
x_{1} \quad+\frac{1}{7} x_{3}+\frac{2}{7} x_{4} & =\frac{20}{7} \\
x_{2} \quad+x_{4} & =3 \\
& -\frac{2}{7} x_{3}+\frac{10}{7} x_{4}+x_{5}
\end{array}=\frac{23}{7}
$$

From the first constraint we can generate a Gomory cut:

$$
x_{1}^{*}=\frac{20}{7} \Rightarrow \frac{1}{7} x_{3}+\frac{2}{7} x_{4} \geq \frac{6}{7} .
$$

Its slack variable is

$$
s_{1}=-\frac{6}{7}+\frac{1}{7} x_{3}+\frac{2}{7} x_{4} .
$$

An example

From the constraints

$$
\begin{array}{r}
x_{1}+\frac{1}{7} x_{3}+\frac{2}{7} x_{4}=\frac{20}{7} \\
x_{2}+x_{4}=3
\end{array}
$$

we obtain

$$
\begin{array}{r}
x_{3}=-7 x_{1}+2 x_{2}+14 \\
x_{4}=-x_{2}+3
\end{array}
$$

and the equation of the Gomory cut

$$
\frac{1}{7} x_{3}+\frac{2}{7} x_{4} \geq \frac{6}{7}
$$

can be rewritten as

$$
x_{1} \leq 2
$$

An example

An example

Re-optimizing we obtain:

$$
\begin{aligned}
z=\frac{15}{2} & \\
x_{1} & -\frac{1}{2} x_{5}-3 s_{1} \\
x_{2} & -\frac{1}{2} x_{5}+s_{1}=\frac{1}{2} \\
x_{3} & -x_{5}-5 s_{1}=1 \\
4 & x_{4}+\frac{1}{2} x_{5}-s_{1}=\frac{5}{2}
\end{aligned}
$$

An example

An example

$$
\begin{aligned}
& z=\frac{15}{2} \quad-\frac{1}{2} x_{5}-3 s_{1} \\
& x_{1} \quad+s_{1}=2 \\
& x_{2} \quad-\frac{1}{2} x_{5}+s_{1}=\frac{1}{2} \\
& x_{3} \quad-x_{5}-5 s_{1}=1 \\
& x_{4}+\frac{1}{2} x_{5}-s_{1}=\frac{5}{2} \\
& x, s \geq 0
\end{aligned}
$$

From the second constraint we can generate another Gomory cut:

$$
x_{2}^{*}=\frac{1}{2} \Rightarrow \frac{1}{2} x_{5} \geq \frac{1}{2} \Rightarrow x_{1}-x_{2} \leq 1
$$

Its slack variable is

$$
s_{2}=-\frac{1}{2}+\frac{1}{2} x_{5} .
$$

An example

An example

Re-optimizing again we obtain:

$$
\begin{aligned}
& z=7 \quad-3 s_{1}-s_{2} \\
& x_{1} \quad+s_{1} \quad=2 \\
& x_{2}+s_{1}-s_{2}=1 \\
& x_{3} \quad-5 s_{1}-2 s_{2}=2 \\
& x_{4}-s_{1}+s_{2}=2 \\
& x_{5} \quad-2 s_{2}=1 \\
& x, s \geq 0
\end{aligned}
$$

Now the optimal solution is integer.

An example

