
Discrete optimization Comparing formulations Improving formulations

Polyhedral combinatorics
Operational Research Complements

Giovanni Righini
Università degli Studi di Milano

Discrete optimization Comparing formulations Improving formulations

Formulations

Discrete linear optimization problems do not have a unique
formulation.

Discrete optimization Comparing formulations Improving formulations

Formulations

Since they are not unique, it makes sense
• to compare formulations
• to improve formulations.

A better formulation translates into a less time-consuming algorithm.

The ideal formulation of a MILP problem is the one which allows
solving it as a LP problem.

Discrete optimization Comparing formulations Improving formulations

Ideal formulation
A formulation of a linear programming problem corresponds to a
polyhedron.

The constraints of the ideal formulation correspond to the convex hull
of the integer solutions.

Discrete optimization Comparing formulations Improving formulations

Convex hull

Given a discrete set

X = {x1, . . . , xt} with xi ∈ ℜ
n ∀i = i, . . . , t ,

its convex hull is the polyhedron

conv(X) = {x ∈ ℜn : x =

t
∑

i=1

λixi ,

t
∑

i=1

λi = 1, λi ≥ 0 ∀i = 1, . . . , t}.

It is a polyhedron whose extreme points are the elements of the
discrete set X .

Given a valid formulation P and the discrete set X of its feasible
solutions, it holds:

X ⊆ conv(X) ⊆ P

Discrete optimization Comparing formulations Improving formulations

Polyhedral combinatorics

In general
• we do not know the ideal formulations of discrete linear

optimization problems
• the number of their constraints grows exponentially with the size

of the instance.

We know the ideal formulations of some particular combinatorial
optimization problems (the shortest path problem, the minimum cost
bipartite matching problem, the minimum spanning tree problem,...).

The research stream aiming at the selection and improvement of
linear formulations for discrete linear optimization problems is called
polyhedral combinatorics.

Discrete optimization Comparing formulations Improving formulations

Selection of formulations: example
In many MILP problems involving capacity constraints (Bin Packing
Problem, Facility Location Problem,...), there are constraints of this
form:

∑

i∈N

xij ≤ |N |yj ∀j ∈M (1)

that is used to express a logical condition on binary variables x and y :
{

∃(i, j) ∈ N ×M : xij > 0 ⇒ yj = 1
∃j ∈M : yj = 0 ⇒ xij = 0 ∀i ∈ N

The same condition can be expressed as

xij ≤ yj ∀i ∈ N , ∀j ∈ M. (2)

Formulation (1) requires |M| constraints.
Formulation (2) requires |M||N | constraints.

Discrete optimization Comparing formulations Improving formulations

Selection of formulations: example
Summing up constraints (2) for each i ∈ N we get

∑

i∈N

xij ≤
∑

i∈N

yj ∀j ∈ M

i.e. constraints (1):
∑

i∈N xij ≤ |N |yj ∀j ∈M.

Therefore each constraint (1) is a surrogate of constraints (2).
Constraints (2) imply constraints (1) but not vice versa.
There are solutions that satisfy (1) but violate (2):

{

xij = 1 ∀j ∈M, ∀i ∈ N : i ∈ [k(j − 1) + 1, . . . , kj]
yj = 1/|M| ∀j ∈M

where k = |N |/|M|.

Constraints (2) yield a better formulation than constraints (1).
The polyhedron with (1) contains the polyhedron with (2).

Discrete optimization Comparing formulations Improving formulations

Comparing formulations: example
Consider these two formulations of the lot-sizing problem.

P1)st−1 + xt = dt + st ∀t ∈ T

xt ≤ Kyt ∀t ∈ T

s0 = 0

st ≥ 0 ∀t ∈ T

xt ≥ 0 ∀t ∈ T

0 ≤ yt ≤ 1 ∀t ∈ T

where K =
∑

t∈T dt .

P2)
t

∑

i=1

wit = dt ∀t ∈ T

wit ≤ dt yi ∀i, t ∈ T : i ≤ t

wit = 0 ∀i, t ∈ T : i > t

wit ≥ 0 ∀i, t ∈ T : i ≤ t

0 ≤ yt ≤ 1 ∀t ∈ T

They use different variables, so that they cannot be directly
compared. However, they can be compared by projection, i.e.
variables replacement.

Discrete optimization Comparing formulations Improving formulations

Comparing formulations: example

Projecting P2 onto the subspace of variables x , s and y , we obtain a
polyhedron contained in P1.

To project a polyhedron onto the space of the other one, we need a
relationship between the variables of P1 and P2.

xi =

|T |
∑

t=i

wit ∀i ∈ T

Let T be [1, . . . ,T].

Discrete optimization Comparing formulations Improving formulations

Comparing formulations: example

Part 1: demand satisfaction constraints.
To prove that every point of P2 is projected into a point of P1, we
rewrite the lhs and the rhs of the constraints of P1 in an equivalent
way. We use the following equalities and inequalities:

t
∑

i=1

xi ≥
t

∑

j=1

dj ∀t ∈ T (3)

j
∑

i=1

wij = dj ∀j ∈ T (4)

wij = 0 ∀i > j ∈ T (5)

wij ≥ 0 ∀i ≤ j ∈ T (6)

xi =

T
∑

j=i

wij ∀i ∈ T (7)

Discrete optimization Comparing formulations Improving formulations

Comparing formulations: example

By means of (4), the right-hand-side of (3) can be rewritten:

t
∑

j=1

dj =

t
∑

j=1

j
∑

i=1

wij ∀t ∈ T (8)

Now we observe that for any given index j ≤ t

j
∑

i=1

wij =

t
∑

i=1

wij

because wij = 0 when i > j, owing to (5). The right-hand-side can
now be rewritten swapping the two sums:

t
∑

j=1

t
∑

i=1

wij =
t

∑

i=1

t
∑

j=1

wij

Discrete optimization Comparing formulations Improving formulations

Comparing formulations: example

Now we observe that for any given index i ∈ T

t
∑

j=1

wij =

t
∑

j=i

wij

because wij = 0 when j < i, owing to (5).
Therefore the right-hand-side is

t
∑

i=1

t
∑

j=i

wij

By means of (7), the left-hand-side of (3) can be rewritten:

t
∑

i=1

xi =

t
∑

i=1

T
∑

j=i

wij (9)

Discrete optimization Comparing formulations Improving formulations

Comparing formulations: example

With the new (but equivalent) expressions (8) for the rhs and (9) for
the lhs, inequality (3) can be reformulated as follows:

t
∑

i=1

T
∑

j=i

wij ≥
t

∑

i=1

t
∑

j=i

wij ∀t ∈ T

This inequality is always satisfied because of (6).

So, we have proven that every point satisfying (4) also satisfies (3).

Discrete optimization Comparing formulations Improving formulations

Comparing formulations: example

Part 2: constraints linking production and periods.
In polyhedron P1 we have

xi ≤ Kyi ∀i ∈ T (10)

with K =
∑T

t=1 dt .
In polyhedron P2 we have

wij ≤ djyi ∀i ≤ j ∈ T . (11)

Using the projection xi =
∑T

j=i wij as before, inequality (10) can be
rewritten as

T
∑

j=i

wij ≤ Kyi ∀i ∈ T . (12)

Discrete optimization Comparing formulations Improving formulations

Comparing formulations: example

From (11) we know that

T
∑

j=i

wij ≤
T
∑

j=i

dj yi

Since
∑T

j=i dj ≤ K , (12) is satisfied: every point satisfying (11) also
satisfies (10).

Therefore formulation P2 is tighter than P1 (by the way, P2 it is also
an ideal formulation).

Discrete optimization Comparing formulations Improving formulations

Comparing formulations: example

The converse is not true: for instance the solution
{

xt = dt ∀t ∈ T
yt = dt/K ∀t ∈ T

is feasible for P1 but not for P2.

Discrete optimization Comparing formulations Improving formulations

Cutting planes algorithms

Cutting planes algorithms iteratively solve the linear relaxation L of a
discrete optimization problem P and reinforce its formulation,
generating additional constraints (cutting planes), so that the optimal
solution of the linear relaxation at iteration k is infeasible in iteration
k + 1.
• Pros:

• if cutting planes are generated in a clever way, the algorithm can
guarantee to produce an optimal solution without having recourse
to any other technique (e.g. branching);

• a stronger formulation, although not ideal, can provide tighter dual
bounds to be used in a branch-and-bound algorithm.

• Cons:
• a procedure is needed to generate valid and useful inequalities at

each iteration: it is called separation algorithm. If the original
problem is difficult, the separation problem also is.

Discrete optimization Comparing formulations Improving formulations

Cutting planes algorithms

Given a discrete linear optimization problem

P(k) = max{cx : Ax ≤ b, x ∈ Zn
+}

we consider its continuous relaxation

L(k) = max{cx : Ax ≤ b, x ∈ ℜn
+}

and its optimal solution x∗(k). A cutting planes algorithm generates
one or more valid inequalities Qx ≤ q s.t.
• Qx ≤ q ∀x ∈ Zn

+ : Ax ≤ b

• Qx∗(k) > q

yielding a new (stronger) formulation

P(k+1) = max{cx : Ax ≤ b,Qx ≤ q, x ∈ Zn
+}.

Discrete optimization Comparing formulations Improving formulations

Cutting planes algorithms: pseudo-code

Begin Cutting plane algorithm
t ← 0; P(0) ← P; [P is the linear relaxation]
repeat

z∗(t) ← max{cx : x ∈ P(t)}
x∗(t) ← argmax{cx : x ∈ P(t)}
if x∗(t) 6∈ Zn then

Find a valid inequality πx ≤ π0 : πx∗(t) > π0

P(t+1) ← P(t) ∩ {x : πx ≤ π0}
t ← t + 1

end if
until (x∗(t) ∈ Zn) or (no inequalities found)
End Cutting plane algorithm

Discrete optimization Comparing formulations Improving formulations

Valid inequalities: example

x1

x2

(1)

(2)

(3)

(4)

x∗

Inequality (1) is valid but useless: it does not cut off x∗.
Inequality (2) is not valid: it cuts off feasible integer points.
Inequality (3) is valid and useful.
Inequality (4) is also facet defining.

Discrete optimization Comparing formulations Improving formulations

Cutting planes algorithms

After every iteration z∗(t) is a valid dual bound.

It may happen that no valid inequality is found if we restrict the
separation algorithm to some specific subsets of inequalities, with a
special structure, that do not define the convex hull of the original
problem.

Discrete optimization Comparing formulations Improving formulations

Example 1: logical implications
Consider the formulation

X = {x ∈ B5 : 3x1 − 4x2 + 2x3 − 3x4 + x5 ≤ −2}.

Fixing x2 = x4 = 0 would imply 3x1 + 2x3 + x5 ≤ −2 which is
impossible. Therefore

x2 + x4 ≥ 1

is a valid inequality.
It cuts off some fractional solutions. For instance x = [0 1

3 0 1
3 0].

Fixing x1 = 1 and x2 = 0 would imply 3 + 2x3 − 3x4 + x5 ≤ −2 which
is impossible. Therefore

x1 ≤ x2

is a valid inequality.
It cuts off some fractional solutions. For instance x = [1 1

2 0 1 0].

Discrete optimization Comparing formulations Improving formulations

Example 2a: combination of fixed and variable bounds

Consider the mixed-integer formulation (with a binary variable)

X = {(x , y) ∈ ℜ× B : x ≤ 100y , 0 ≤ x ≤ 5}.

The constraint
x ≤ 5y

is a valid inequality (stronger than x ≤ 100y).

Discrete optimization Comparing formulations Improving formulations

Example 2b: combination of fixed and variable bounds
Consider the mixed-integer formulation (with an integer variable)

X = {(x , y) ∈ ℜ× Z+ : x ≤ 10y , 0 ≤ x ≤ 14}.

x

y

0 10 14
0

1

2

3

The constraint x ≤ 6 + 4y is a valid inequality.

Discrete optimization Comparing formulations Improving formulations

Example 3: combinatorial inequalities

Consider this formulation of the matching problem on a graph
G = (V ,E):

X = {x ∈ B|E | :
∑

e∈δ(i)

xe ≤ 1 ∀i ∈ V}.

where δ(i) = {e ∈ E : ∃j ∈ V : e = [i, j]}.

The constraint

∑

e∈E(S)

xe ≤
|S| − 1

2
∀S ⊆ V : |S| ≥ 3 and odd

is a valid inequality.

Discrete optimization Comparing formulations Improving formulations

Example 4: integer rounding
Consider this formulation with integer variables:

X = {x ∈ Z4
+ : 13x1 + 20x2 + 11x3 + 6x4 ≥ 72}.

We divide the constraint by 11:

13
11

x1 +
20
11

x2 + x3 +
6
11

x4 ≥
72
11

.

We round up the coefficients of the lhs (relaxing the constraint)

2x1 + 2x2 + x3 + x4 ≥
72
11

.

We can round up the coefficients of the rhs (tightening the constraint)

2x1 + 2x2 + x3 + x4 ≥ 7.

This inequality is valid (because x is integer).

Discrete optimization Comparing formulations Improving formulations

Example 5: mixed integer rounding
Consider this formulation with integer variables:

X = {(x , y) ∈ Z4
+ ×ℜ+ : 13x1 + 20x2 + 11x3 + 6x4 + y ≥ 72}.

We divide the constraint by 11:

13
11

x1 +
20
11

x2 + x3 +
6

11
x4 ≥

72− y
11

.

Since
⌈

72− y
11

⌉{

= 7 if y < 6
≤ 6 if y ≥ 6

we obtain
⌈

72− y
11

⌉

≥ 7−
y
6

and therefore

2x1 + 2x2 + x3 + x4 +
1
6

y ≥ 7.

is a valid inequality.

	Discrete optimization
	Discrete optimization

	Comparing formulations
	Comparing formulations

	Improving formulations
	Cutting planes algorithms

