
Balas algorithm for linear 0-1 programming

Giovanni Righini

Operations Research Complements

 

References:
E. Balas, An Additive Algorithm for Solving Linear Programs with Zero-One Variables,
Operations Research 13, 4 (1965) 517-546.
F. Glover, S. Zionts, A Note on the Additive Algorithm of Balas,
Operations Research 13, 4 (1965) 546-549.



Linear 0-1 programming

Consider a linear 0-1 programming problem P such as

minimize z =
∑

j∈N

cjxj

s.t.
∑

j∈N

aijxj ≤ bi ∀i ∈ M

xj ∈ {0, 1} ∀j ∈ N

where M is the set of rows, N is the set of columns and x is a binary
solution vector.

It is not necessary to assume that the components of A, b and c are

integers.



Balas algorithm

Balas algorithm is a branch-and-bound algorithm, also known as

“additive algorithm”, because it requires only additions and
subtractions but no multiplications or divisions.

It can be described by

• branch strategy (branching on a binary variable)

• search strategy

• fathoming rules

• variable fixing rules

• lower bounding

• upper bounding



Standard form

First, the problem must be put in a standard form, so that all

components of c have the same sign: either minimization of z with
c ≥ 0 or maximization of z with c ≤ 0.

Let select the first option.

If cj < 0 for some j ∈ N, then replace xj with 1− x̂j everywhere in P.

The constant terms that are generated in the objective function are
disregarded and added back to the final optimal value.

Example.

minimize z = 3x1−5x2+x3−2x4 ⇒ minimize z = 3x1−5+5x̂2+x3−2+2x̂4.



Standard form

Then, all constraints must be written in the same form, either as ≥ or

as ≤ (let select ≤, for instance).

Equality constraints are replaced by pairs of inequality constraints.

Example.







3x1 − 2x2 + 8x3 ≤ 7

4x1 + 6x2 − 5x3 ≥ 5
2x1 − 3x2 − 4x3 = −5















3x1 − 2x2 + 8x3 ≤ 7

−4x1 − 6x2 + 5x3 ≤ −5
2x1 − 3x2 − 4x3 ≤ −5

−2x1 + 3x2 + 4x3 ≤ 5



Partial solution and 0-completion

While developing a branch-and-bound binary tree, at each node of

the tree, some binary variables have been fixed to 0, some to 1 and
some are still free.

They identify a partial solution, S.

We indicate by N0(S), N1(S) and N free(S) their sets, respectively:
N = N0(S) ∪ N1(S) ∪ N free(S) for any S in the tree.

The 0-completion of a partial solution S is the solution obtained by

setting all variables in N free(S) to 0.

It is the best solution of the subtree rooted at S, since c ≥ 0 (but it
may be infeasible): its value, z0(S), is a valid lower bound for the

subtree.



Feasibility

For each partial solution S we have a corresponding sub-problem

whose constraints are
∑

j∈N0(S)

aijxj +
∑

j∈N1(S)

aijxj +
∑

j∈N free(S)

aijxj ≤ bi ∀i ∈ M

i.e.
∑

j∈N free(S)

aijxj ≤ bi −
∑

j∈N1(S)

aij ∀i ∈ M.

Let define the right-hand-sides of S as

ri(S) = bi −
∑

j∈N1(S)

aij

so that the constraints are
∑

j∈N free(S)

aijxj ≤ ri(S) ∀i ∈ M.

If ri(S) ≥ 0 ∀i ∈ M, then the 0-completion of S is feasible: z0(S) is an
upper bound.



Upper bounding

A best incumbent value z is kept at all times during the execution of

the algorithm.

Initially z is set to a very large value: z ← +∞.

Every time the feasibility test on the 0-completion of a partial solution

S succeeds, a new upper bound z0(S) is found and it is compared
with the best incumbent.

If z0(S) < z, then the best incumbent value is updated: z ← z0(S).

When the 0-completion of S is feasible, then S is solved at optimality

and no branching occurs.



Fathoming

Feasibility. Let

ti(S) =
∑

j∈N free(S)

min{0, aij}

i.e. the minimum value that the left-hand-side of constraint i can take

in S.

If ∃i ∈ M such that ti > ri(S), then S is infeasible and its node is

fathomed.

Optimality. If the cost of the 0-completion of S is larger than the best
incumbent upper bound, i.e.

z0(S) ≥ z,

then no optimal solution can be obtained from any completion of S;
hence, its node is fathomed.



Refined fathoming

Glover and Zionts (1965) provided an even weaker sufficient

condition that allows for fathoming a node S.

If ∃i ∈ M such that ri(S) < 0 and

ri(S)
cj

aij

≥ z − z0(S) ∀j ∈ N free(S) : aij < 0,

then constraint i cannot be satisfied without making the objective
function greater than or equal to the value of the best incumbent

upper bound.

Hence no completion of S can be feasible and optimal; the node can
be fathomed.



Multiple variables fixing

If a sub-problem S is not fathomed, then it is analyzed to possibly fix

some variables and reduce its size.

If ∃i ∈ M such that ti = ri(S), then feasibility requires

• xj = 0 ∀j ∈ N free(S) : aij > 0

• xj = 1 ∀j ∈ N free(S) : aij < 0.

So, all variables j ∈ N free(S) : aij 6= 0 can be fixed (and fathoming

tests are re-done).

Otherwise, single variables are examined (in any sequence) to be

possibly fixed.



Single variable fixing

Feasibility.

If ∃i ∈ M, j ∈ N free(S) : aij > 0 ∧ ti(S) + aij > ri(S), then xj can be
fixed to 0 (for each i ∈ M, Balas suggests to examine variable xj for

which aij is maximum).

If ∃i ∈ M, j ∈ N free(S) : aij < 0 ∧ ti(S)− aij > ri(S), then xj can be
fixed to 1 (for each i ∈ M, it is profitable to consider xj for which aij is

minimum).

Optimality.
Every variable j ∈ N free(S) such that z0(S) + cj ≥ z must be set to 0

in any completion of S with a value better than the best incumbent z.



Refined single variable fixing

Feasibility and optimality. Glover and Zionts (1965) refined Balas’

criterion.

Consider a variable j ∈ N free(S) and a constraint i ∈ M such that

aij > ri(S): setting xj = 1 requires setting to 1 some other variable

with aij < 0 in order to achieve feasibility.

This implies at least a cost cp = min{ck : k ∈ N free(S) ∧ aik < 0}.
Hence, if

z0(S) + cj + ck ≥ z,

then variable xj can be set to 0.

If no variable is left after fixing, than S is solved and no branching is

required.



Promising vectors

All constraints with ri(S) < 0 are violated in the 0-completion of S.

To achieve feasibility we need to set some free variable xj to 1,
among the variables with aij < 0 in those constraints.

If there are no such variables, there is no way to achieve feasibility by

completing S.

Let define
V (S) = {i ∈ M : ri(S) < 0}

A(S) = {j ∈ N free(S) : aij ≥ 0 ∀i ∈ V (S)}

When completing S, variables in A(S) do not help to achieve

feasibility.

Promising vectors are those in R(S) = N free(S)\A(S).
If R(S) = ∅, then S is infeasible and its node is fathomed.



Branch policy and search policy

When S is not fathomed and its 0-completion is infeasible, it is

necessary to branch.

A branching variable is selected among the promising vectors and it

is set to 0 in one branch and to 1 in the other.

The 1-branch is explored first, the 0-branch second.

When a node is fathomed, the algorithm backtracks: hence, the
branch-and-bound tree is explored with a depth-first-search policy.



Selection of the branching variable

The branching variable is selected as the variable that yields the

0-completion with minimum total infeasiblity when it is fixed to 1.

Define

Ij (S) =
∑

i∈M

max{0, aij − ri(S)}.

The value aij − ri(S), when it is positive, is a measure of the residual
violation of constraint i when xj is set to 1.

The branching variable xk is selected so that

k = arg min
j∈R(S)

{Ij(S)}.


