Balas algorithm for linear 0-1 programming

Giovanni Righini

Operations Research Complements

UNIVERSITA DEGLI STUDI DI MILANO

References:

E. Balas, An Additive Algorithm for Solving Linear Programs with Zero-One Variables,
Operations Research 13, 4 (1965) 517-546.

F. Glover, S. Zionts, A Note on the Additive Algorithm of Balas,

Operations Research 13, 4 (1965) 546-549.

Linear 0-1 programming

Consider a linear 0-1 programming problem P such as

minimize z =~ ¢x;

jeN
st. > apx < b Vie M
jeN
xp€{0,1} Vjie N

where M is the set of rows, N is the set of columns and x is a binary
solution vector.

It is not necessary to assume that the components of A, b and c are
integers.

Balas algorithm

Balas algorithm is a branch-and-bound algorithm, also known as
“additive algorithm”, because it requires only additions and
subtractions but no multiplications or divisions.

It can be described by
e branch strategy (branching on a binary variable)
search strategy
fathoming rules
variable fixing rules
lower bounding
upper bounding

Standard form

First, the problem must be put in a standard form, so that all
components of ¢ have the same sign: either minimization of z with
¢ > 0 or maximization of z with ¢ < 0.

Let select the first option.
If ¢; < 0 for some j € N, then replace x; with 1 — X; everywhere in P.

The constant terms that are generated in the objective function are
disregarded and added back to the final optimal value.

Example.

minimize z = 3xy—5xo+x3—2x4 = minimize z = 3xy —5+5X+Xx3—2+2X4.

Standard form

Then, all constraints must be written in the same form, either as > or
as < (let select <, for instance).

Equality constraints are replaced by pairs of inequality constraints.

Example.
3x1 —2x2 +8x3 <7 3x1 —2X2 +8x3 <7
4x1 +6x2 —5x3 > 5 —4x1 —6X2+5x3 < -5
2Xx1 —3Xo —4x3 = -5 2x1 — 3Xo —4x3 < -5

—2X1+3x0+4x3 <5

Partial solution and 0-completion

While developing a branch-and-bound binary tree, at each node of
the tree, some binary variables have been fixed to 0, some to 1 and
some are still free.

They identify a partial solution, S.

We indicate by N°(S), N'(S) and N™¢(S) their sets, respectively:
N = N°(S) U N'(S) u N™e(S) for any S in the tree.

The 0-completion of a partial solution S is the solution obtained by
setting all variables in N™¢(S) to 0.

It is the best solution of the subtree rooted at S, since ¢ > 0 (but it
may be infeasible): its value, z°(S), is a valid lower bound for the
subtree.

Feasibility

For each partial solution S we have a corresponding sub-problem
whose constraints are

Soapx+ > ax+ Y. ax<b VieM

JENO(S) JEN'(S) JeNfree(S)
i.e.
Y oax<b—- Y a;VieM.
JeN™ee(S) JEN'(S)

Let define the rlght-hand-3|des of Sas
-2 a,,
jeN'(S
so that the constraints are
> ax < rn(S) VieM.
jeNlree s)

If r;(S) > 0 Vi € M, then the 0-completion of S is feasible: z°(S) is an
upper bound.

Upper bounding

A best incumbent value Z is kept at all times during the execution of
the algorithm.

Initially Z is set to a very large value: Z + +co.

Every time the feasibility test on the 0-completion of a partial solution
S succeeds, a new upper bound z°(S) is found and it is compared
with the best incumbent.

If z9(S) < Z, then the best incumbent value is updated: Z + z°(S).

When the 0-completion of S is feasible, then S is solved at optimality
and no branching occurs.

Fathoming

Feasibility. Let
H(S)= > min{0,a;}

jeNTfree(S)
i.e. the minimum value that the left-hand-side of constraint i can take
in S.

If 3i € M such that t; > ri(S), then S is infeasible and its node is
fathomed.

Optimality. If the cost of the 0-completion of S is larger than the best
incumbent upper bound, i.e.

2(8) > z,

then no optimal solution can be obtained from any completion of S;
hence, its node is fathomed.

Refined fathoming

Glover and Zionts (1965) provided an even weaker sufficient
condition that allows for fathoming a node S.

If 3/ € M such that r;(S) < 0 and

C _ _ ,
r,-(S)a—f >7z-2%8) vje N™(S): a; <0,
if
then constraint i cannot be satisfied without making the objective

function greater than or equal to the value of the best incumbent
upper bound.

Hence no completion of S can be feasible and optimal; the node can
be fathomed.

Multiple variables fixing

If a sub-problem S is not fathomed, then it is analyzed to possibly fix
some variables and reduce its size.

If 3/ € M such that t; = ri(S), then feasibility requires

o x;=0Vje N™(S):a;>0

o xj=1Vje N™(S):a;<0.
So, all variables j € N™(S) : a; # 0 can be fixed (and fathoming
tests are re-done).

Otherwise, single variables are examined (in any sequence) to be
possibly fixed.

Single variable fixing

Feasibility.

If 3 € M,j € N™e(S) : a; > 0 A ;(S) + a; > ri(S), then x; can be
fixed to O (for each i € M, Balas suggests to examine variable x; for
which a; is maximum).

If 3i € M,j € N™¢(S): a; < 0Ati(S) — a; > ri(S), then x; can be
fixed to 1 (for each i € M, it is profitable to consider x; for which a; is
minimum).

Optimality.
Every variable j € N™¢(S) such that z°(S) + ¢; > Z must be set to 0
in any completion of S with a value better than the best incumbent Z.

Refined single variable fixing

Feasibility and optimality. Glover and Zionts (1965) refined Balas’
criterion.

Consider a variable j € N™¢(S) and a constraint i € M such that
a; > ri(S): setting x; = 1 requires setting to 1 some other variable
with @; < 0 in order to achieve feasibility.

This implies at least a cost ¢, = min{ck : k € N™(S) A aj < 0}.
Hence, if
2°(S)+ ¢+ ek > Z,

then variable x; can be set to 0.

If no variable is left after fixing, than S is solved and no branching is
required.

Promising vectors

All constraints with r;(S) < 0 are violated in the 0-completion of S.

To achieve feasibility we need to set some free variable x; to 1,
among the variables with a; < 0 in those constraints.

If there are no such variables, there is no way to achieve feasibility by
completing S.

Let define
V(S)={ie M:r(S) <0}
A(S) = {j e N™2(S) : a; > 0 Vi e V(S)}
When completing S, variables in A(S) do not help to achieve

feasibility.

Promising vectors are those in R(S) = N™¢(S)\ A(S).
If R(S) =0, then Sis infeasible and its node is fathomed.

Branch policy and search policy

When S is not fathomed and its 0-completion is infeasible, it is
necessary to branch.

A branching variable is selected among the promising vectors and it
is set to 0 in one branch and to 1 in the other.

The 1-branch is explored first, the 0-branch second.

When a node is fathomed, the algorithm backtracks: hence, the
branch-and-bound tree is explored with a depth-first-search policy.

Selection of the branching variable

The branching variable is selected as the variable that yields the
0-completion with minimum total infeasiblity when it is fixed to 1.

Define

§(S) =3 max{0,a; - r(S)}.

ieM
The value a; — r;i(S), when it is positive, is a measure of the residual
violation of constraint / when x; is set to 1.

The branching variable xj is selected so that

k= argjer??l(ré){/j(S)}.

