
Branch-and-bound: an example

Giovanni Righini
Università degli Studi di Milano

Operations Research Complements

The Linear Ordering Problem

The Linear Ordering Problem (LOP) is an NP-hard combinatorial
optimization problem that consists in finding an optimal permutation
of a given set N of items.

The objective function value depends on whether item i precedes or
follows item j for each (i, j) pair of items in N .

The LOP has many applications, ranging from marketing to
psychology, from scheduling to archaeology.
A polyhedral study of the LOP is due to Grötschel et al. (1984a,
1985a, 1985b).
More references to applications can be found in Reinelt (1985).

The LOP model

Given a complete digraph D = (N ,A), find an optimal spanning
acyclic tournament in D.

An acyclic tournament is an acyclic digraph T = (N ,A′) such that for
every two distinct vertices i and j in N the arc set A′ contains exactly
one arc with endpoints i and j.

Acyclic tournaments are in one-to-one correspondence with
permutations of the vertices: Π : {1, . . . ,N} 7→ N , where N = |N |.

Π(k) indicates the vertex in position k .
Π−1(i) indicates the position in which vertex i is.

The LOP-CC

The Linear Ordering Problem with Cumulative Costs (LOP-CC) arises
from an application in the sector of UMTS mobile-phone
telecommunication systems (Bertacco et al., 2004).

The LOP-CC is NP-hard (Bertacco et al., 2004).

In the LOP-CC
• a weight pi ≥ 0 is given ∀i ∈ N ;
• a cost cij ≥ 0 is given ∀(i, j) ∈ A.

Remark: In general cij 6= cji .

The objective function to be minimized is the sum of cost terms α

associated with the vertices and recursively defined in this way:

αi = pi +
∑

j|Π−1(j)>Π−1(i)

cijαj ∀i ∈ N .

A Non-linear Integer Programming model of the LOP-CC

min z =
∑

i∈N

αi

s.t. αi = pi +

N∑

j=1

cijxijαj ∀i ∈ N (1)

xij + xji = 1 ∀i, j ∈ N (2)

xij + xjk + xki ≤ 2 ∀i, j, k ∈ N (3)

αi ∈ ℜ+ ∀i ∈ N

xij ∈ {0, 1} ∀i, j ∈ N .

The objective

The objective is the minimization of the overall value of variables α

that represent the costs accumulated at the vertices.

minimize z =
∑

i∈N

αi

The value of each term αi is given by constraints

αi = pi +

N∑

j=1

cijxijαj ∀i ∈ N

and depends on the cumulative costs α of the vertices that follow i in
the acyclic tournament defined by the x variables.

The constraints are non-linear.

The constraints

Constraints
xij + xji = 1 ∀i, j ∈ N

xij + xjk + xki ≤ 2 ∀i, j, k ∈ N

xij ∈ {0, 1} ∀i, j ∈ N

impose that the values of the binary variables x define an acyclic
tournament.

Branch-and-bound

Consider a branch-and-bound algorithm, in which each position is
assigned a vertex, from position N down to position 1.
Branching is on an integer variable: at level l, N − l sub-problems are
generated.

For each path in the decision tree, all values of α variables are
recursively computed, from αΠ(N) down to αΠ(1).

In order not to enumerate all the 2N possible permutations, the
algorithm exploits a lower bounding technique.

Lower bounding

Consider the generic node at level l in the search tree (the root is at
level 0):
l vertices have been assigned to the last l positions in the acyclic
tournament;
the other vertices are still to be ordered.

Call L the set of the unordered vertices and R the set of the vertices
already ordered.

Example

2

3

5

4 6 1

Figure: A small example with six vertices, three fixed and three to be decided.

Lower bounding

The value of the objective function can be split into two a left and a
right term:

z =
∑

i∈L

αi +
∑

i∈R

αi

The right term can be computed exactly, since the vertices in R have
already been ordered.
The left term can be split into three terms:

∑

i∈L

αi =
∑

i∈L

∑

j∈L

cijxijαj +
∑

i∈L

pi +
∑

i∈L

∑

j∈R

cijαj

For each i ∈ L the left term includes
• the contributions to αi due to the vertices in L,
• the fixed cost
• the contributions to αi due to the vertices in R.

A valid lower bound

The term
∑

i∈L

∑
j∈R cijαj does not depend on the x variables since

all vertices in R follow all vertices in L in the acyclic tournament
under construction (i.e. xij = 1 ∀i ∈ L, j ∈ R).

Hence the values of
∑

i∈L pi and
∑

i∈L

∑
j∈R cijαj can be computed

exactly.

A valid lower bound is given by

LB0 =
∑

i∈L

pi +
∑

i∈L

∑

j∈R

cijαj +
∑

i∈R

αi .

We define
H = z − LB0 =

∑

i∈L

∑

j∈L

cijxijαj

H ≥ 0, because p ≥ 0, c ≥ 0 and hence α ≥ 0.
Any lower bound to H can be used to strengthen LB0.

Improving the lower bound

We define βi = pi +
∑

j∈R cijαj ∀i ∈ L.

In any solution αi is certainly not less than βi at any intermediate
node in the search tree, owing to the non-negativity of the data.

Therefore βi is a valid lower bound to the final value of αi .

Improving the lower bound

For each pair of distinct vertices i and j in L, we know that in a
complete solution either i precedes j or vice versa: therefore either
cijαj or cjiαi contributes to the overall cost.

Hence the following inequalities hold:

H ≥
∑

i,j∈L:i<j

min{cijαj , cjiαi} ≥
∑

i,j∈L:i<j

min{cijβj , cjiβi}.

Hence the value

LB1 = LB0 +
∑

i,j∈L:i<j

min{cijβj , cjiβi}

is a valid lower bound.

LB1 is computable in O((N − l)2) at each node at level l in the search
tree.

Computational results

The computational tests refer to four data-sets, each made of 500
randomly generated instances with N = 16, 14, 12.

For each set of 500 instances and for each size we observed:
• the average and the maximum computing time
• the average and the maximum number of nodes explored in the

search tree.

These values are reported for the branch-and-bound algorithm with
lower bound LB0 and LB1.

The search tree was explored depth-first.

Computational results

Set Size Average time Max. time Avg. n. nodes Max. n. nodes
LB0 LB1 LB0 LB1 LB0 LB1 LB0 LB1

A 12 0.03 0.00 1.00 0.00 138249.65 1815.98 3419066 46409
14 0.50 0.01 31.00 1.00 2745671.10 11862.01 166581704 529724
16 12.58 0.14 973.00 5.00 60974332.11 100422.75 4729842076 4963008

B 12 0.05 0.01 2.00 1.00 270668.24 6806.23 12487041 260226
14 1.30 0.07 105.00 3.00 7037065.99 19438.65 562082006 4077536
16 38.85 1.50 2022.00 178.00 188009341.31 137804.72 9804359196 204379303

C 12 0.02 0.00 1.00 0.00 151073.13 5005.30 3820123 111448
14 0.53 0.06 29.00 3.00 2890538.03 52734.75 160998680 3273061
16 14.94 1.00 1069.00 44.00 72449144.17 740194.33 5178947760 37629119

D 12 0.03 0.00 1.00 1.00 170845.18 5907.80 3338684 140596
14 0.64 0.07 16.00 2.00 3488891.31 67846.74 89150125 1930878
16 16.78 1.20 542.00 33.00 81387534.69 861567.37 2623680651 26285589

Avg. 12 0.03 0.00 1.25 0.05 148734.07 4883.83 5766228.50 139669.75
14 0.74 0.05 45.50 2.25 4040541.61 37970.54 244703128.75 2452799.75
16 20.79 0.96 1151.50 65.00 100705088.07 459997.29 5584207420.75 68314254.75

Table: Comparison between B&B algorithms using LB0 and LB1.

Comparison at the root node

Data-set Size LB0 LB1
A 12 44.64 % 15.23 %

14 51.39 % 20.42 %
16 57.22 % 25.75 %

B 12 69.73 % 37.76 %
14 76.39 % 47.09 %
16 82.30 % 56.49 %

C 12 69.67 % 40.54 %
14 77.03 % 50.62 %
16 83.09 % 60.24 %

D 12 73.90 % 45.23 %
14 81.02 % 56.27 %
16 86.52 % 65.92 %

Average 12 64.49 % 34.69 %
14 71.46 % 43.60 %
16 77.28 % 52.10 %

Table: Average percentage gaps at the root node (z∗−LB
LB).

Search strategy

Depth-first-search allows for an effective recursive implementation of
the code: the vertices are initially sorted according to their fixed cost
pi and this sequence determines the order in which sub-problems are
visited.

The unordered vertices (those in L) are kept in a FIFO queue and
each step down in the search tree corresponds to a Pop operation,
while each backtrack step corresponds to a Push operation on the
queue.

In this way the first leaf that the algorithm examines corresponds to
the solution in which the vertex with the smallest fixed cost is in the
last position (i.e., it is fixed first) and the one with the largest fixed cost
is in the first position (i.e., it is fixed last).

Search strategy

However the leaves of the search tree are not visited according to the
lexicographic order defined by the initial sequence.

For instance, if the starting sequence is 〈1, 2, 3, 4〉, with
p1 > p2 > p3 > p4, the leaves of the search tree are generated in this
order:
• 〈1, 2, 3, 4〉
• 〈2, 1, 3, 4〉
• 〈3, 1, 2, 4〉
• 〈1, 3, 2, 4〉
• ...and so on.

Then, 〈3, 1, 2, 4〉 precedes 〈1, 3, 2, 4〉 even if p1 > p3.

Search strategy

Even if this technique is very effective from a software implementation
viewpoint, a suitable sorting of the successor nodes, repeated at
each node of the search tree, may allow the algorithm to discover the
optimal solution earlier.

To have a quantitative figure of merit of the effectiveness of the
branching policy and in particular of the ordering in which children
nodes are explored, it is necessary to measure “how early” the
optimal solution is discovered.

For this purpose, let us consider a generic instance of the LOP-CC
and the corresponding search tree as it is explored by a
depth-first-search branch-and-bound algorithm and let us indicate by
P∗ the optimal path to be followed along the search tree to reach the
first leaf corresponding to an optimal solution.

Evaluating the search strategy

Let us define a vector bl with one component for each level l of the
search tree. Each component bl may range in [0, . . . ,N − l − 1], that
is it may take on a number of different values equal to the number of
successor nodes at that level.

The value of bl indicates the number of “wrong” branches that have
been explored from the node of P∗ at level l before the branch that
leads to the optimal solution.

A vector b = (0, 0, . . . , 0) represents the ideal case, in which the
algorithm finds the optimal solution as the first leaf of the search tree.

Dividing bl by the maximum number of successor nodes at level l, we
get a fraction ηl =

bl
N−l−1 , whose value is between 0 and 1,

representing the effectiveness of the branch sorting policy at level l.

A new search strategy

We measured the average values of the components of vector η over
all the instances of the benchmark, and we observed rather high
values, often greater than 0.5.

This motivated the design of a different policy to sort the successors,
inspired by lower bound LB1.

For each pair of vertices i, j ∈ L, a choice is made between arcs (i, j)
and (j, i), choosing the minimum among the two costs cijβj and cjiβi :
if cijβj < cjiβi we tentatively orient the arc from i to j.

Depending on these decisions the in-degree of each vertex is
determined.

Then all the vertices in L are sorted by increasing values of their
in-degree so that the one with maximum in-degree is the last one in
the ordering and then it is fixed first.

Computational results

FIFO queue Sorted branches
Level η η

1 0.034 0.034
2 0.267 0.045
3 0.375 0.049
4 0.370 0.046
5 0.408 0.040
6 0.373 0.037
7 0.379 0.025
8 0.330 0.027
9 0.313 0.029

10 0.321 0.031
11 0.317 0.019
12 0.254 0.020
13 0.242 0.017
14 0.179 0.010
15 0.180 0.000
16 0.000 0.000

Avg. n. nodes 100422.75 96265.056
Max. n. nodes 4963008 5177634

Avg. time 0.134 0.122
Max. time 4 5

Table: Effects of branch sorting (avg. on 500 instances).

The overall computing time is the same, but η is smaller, i.e. the
algorithm finds optimal solutions earlier.
This suggests a criterion to truncate the exploration of the search
tree.

Truncated branch-and-bound

Time is very critical for the UMTS application from which the problem
arises. Therefore it is important to develop very fast heuristics still
providing good solutions.

Faster results can be obtained by truncating the branch-and-bound
algorithm in order to reduce the computing time at the expense of the
optimality guarantee.

Truncated branch-and-bound

For this purpose the fraction of branches to be explored at each level
of the search tree is limited by a given threshold 0 ≤ θ ≤ 1: at each
node of the search tree the successors nodes are sorted as
explained above and the algorithm explores only the first
⌊θ(N − l − 1)⌋+ 1 of them.

Setting θ = 1 the whole search tree is (implicitly) explored and the
best solution found is guaranteed to be optimal.

Setting θ = 0 only the first branch is explored at each node and the
search tree reduces to a path from the root to the first leaf.

Choosing intermediate values one can tune the trade-off between
speed and solution cost.

Computational results

Size θ Avg. time Max. time Avg. gap Max. gap Opt.sol.
12 0.00 0.000 0.000 8.764 % 147.793 % 232

0.25 0.000 0.000 1.018 % 37.446 % 1303
0.50 0.002 1.000 0.053 % 7.627 % 1913
0.75 0.002 1.000 0.007 % 3.306 % 1991
1.00 0.005 1.000 0.000 % 0.000 % 2000

14 0.00 0.001 1.000 12.539 % 140.787 % 95
0.25 0.003 1.000 1.303 % 37.770 % 1155
0.50 0.012 1.000 0.097 % 10.062 % 1903
0.75 0.025 1.000 0.011 % 2.978 % 1990
1.00 0.053 3.000 0.000 % 0.000 % 2000

16 0.00 0.000 0.000 20.355 % 369.291 % 34
0.25 0.014 1.000 1.697 % 37.544 % 947
0.50 0.129 14.000 0.378 % 10.387 % 1846
0.75 0.358 56.000 0.005 % 1.897 % 1990
1.00 0.903 173.000 0.000 % 0.000 % 2000

Table: Truncated branch-and-bound.

For θ = 0.25 optimal solutions are found for about 50% of the
instances.
For θ = 0.50 optimal solutions are found for about 95% of the
instances.
The speed-up can be up to a factor of 3 for θ = 0.75 and a factor of
10 for θ = 0.50.

Large instances

The algorithms were also tested on larger instances with the purpose
of studying which is the maximum size for which an approach based
on truncated branch-and-bound is viable.

The data-set consists of sub-matrices of different size taken from a
randomly generated (32 × 32) cost matrix.

It was reported that instances with up to N = 20 could be solved in
three hours using LB0.
Using LB1 we could solve instances with up to N = 26 within one
hour and a half.
A trial with N = 28 was stopped after 24 hours.

Exact and truncated B&B: large instances

Size Exact Truncated
Time Cost Time Cost θ

18 0:00:02 5.636060 0:00:01 5.636060 0.50
20 0:01:31 8.115764 0:00:38 8.115764 0.50
22 0:03:10 8.178600 0:01:17 8.178600 0.50
24 0:16:59 11.962475 0:06:17 11.962475 0.50
26 1:37:33 15.208841 0:02:31 15.208841 0.25
28 >24:00:00 0:53:54 17.428847 0.25

Table: Results obtained on larger instances.

Constructive heuristics

The truncated branch-and-bound can be easily turned into a fast
constructive heuristic by setting θ = 0.

We compare it with a GRASP heuristic (Benvenuto et al. 2005) and a
tabu search (Duarte et al. 2006).

All data-sets, made of 25 instances each, were solved in less than
one second on a 2.0 GHz processor.
Computing times for GRASP and TSLOPCC were measured on a 3.2
GHz processor.

Comparison with other heuristics

Size GRASP Constr. heur. TSLOPCC
Cost Time Cost Cost Time

35 0.935 1.68 0.588 0.344 0.39
100 8.48 E+05 24.75 1.43 E+04 1.20 E+03 30.75
150 2.90 E+11 78.31 8.84 E+07 2.25 E+06 180.43

Table: Comparison of heuristics on random large instances.

The constructive heuristic obtained from the truncated
branch-and-bound algorithm dominates GRASP in both time and
cost.

No domination exists between truncated branch-and-bound and tabu
search: the former is faster, the latter is more accurate.

