
Branch-and-bound

Giovanni Righini
Università degli Studi di Milano

Operations Research Complements



Branch-and-bound

A branch-and-bound algorithm works as follows.
• A difficult optimization problem P is recursively decomposed into

several easier sub-problems F1,F2, . . . ,Fn.
The decomposition (called branching) must obey the following
condition to ensure the correctness of the algorithm:

X (P) =

n⋃

i=1

X (Fi).

• The optimal solution of P is determined by comparing the
optimal solutions of the corresponding sub-problems.
Assuming minimization:

z∗(P) = min
i=1,...,n

{z∗(Fi)}.



The branch-and-bound tree

The recursive decomposition of problems into sub-problems
generates an arborescence (also called decision tree or search tree),
where the root corresponds to the original problem P and each node
corresponds to a sub-problem.

P 

F1 F2 

Binary branching

 

 

 

 

 

 

 

 

 

 

 

 

 

P 

F1 F2 Fn 
. . . 

n-ary branching



Branching

For the sake of efficiency, branching usually implies a partition of
X (P) into disjoint sub-sets (so that no solution be considered twice or
more):

X (Fi) ∩ X (Fj) = ∅ ∀i 6= j = 1, . . . , n.

There are two main ways for branching:
• variable fixing;
• constraint insertion.

Every sub-problem is a restriction of its predecessor and a relaxation
of its successors.



Binary branching

Common binary branching rules are as follows.

• Branching on a binary variable.
A binary variable x is selected (branching variable).
Then two sub-problems are generated by fixing x = 0 in a
sub-problem and x = 1 in the other.

• Branching on an integer constraint.
A vector of integer variables (x1, x2, . . . , xn), a vector of suitable
integer coefficients (a1, a2, . . . , an) and a suitable integer k are
selected.
Then two sub-problems are generated by inserting the
constraints ax ≤ k in a sub-problem and ax ≥ k + 1 in the other.



n-ary branching

Common n-ary branching rules are as follows.

• Branching on an integer variable.
An integer variable x ∈ [1, . . . , n] is selected (branching variable).
Then n sub-problems are generated by fixing x = 1, x = 2,. . . ,
x = n.

• Branching on n binary variables.
A vector of n binary variables (x1, x2, . . . , xn) is selected.
Then n + 1 sub-problems are generated by fixing them as follows
(one row for each sub-problem):

x1 = 1

x1 = 0, x2 = 1

x1 = x2 = 0, x3 = 1

. . .

x1 = x2 = . . . = xn−1 = 0, xn = 1

x1 = x2 = . . . = xn = 0



Branching by variable fixing

x1

x2

x2 = 0

x2 = 1

x2 = 2



Branching by constraint insertion

x1

x2

x1 ≤ 1 x1 ≥ 2



Search

Every time two or more sub-problems are generated by a branching
operation, they are appended to a list of open nodes, i.e. of
sub-problems that still need to be solved.

This is necessary because a serial computer cannot examine and
solve all sub-problems in parallel.

The policy followed to decide which nodes must explored first is also
called search strategy.

We call current sub-problem the sub-problem that must be solved at
any generic point in time during the search.



Leaves of the tree

Usually a sub-problem is “solved” by branching, i.e. by replacing it
with other sub-problems. However, this recursive branching stops
when:
• the current sub-problem is detected to be infeasible;
• the current sub-problem is solved to optimality;
• the current sub-problem can be fathomed.

All these three cases (the leaves of the branch-and-bound tree) can
be detected by solving a relaxation of the current sub-problem.



Relaxations

As a consequence of the definition of relaxation, these corollaries
hold.

Corollary 1. If R is infeasible, then P is also infeasible.

Corollary 2. If x∗ is optimal for R and it is feasible for P and
zR(x) = zP(x), then x∗ is also optimal for P .

Corollary 3. If z∗
R

≥ z̄, then z∗
P
≥ z̄.

In branch-and-bound algorithms Corollary 3 is exploited by bounding.



Bounding

Bounding is the operation of associating a dual bound with each
sub-problem F .

Since
z∗

R ≤ z∗

P

the optimal value of R(F) (a relaxation of F ) provides a dual bound
to any sub-problem F :

z∗

R(F) ≤ z∗

F

The dual bound is compared against a primal bound that

corresponds to the value zP(x̄) of a feasible solution x̄ ∈ X (P).

If the dual bound of F turns out to be no better than the primal bound,
then F can be fathomed.

If z∗

R(F ) ≥ zP(x̄) then Fathom F .



Bounding

The correctness of the bounding operation relies upon the
concatenation of two inequalities.
• The first inequality guarantees that no solution can exist in X (F)

with a value better than z∗

R(F), since

z∗

F ≥ z∗

R(F).

• The second inequality is z∗

R(F) ≥ zP(x̄).

By concatenating them, we can conclude that

z∗

F ≥ z∗

R(F) ≥ zP(x̄)

which means that solving sub-problem F to optimality is useless,
because it cannot provide any feasible solution better than the one
we already know, i.e. x̄ .

Fathoming sub-problems in a branch-and-bound algorithm is crucial
to save computing time and memory space.



Bounding

x1

x2

Figure: The blue sub-problem can be fathomed.



Search strategies

Different criteria to manage the list of open nodes correspond to
different search strategies:
• FIFO: breadth-first search
• LIFO: depth-first search
• Sorted list: best-first search

Best-first search is usually based on the best dual bound criterion:
the most promising sub-problems are explored first.

To keep a sorted list, it is useful to employ a heap.


