Branch-and-bound

Giovanni Righini

Università degli Studi di Milano

Operations Research Complements

Università degli Studi
di Milano

Branch-and-bound

A branch-and-bound algorithm works as follows.

- A difficult optimization problem \mathcal{P} is recursively decomposed into several easier sub-problems $\mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{n}$. The decomposition (called branching) must obey the following condition to ensure the correctness of the algorithm:

$$
\mathcal{X}(\mathcal{P})=\bigcup_{i=1}^{n} \mathcal{X}\left(\mathcal{F}_{i}\right) .
$$

- The optimal solution of \mathcal{P} is determined by comparing the optimal solutions of the corresponding sub-problems. Assuming minimization:

$$
z^{*}(\mathcal{P})=\min _{i=1, \ldots, n}\left\{z^{*}\left(\mathcal{F}_{i}\right)\right\}
$$

The branch-and-bound tree

The recursive decomposition of problems into sub-problems generates an arborescence (also called decision tree or search tree), where the root corresponds to the original problem \mathcal{P} and each node corresponds to a sub-problem.

Binary branching

n-ary branching

Branching

For the sake of efficiency, branching usually implies a partition of $\mathcal{X}(\mathcal{P})$ into disjoint sub-sets (so that no solution be considered twice or more):

$$
\mathcal{X}\left(\mathcal{F}_{i}\right) \cap \mathcal{X}\left(\mathcal{F}_{j}\right)=\emptyset \quad \forall i \neq j=1, \ldots, n .
$$

There are two main ways for branching:

- variable fixing;
- constraint insertion.

Every sub-problem is a restriction of its predecessor and a relaxation of its successors.

Binary branching

Common binary branching rules are as follows.

- Branching on a binary variable. A binary variable x is selected (branching variable). Then two sub-problems are generated by fixing $x=0$ in a sub-problem and $x=1$ in the other.
- Branching on an integer constraint.

A vector of integer variables $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, a vector of suitable integer coefficients $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and a suitable integer k are selected.
Then two sub-problems are generated by inserting the constraints $a x \leq k$ in a sub-problem and $a x \geq k+1$ in the other.

n-ary branching

Common n-ary branching rules are as follows.

- Branching on an integer variable. An integer variable $x \in[1, \ldots, n]$ is selected (branching variable). Then n sub-problems are generated by fixing $x=1, x=2, \ldots$, $x=n$.
- Branching on n binary variables.

A vector of n binary variables $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ is selected.
Then $n+1$ sub-problems are generated by fixing them as follows (one row for each sub-problem):

$$
\begin{aligned}
& x_{1}=1 \\
& x_{1}=0, x_{2}=1 \\
& x_{1}=x_{2}=0, x_{3}=1 \\
& \ldots \\
& x_{1}=x_{2}=\ldots=x_{n-1}=0, x_{n}=1 \\
& x_{1}=x_{2}=\ldots=x_{n}=0
\end{aligned}
$$

Branching by variable fixing

Branching by constraint insertion

Search

Every time two or more sub-problems are generated by a branching operation, they are appended to a list of open nodes, i.e. of sub-problems that still need to be solved.

This is necessary because a serial computer cannot examine and solve all sub-problems in parallel.

The policy followed to decide which nodes must explored first is also called search strategy.

We call current sub-problem the sub-problem that must be solved at any generic point in time during the search.

Leaves of the tree

Usually a sub-problem is "solved" by branching, i.e. by replacing it with other sub-problems. However, this recursive branching stops when:

- the current sub-problem is detected to be infeasible;
- the current sub-problem is solved to optimality;
- the current sub-problem can be fathomed.

All these three cases (the leaves of the branch-and-bound tree) can be detected by solving a relaxation of the current sub-problem.

Relaxations

As a consequence of the definition of relaxation, these corollaries hold.

Corollary 1. If \mathcal{R} is infeasible, then \mathcal{P} is also infeasible.
Corollary 2. If x^{*} is optimal for \mathcal{R} and it is feasible for \mathcal{P} and $z_{\mathcal{R}}(x)=z_{\mathcal{P}}(x)$, then x^{*} is also optimal for \mathcal{P}.
Corollary 3. If $z_{\mathcal{R}}^{*} \geq \bar{z}$, then $z_{\mathcal{P}}^{*} \geq \bar{z}$.
In branch-and-bound algorithms Corollary 3 is exploited by bounding.

Bounding

Bounding is the operation of associating a dual bound with each sub-problem \mathcal{F}.
Since

$$
z_{\mathcal{R}}^{*} \leq z_{\mathcal{P}}^{*}
$$

the optimal value of $\mathcal{R}(\mathcal{F})$ (a relaxation of \mathcal{F}) provides a dual bound to any sub-problem \mathcal{F} :

$$
z_{\mathcal{R}(\mathcal{F})}^{*} \leq z_{\mathcal{F}}^{*}
$$

The dual bound is compared against a primal bound that corresponds to the value $z_{\mathcal{P}}(\bar{x})$ of a feasible solution $\bar{x} \in \mathcal{X}(\mathcal{P})$. If the dual bound of \mathcal{F} turns out to be no better than the primal bound, then \mathcal{F} can be fathomed.

$$
\text { If } z_{\mathcal{R}(F)}^{*} \geq z_{\mathcal{P}}(\bar{x}) \text { then Fathom } \mathcal{F} \text {. }
$$

Bounding

The correctness of the bounding operation relies upon the concatenation of two inequalities.

- The first inequality guarantees that no solution can exist in $\mathcal{X}(\mathcal{F})$ with a value better than $z_{\mathcal{R}(\mathcal{F})}^{*}$, since

$$
z_{\mathcal{F}}^{*} \geq z_{\mathcal{R}(\mathcal{F})}^{*}
$$

- The second inequality is $z_{\mathcal{R}(\mathcal{F})}^{*} \geq z_{\mathcal{P}}(\bar{x})$.

By concatenating them, we can conclude that

$$
z_{\mathcal{F}}^{*} \geq z_{\mathcal{R}(\mathcal{F})}^{*} \geq z_{\mathcal{P}}(\bar{x})
$$

which means that solving sub-problem \mathcal{F} to optimality is useless, because it cannot provide any feasible solution better than the one we already know, i.e. \bar{x}.

Fathoming sub-problems in a branch-and-bound algorithm is crucial to save computing time and memory space.

Bounding

Figure: The blue sub-problem can be fathomed.

Search strategies

Different criteria to manage the list of open nodes correspond to different search strategies:

- FIFO: breadth-first search
- LIFO: depth-first search
- Sorted list: best-first search

Best-first search is usually based on the best dual bound criterion: the most promising sub-problems are explored first.

To keep a sorted list, it is useful to employ a heap.

