Branch-and-bound

Giovanni Righini
Università degli Studi di Milano

Operations Research Complements
A branch-and-bound algorithm works as follows.

- A difficult optimization problem \(\mathcal{P} \) is recursively decomposed into several easier sub-problems \(\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_n \).

 The decomposition (called \textit{branching}) must obey the following condition to ensure the correctness of the algorithm:

\[
\mathcal{X}(\mathcal{P}) = \bigcup_{i=1}^{n} \mathcal{X}(\mathcal{F}_i).
\]

- The optimal solution of \(\mathcal{P} \) is determined by comparing the optimal solutions of the corresponding sub-problems. Assuming minimization:

\[
z^*(\mathcal{P}) = \min_{i=1,\ldots,n} \{z^*(\mathcal{F}_i)\}.
\]
The branch-and-bound tree

The recursive decomposition of problems into sub-problems generates an arborescence (also called decision tree or search tree), where the root corresponds to the original problem P and each node corresponds to a sub-problem.

Binary branching

n-ary branching
Branching

For the sake of efficiency, branching usually implies a partition of $X(P)$ into disjoint sub-sets (so that no solution be considered twice or more):

$$X(F_i) \cap X(F_j) = \emptyset \quad \forall i \neq j = 1, \ldots, n.$$

There are two main ways for branching:

- variable fixing;
- constraint insertion.

Every sub-problem is a restriction of its predecessor and a relaxation of its successors.
Binary branching

Common binary branching rules are as follows.

- **Branching on a binary variable.**
 A binary variable x is selected (*branching variable*). Then two sub-problems are generated by fixing $x = 0$ in a sub-problem and $x = 1$ in the other.

- **Branching on an integer constraint.**
 A vector of integer variables (x_1, x_2, \ldots, x_n), a vector of suitable integer coefficients (a_1, a_2, \ldots, a_n) and a suitable integer k are selected. Then two sub-problems are generated by inserting the constraints $ax \leq k$ in a sub-problem and $ax \geq k + 1$ in the other.
Common n-ary branching rules are as follows.

- **Branching on an integer variable.**
 An integer variable $x \in [1, \ldots, n]$ is selected (branching variable). Then n sub-problems are generated by fixing $x = 1, x = 2, \ldots, x = n$.

- **Branching on n binary variables.**
 A vector of n binary variables (x_1, x_2, \ldots, x_n) is selected. Then $n + 1$ sub-problems are generated by fixing them as follows (one row for each sub-problem):

 $x_1 = 1$

 $x_1 = 0, x_2 = 1$

 $x_1 = x_2 = 0, x_3 = 1$

 \ldots

 $x_1 = x_2 = \ldots = x_{n-1} = 0, x_n = 1$

 $x_1 = x_2 = \ldots = x_n = 0$
Branching by variable fixing

\[x_1 x_2 x_2^2 = 0 \]

- \(x_2 = 2 \)
- \(x_2 \leq 1 \)
- \(x_2 = 0 \)
Branching by constraint insertion

\[x_1 \leq 1 \]

\[x_1 \geq 2 \]
Every time two or more sub-problems are generated by a branching operation, they are appended to a list of open nodes, i.e. of sub-problems that still need to be solved.

This is necessary because a serial computer cannot examine and solve all sub-problems in parallel.

The policy followed to decide which nodes must be explored first is also called search strategy.

We call current sub-problem the sub-problem that must be solved at any generic point in time during the search.
Leaves of the tree

Usually a sub-problem is “solved” by branching, i.e. by replacing it with other sub-problems. However, this recursive branching stops when:

- the current sub-problem is detected to be infeasible;
- the current sub-problem is solved to optimality;
- the current sub-problem can be fathomed.

All these three cases (the leaves of the branch-and-bound tree) can be detected by solving a relaxation of the current sub-problem.
As a consequence of the definition of relaxation, these corollaries hold.

Corollary 1. If \mathcal{R} is infeasible, then \mathcal{P} is also infeasible.

Corollary 2. If x^* is optimal for \mathcal{R} and it is feasible for \mathcal{P} and $z_{\mathcal{R}}(x) = z_{\mathcal{P}}(x)$, then x^* is also optimal for \mathcal{P}.

Corollary 3. If $z_{\mathcal{R}}^* \geq \bar{z}$, then $z_{\mathcal{P}}^* \geq \bar{z}$.

In branch-and-bound algorithms Corollary 3 is exploited by bounding.
Bounding

Bounding is the operation of associating a dual bound with each sub-problem \(\mathcal{F} \).

Since

\[
z^*_\mathcal{R} \leq z^*_\mathcal{P}
\]

the optimal value of \(\mathcal{R}(\mathcal{F}) \) (a relaxation of \(\mathcal{F} \)) provides a dual bound to any sub-problem \(\mathcal{F} \):

\[
z^*_\mathcal{R}(\mathcal{F}) \leq z^*_\mathcal{F}
\]

The dual bound is compared against a primal bound that corresponds to the value \(z_\mathcal{P}(\bar{x}) \) of a feasible solution \(\bar{x} \in \mathcal{X}(\mathcal{P}) \).

If the dual bound of \(\mathcal{F} \) turns out to be no better than the primal bound, then \(\mathcal{F} \) can be fathomed.

\[
\text{If } z^*_\mathcal{R}(\mathcal{F}) \geq z_\mathcal{P}(\bar{x}) \text{ then Fathom } \mathcal{F}.
\]
Bounding

The correctness of the bounding operation relies upon the concatenation of two inequalities.

- The first inequality guarantees that no solution can exist in $\mathcal{X}(\mathcal{F})$ with a value better than $z^*_R(\mathcal{F})$, since

 $$z^*_F \geq z^*_R(\mathcal{F}).$$

- The second inequality is $z^*_R(\mathcal{F}) \geq z_P(\bar{x})$.

By concatenating them, we can conclude that

$$z^*_F \geq z^*_R(\mathcal{F}) \geq z_P(\bar{x})$$

which means that solving sub-problem \mathcal{F} to optimality is useless, because it cannot provide any feasible solution better than the one we already know, i.e. \bar{x}.

Fathoming sub-problems in a branch-and-bound algorithm is crucial to save computing time and memory space.
Figure: The blue sub-problem can be fathomed.
Search strategies

Different criteria to manage the list of open nodes correspond to different search strategies:

- FIFO: breadth-first search
- LIFO: depth-first search
- Sorted list: best-first search

Best-first search is usually based on the best dual bound criterion: the most promising sub-problems are explored first.

To keep a sorted list, it is useful to employ a *heap*.