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Abstract The two-dimensional level strip packing problem (2LSPP) consists in
packing rectangular items of given size into a strip of given width divided into levels.
Items packed into the same level cannot be put on top of one another and their ove-
rall width cannot exceed the width of the strip. The objective is to accommodate all
the items while minimizing the overall height of the strip. The problem is NP-hard
and arises from applications in logistics and transportation. We present a set cove-
ring formulation of the 2LSPP suitable for a column generation approach, where each
column corresponds to a feasible combination of items inserted into the same level.
For the exact optimization of the 2LSPP we present a branch-and-price algorithm, in
which the pricing problem is a penalized knapsack problem. Computational results
are reported for benchmark instances with some hundreds items.

MSC classification (2000) 90C27

1 Introduction

In several industrial applications it is required to place a set of rectangular items in
standard stock units. In wood and glass manufacturing, for instance, rectangular com-
ponents must be cut from large pieces of material; in warehouses, the goods must be
placed on shelves; in the design of newspapers layout it is needed to arrange articles
and advertisements in pages of given size. These difficult combinatorial problems are
often modeled as two-dimensional packing or cutting problems. Reviews on packing
and cutting problems and methods can be found in Dickhoff et al. (1997) and Wäscher
et al. (2006), while in Fekete and Schepers (1997, 2004a,b) the authors propose general
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362 A. Bettinelli et al.

graph-theoretical frameworks for devising bounds on multi-dimensional packing pro-
blems.

In production contexts such as clothes or paper manufacturing, a single strip of
material is available and a set of items must be obtained from the strip. The aim is
to cut the desired items, while minimizing the height of the strip to be used. This
problem is called two-dimensional strip packing (2SPP). Recently a fully polynomial
time approximation scheme for the 2SPP has been proposed (Kenyon and Rémila
2000). Martello et al. (2003) presented a branch-and-bound algorithm, which is able
to solve 2SPP instances with up to 200 items at optimality in one hour of computing
time.

In this paper we study a variation of the 2SPP in which a further restriction is
imposed: the items must be organized into horizontal strips, indicated as levels; inside
each level, the items cannot be put on top of one another. This problem, surveyed by
Lodi et al. (2002a) and referred to as two-dimensional level strip packing problem
(2LSPP), is NP-hard in the strong sense, because it contains the bin-packing problem
as a special case (Garey and Johnson 1979).

The 2LSPP can be approximated with fast heuristics, which provide also an a
priori guarantee on the quality of the solution (Berkey and Wang 1987; Lodi et al.
2002a). More recently, Lodi et al. (2002b) proposed a formulation for the 2LSPP with
a polynomial number of variables and constraints; the effectiveness of state-of-the-art
general purpose ILP solvers makes this approach particularly appealing.

In this paper we introduce a new formulation for the 2LSPP as a set covering
problem. The linear relaxation of this model is optimized with column generation,
and the lower bound found in this way is used in a branch-and-price algorithm. In
Sect. 2 we present our formulation and we discuss its relationship with the compact
formulation of Lodi et al. (2004). In Sect. 3 we outline the main issues in the design
of our branch-and-price algorithm. Finally, in Sect. 4 we report the outcome of our
experimental analysis.

2 Problem formulation

In the 2LSPP we are given a strip, whose width is a positive integer W , and a set N of
N items, where each item j ∈ N has positive integer width and height, denoted by w j

and h j respectively. The items must be packed into levels: the sum of the widths of the
items in the same level cannot exceed the width of the strip. Items in the same level
cannot be piled up; hence the height of each level corresponds to the maximum height
of an item in that level. We call this particular item the leading item and we say that
the leading item initializes the level. Throughout the paper we assume that the items
are sorted by non-decreasing height values: hi ≤ h j for each i < j . Hence, without
loss of generality, we can state that no item i can be assigned to a level initialized by
item j if i > j .

Lodi et al. (2002b) proposed an integer linear programming (ILP) compact formu-
lation for the 2LSPP, which is reported here below. Each binary variable xi j indicates
whether item i is assigned to a level in which j is the leading item; therefore each
binary variable x j j indicates whether item j is a leading item. Because of the ordering
of the items, we can fix each xi j variable with i > j to 0 and remove it from the model.
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A branch-and-price algorithm for the two-dimensional level strip packing problem 363

min
∑

j∈N
h j x j j (1)

s.t.
∑

j≥i

xi j = 1 ∀i ∈ N (2)

∑

i< j

wi xi j ≤ (W − w j )x j j ∀ j ∈ N (3)

xi j ∈ {0, 1} ∀i ≤ j ∈ N (4)

Constraints (2) impose that each item is assigned to a level. Constraints (3) impose
that the sum of the widths of the items assigned to the same level does not exceed the
width of the strip. The objective is to minimize the overall height of the strip, that is
the sum of the heights of the leading items.

A set covering reformulation. A lower bound for the 2LSPP can be obtained from
the model above by replacing the integrality conditions (4) with the inequalities
0 ≤ xi j ≤ 1. We sharpen this bound exploiting Dantzig-Wolfe decomposition
(Martin 1998); for each j ∈ N , let � j be the set of levels complying with the capacity
constraints (3) and let ȳ j = (ȳ1, . . . , ȳN ) be the generic point of � j :

� j =
⎧
⎨

⎩y ∈ R
N+|

∑

i< j

wi yi ≤ (W − w j )y j , yi = 0 ∀i > j, 0 ≤ yi ≤ 1 ∀i ∈ N
⎫
⎬

⎭ .

Let K j be the index set of the integer points in � j and let yk be the generic integer
point of � j . Each point y in the convex hull of � j can be expressed as a convex
combination of the integer points of � j :

conv(� j ) =
⎧
⎨

⎩y ∈ R
N+|y =

∑

k∈K j

zkyk,
∑

k∈K j

zk = 1, 0 ≤ zk ≤ 1 ∀k ∈ K j

⎫
⎬

⎭ . (5)

Hence we have
xi j =

∑

k∈K j

yk
i zk ∀i, j ∈ N (6)

and by substitution from the linear relaxation of model (1)–(4) the following relaxation
of the 2LSPP is obtained:

min
∑

j∈N

⎛

⎝h j

∑

k∈K j

yk
j zk

⎞

⎠

s.t.
∑

j≥i

∑

k∈K j

yk
i zk = 1 ∀i ∈ N

∑

k∈K j

zk = 1 ∀ j ∈ N (7)

0 ≤ zk ≤ 1 ∀ j ∈ N ,∀k ∈ K j .
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Here, all polyhedra � j have been replaced by their convex hulls. Due to this convexifi-
cation, the bound found by optimizing this model dominates that of the linear relaxation
of the 2LSPP.

We further elaborate on this model. First of all we remark that each K j contains the
index of a point representing an empty level: these points (yk

j = 0 and therefore yk
i =

0 ∀i ≤ j) can be considered implicitly by rewriting constraints (7) as inequalities; since
only points with yk

j = 1 remain, the objective function can be simplified accordingly:

min
∑

j∈N

⎛

⎝h j

∑

k∈K j

zk

⎞

⎠

s.t.
∑

j≥i

∑

k∈K j

yk
i zk = 1 ∀i ∈ N (8)

∑

k∈K j

zk ≤ 1 ∀ j ∈ N (9)

0 ≤ zk ≤ 1 ∀ j ∈ N ,∀k ∈ K j .

Furthermore no item is chosen more than once as a leading item in optimal solutions
and hence constraints (9) are redundant and can be deleted. Finally the set partitio-
ning constraints (8) can be replaced by set covering constraints, because it is never
convenient to pack an item in more than one level.

After these manipulations the resulting model is the following:

(MP) min
∑

j∈N

⎛

⎝h j

∑

k∈K j

zk

⎞

⎠ (10)

s.t.
∑

j≥i

∑

k∈K j

yk
i zk ≥ 1 ∀i ∈ N (11)

0 ≤ zk ≤ 1 ∀ j ∈ N , ∀k ∈ K j . (12)

In this linear master problem (MP) the column corresponding to each variable zk with
k ∈ K j represents a feasible set of items packed into a same level initialized by item
j . An ILP formulation of the 2LSPP, alternative to (1)–(4), is obtained by restoring
the integrality conditions zk ∈ {0, 1} in the model above.

The pricing problem. Model (10)–(12) may have a huge number of columns. There-
fore a restricted master problem (RMP) involving a subset of the variables is considered
and columns not included in the RMP are iteratively generated when needed.

Let λ be the vector of the non-negative dual variables associated with covering
constraints (11) in a RMP optimal solution. The pricing problem we need to solve to
identify new columns (x1, . . . , xN ) is the following: π(λ) = min j∈N {π j (λ)}, where
for each j ∈ N
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π j (λ) = min h j y j −
∑

i≤ j

λi yi (13)

s.t.
∑

i< j

wi yi ≤ (W − w j )y j (14)

yi ∈ {0, 1} ∀i ≤ j. (15)

Thus a negative reduced cost column can be generated by solving at most |N | binary
knapsack problem instances, one for each j ∈ N , obtained by setting y j = 1.

Generating at each iteration as many negative reduced cost columns as possible is
a common practice in branch-and-price (Desaulniers et al. 2005). However, solving
a large number of knapsack problems to optimality can be unnecessary, since we
just need one negative reduced cost column, provided it exists. Therefore, we solve a
pricing problem in which the leading item is not fixed, but rather it must be chosen
in an optimal way, that is we search for the column of minimum reduced cost for
all possible choices of the leading item. The pricing problem can be rewritten in an
equivalent way as follows:

π(λ) = min η −
∑

i∈N
λi yi (16)

s.t.
∑

i∈N
wi yi ≤ W (17)

hi yi ≤ η ∀i ∈ N (18)

yi ∈ {0, 1} ∀i ∈ N . (19)

Each binary variable yi is equal to 1 if and only if item i is assigned to the level
represented by the new column. The free variable η is a penalty term. The value of η

is determined by the height of the leading item of the level. The capacity constraint
(17) imposes that the overall width of the level does not exceed the width of the strip.

The objective function (16) can be rewritten in maximization form:

π ′(λ) = max
∑

i∈N
λi yi − η.

This pricing problem can be solved with special purpose algorithms for the penalized
knapsack problem (PKP), illustrated in Ceselli and Righini (2006).

3 Branch-and-price

Branching strategy. We base our branching rule on the x variables of the compact
ILP formulation (1)–(4): once an optimal MP solution z∗ is obtained, a corresponding
(fractional) solution x∗ in terms of the original variables can be found exploiting the
relation x∗

i j = ∑
k∈K j

yk
i z∗

k for each i, j ∈ N , where yk
i is the i th component of each

integer vector yk ∈ � j with k ∈ K j .
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We have adopted a two-stage branching strategy: in the first stage search-tree the
branching decisions are taken on the x j j variables, i.e. the leading items are chosen;
in the second stage search-tree feasibility problems are solved: the non-leading items
must be packed into the levels initialized by the leading items selected in the first
stage, without violating width and height constraints. In both stages branching is done
on the x variable whose value is closest to 0.5 and the branching variable is fixed to
0 in one branch and to 1 in the other branch; x j j variables are considered in the first
stage and xi j variables with i �= j are considered in the second stage.

These variable fixing operations slightly change the structure of the pricing problem.
In the first stage, each time a x j j variable is fixed to 1, j is discarded from the set of
items in the PKP optimization, and an additional KP is solved, to compute the best
solution in which j is the leading item; when a x j j variable is fixed to 0, it is simply
discarded from the set of candidate leading items in the PKP. In the second stage the
pricing problem is a KP for each level. Therefore fixing xi j variables only reduces the
dimension of these KP instances.

The search trees are explored in a best-bound-first order.

Initialization. In order to obtain an initial set of columns to populate the RMP, we
used the well known best-fit decreasing-height (BFDH) heuristic (Lodi et al. 2002a).
The items are iteratively considered from item N down to item 1 and in each iteration
the current item is packed into the level with the minimum residual capacity among
those that can accommodate it. If an item cannot be accommodated in this way, a
new level is initialized. We implemented a simple randomized version of this heuristic
(r -BFDH): a preprocessing step is added, in which r items are randomly drawn from
a uniform probability distribution and the corresponding levels are initialized.

Besides running the original version of BFDH once, three r -BFDH solutions are
computed for each value of r from 1 to �∑i∈N wi/W	, that is the number of levels in
a fractional solution rounded up (this is a trivial lower bound on the number of levels
of an optimal solution). The best solution value found in this way is also kept as an
initial upper bound.

Upper bounds. We experimentally observed that the r -BFDH heuristic often provides
tight bounds. Nevertheless, we incorporate a fast heuristic rounding algorithm for
the set covering problem, in order to search for good integer solutions during the
exploration of the search-tree. The heuristic rounding algorithm works as follows:
initially, all the items are uncovered, and the columns of the RMP are sorted by
non-increasing value of the corresponding zk variables; following this order, each
column k is considered: if column k represents a level containing uncovered items, the
corresponding zk variable is rounded up to 1 and each item in k is marked as covered,
otherwise the zk variable is fixed to 0.

We run this heuristic once for each node of the search tree, when the column
generation process is over.

Problem reduction. Consider a generic node P of the first stage search-tree; let N (P)

be the set of already selected leading items, v(P) be the sum of their heights, and U B
be the value of the best incumbent integer solution. For each item j ∈ N \ N (P), if
v(P) + h j ≥ U B, then j can be discarded from the set of candidate leading items in
node P .
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Columns deletion and re-insertion. Each time a node of the search-tree is considered,
the columns in the RMP with a reduced cost higher than a given threshold are moved
into a separate pool. The reduced cost of each column is computed with respect to
the optimal dual solution of the ancestor node. In our implementation, the removal
threshold is computed as the difference between the best known upper and lower
bounds, divided by �∑i∈N wi/W	.

The columns pool is scanned at each column generation iteration: whenever a
column is found to have a negative reduced cost with respect to the current dual
solution, it is re-inserted into the RMP. Each column is kept into the pool for a certain
number of consecutive unsuccessful checks; then it is erased. For our computational
experiments we set this number to 6.

Lagrangean bounds. The bound obtained by optimizing the master problem can also
be obtained by solving a Lagrangean dual problem when the set of constraints (2) is
relaxed:

max
λ≥0

ω(λ) = min
∑

j∈N
h j x j j −

∑

i∈N
λi

⎛

⎝
∑

j≥i

xi j − 1

⎞

⎠

s.t.
∑

i< j

wi xi j ≤ (W − w j )x j j ∀ j ∈ N

xi j ∈ {0, 1}. ∀i ≤ j ∈ N

For each set of multipliers λ this problem is analogous to the pricing problem for
the set covering formulation of the 2LSPP. In fact, it decomposes into independent
subproblems, one for each j ∈ N :

min π j (λ) = h j x j j −
∑

i≤ j

λi xi j

s.t.
∑

i< j

wi xi j ≤ (W − w j )x j j

xi j ∈ {0, 1} ∀i ≤ j ∈ N .

Therefore, each subproblem j can be optimized by considering two cases: if the
variable x j j is fixed to 1, then the remaining problem is a binary knapsack; this is
solved to optimality obtaining a value π j (λ). If the variable x j j is fixed to 0, then each
variable xi j with i < j must be set to 0; this yields a solution of null value. Hence, for
any choice of the λ multipliers, a valid lower bound ω(λ) for the 2LSPP is given by

ω(λ) =
∑

i∈N
λi +

∑

j∈N
min{π j (λ), 0}.

However, a key property of our pricing routine is actually to implicitly consider these
π j values to avoid the optimization of a large number of knapsack problems. In fact,
the one with minimum value is computed by solving a PKP. Therefore, a lower bound
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ω(λ) on ω(λ) can be obtained by replacing each π j (λ) value with a corresponding
lower bound π j (λ).

ω(λ) =
∑

i∈N
λi +

∑

j∈N
min{π j (λ), 0}.

We initially approximate each π j (λ) with the value of the linear relaxation of the
corresponding subproblem. These values are readily available, since they are computed
in a preprocessing step by the algorithm for the PKP. Furthermore, whenever a tighter
bound is computed during the optimization of the PKP, the corresponding value π j (λ)

is updated and the bound ω(λ) is tightened.
Whenever, during the column generation iterations, the difference between the

highest ω(λ) encountered and the RMP optimal value is less than 10−6, the column
generation process is terminated, and the Lagrangean bound is kept as the final lower
bound.

Variable fixing. We use the π j (λ) values to fix variables. Once these values have been
computed, the following reduction tests can be checked in linear time: let U B be the
value of the incumbent integer solution:

• for each j such that π j (λ) < 0, if �ω(λ) − π j	 ≥ U B then j can be fixed as a
leading item (i.e. x j j is fixed to 1);

• for each j such that π j (λ) > 0, if �ω(λ) + π j	 ≥ U B then j can be discarded
from the set of candidate leading items (x j j is fixed to 0).

Combinatorial bound. Finally, we incorporated in our bounding procedure a combi-
natorial lower bound (called CUT in the remainder) proposed by Lodi et al. (2004). It
consists in splitting each item in vertical strips of unit width and in filling the levels
by considering these strips in order of non-increasing height. This bound dominates
that given by the LP relaxation of the compact formulation (1)–(4), but no dominance
relation exists with the set covering LP bound. Since we are assuming that items have
been sorted in a preprocessing step, this bound can be computed in linear time.

The CUT bound is computed for each node of the search-tree before the column
generation process is started. Whenever the value of an RMP optimal solution is found
to be less than the value of the CUT bound, the column generation process is halted,
and the CUT bound is kept as the lower bound.

4 Computational results

Our branch-and-price algorithm was implemented in C++ and compiled with a GNU
C/C++ compiler version 3.2.2. We solved the restricted linear master problem with
the CPLEX 8.1 implementation of the primal simplex algorithm. All our experiments
were run on a Linux workstation equipped with a Pentium IV 1.6 GHz processor and
512 MB RAM. A time limit of 1 h was imposed to each test. Furthermore, the program
was halted whenever the computation exceeded the amount of physical memory.

In order to assess the effectiveness of our method, we considered two data-sets
for two-dimensional packing problems widely used in the literature; they are both
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A branch-and-price algorithm for the two-dimensional level strip packing problem 369

described in Lodi et al. (2004). The first one consists of 5 classes of instances: BENG
(10 instances), CGCUT (3 instances), GCUT (4 instances), HT (9 instances) and
NGCUT (12 instances). The second data-set consists of 500 instances, divided into 10
classes of 50 instances, named MV and BW. They contain instances involving up to
200 items with different types of correlation between height and width of the items.

In this section we present aggregated results. A complete report of our experiments
is available in a technical report (Bettinelli and Ceselli 2007).

We considered two pricing policies: a best-negative policy, in which a PKP is solved
at each column generation iteration and only the most negative reduced cost column is
generated, and an all-negative policy, in which N binary knapsack problems (13)–(15)
are solved and up to N negative reduced cost columns are generated. For this purpose
we compared three different codes for the binary knapsack. This comparison is illus-
trated in Subsect. 4.1. In Subsect. 4.2 we compare different lower bounds given by
different formulations for the 2LSPP. Finally, in Subsect. 4.3 we evaluate the results
of our branch-and-price algorithm versus CPLEX 8.1, also comparing best-negative
and all-negative pricing policies.

4.1 Tuning the all-negative pricing policy

To solve the binary knapsack problem instances, with non-integer coefficients in the
objective function, we tried different techniques: (1) the MINKNAP algorithm pre-
sented in Pisinger (1997) adapted to non-integer coefficients as described in Ceselli
(2003); (2) the MT1R algorithm Martello and Toth (1990), for which an implemen-
tation able to deal with non-integer coefficients is freely available on the Internet; (3)
the COMBO algorithm Martello et al. (1999), which is considered the state-of-the-art
code for knapsack problem instances with integer coefficients, scaling the coefficients
by a factor M and rounding them down. The source code of the three algoritmhs is
available on the Internet (Pisinger 2007; Martello and Toth 2007).

The third approach has two drawbacks: first, due to rounding, the value z∗
COMBO of

the solution given by COMBO can differ by up to N · 1
M from the optimal one, and

therefore a valid lower bound for the pricing problem (16)–(19) can be obtained from
z∗

COMBO + N
M . Second, setting M to very large values produces better approximations,

but this may cause numerical overflow problems. Since in our data-sets there are
instances with N > 102, setting M to less than 104 produces too weak bounds; therefore
we performed experiments setting M to 104, 105 and 106.

In order to emphasize the effect of the knapsack algorithm implementation, we
turned off the CUT bound computation, allowing more nodes of the branch-and-bound
tree to be explored and more pricing iterations to be performed.

In order to catch numerical overflow problems using COMBO, we ran the branch-
and-price algorithm twice for each instance: during the first run both MINKNAP
and the scaled COMBO were independently used to solve each knapsack instance.
In this way we could detect numerical problems when the values produced by these
algorithms were different by more than N · 1

M . In the second run only the scaled
COMBO was used and its performances were kept as the results of our experiment.
By setting M = 106 we observed numerical problems in 232 of the 500 instances of
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Table 1 Comparison of knapsack codes

Class MINKNAP MT1R Combo M = 104 Combo M = 105

Inst Gap (%) Time(s) Inst Gap (%) Time(s) Err Inst Gap (%) Time(s) Err Inst Gap (%) Time(s)

BENG 3 3.62 15.95 3 3.73 21.12 3 4.70 16.48 3 4.69 16.40

GCUT 4 0.00 7.74 4 0.00 7.92 4 0.00 9.81 4 0.00 9.30

NGCUT 12 0.00 0.04 12 0.00 0.03 12 0.00 0.04 12 0.00 0.04

CGCUT 3 0.00 1.16 3 0.00 1.24 3 0.00 0.83 3 0.00 0.82

HT 9 0.00 1.24 9 0.00 1.56 9 0.00 0.98 9 0.00 0.98

MV01 49 0.63 36.74 49 0.63 36.98 0 46 0.46 85.90 3 46 1.00 84.40

MV02 22 3.68 284.23 21 3.68 277.26 1 22 4.44 373.07 1 22 4.44 377.89

MV03 49 0.16 6.74 49 0.16 7.15 0 47 0.17 16.41 0 47 0.17 16.48

MV04 22 1.82 192.07 22 1.84 226.79 8 22 2.16 104.97 8 23 2.17 107.23

BW01 49 0.27 7.51 49 0.27 7.76 0 47 0.13 11.57 0 47 0.13 11.62

BW02 21 1.67 326.89 20 1.63 188.39 14 21 1.91 31.28 14 21 1.91 31.98

BW03 50 0.00 0.52 50 0.00 0.53 0 44 0.04 1.25 0 44 0.04 1.17

BW04 23 1.35 306.70 23 1.37 325.49 8 21 1.49 25.10 8 21 1.49 25.59

BW05 50 0.00 0.08 50 0.00 0.08 0 41 0.02 0.06 0 41 0.02 0.06

BW06 43 1.42 160.26 43 1.42 169.91 2 42 1.30 97.39 2 42 1.30 99.60

the second data-set, so we did not perform further experiments with this parameter
choice.

Our computational results are reported in Table 1 for the first and the second data-
set, respectively. The table is composed by four blocks, one for each branch-and-price
version equipped with a particular knapsack code, as indicated in the heading row.
The ‘MINKNAP’ and ‘MT1R’ blocks contain the number of instances in each class
which were solved to proven optimality (‘Inst’), the average optimality gap for the
unsolved instances (‘Gap’) and the average time required to complete the computation
on the solved instances (‘Time’). The optimality gap is defined as (U B − L B)/U B,
where U B and L B are, respectively the best upper and lower bounds found during
the computation. In the ‘COMBO’ blocks we indicate also the number of instances
for which numerical overflow problems were observed (‘Err’).

From our experiments we concluded that the scaling policy is impractical, because
for both M = 104 and M = 105 numerical problems arose for more than 30 of the
500 instances of the second data-set. Furthermore considering the set of 337 instances
solved to optimality using both MINKNAP and COMBO with M = 104 and in which
no numerical problems were observed, the branch-and-price implementation equipped
with MINKNAP took 40.75 s and the one equipped with COMBO took 58.94 s on the
average. When setting M = 105 the implementation equipped with COMBO took
on the average 59.49 s on the same set of 337 instances. Both MINKNAP and MT1R
were effective in solving the knapsack subproblems. However, MINKNAP allowed us
to solve 2 more instances to proven optimality; moreover, considering the set of 376
instances which both algorithms solved to proven optimality, the branch-and-price
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algorithm with MINKNAP took on the average 74.99 s, while the one with MT1R
took 84.96 s.

Therefore in our final tests with the branch-and-price algorithm using the all-
negative pricing policy, we relied upon the MINKNAP adaptation for solving the
binary knapsack problem instances.

4.2 Lower bounds

We compared three different lower bounds, namely the lower bound given by the
linear relaxation of the set covering formulation (10)–(12), indicated hereafter with
SC bound, the lower bound given by the linear relaxation of the compact formulation
(1)–(4), indicated with LP bound, and the CUT lower bound. As a measure of the
duality gap we considered, for each instance, the ratio (U B − L B)/U B, where U B
is the value of the BFDH heuristic solution and L B is the value of the lower bound
considered. In Table 2 we report the average values of the percentage gap for the
instances in each class of the first and the second data-set, respectively. Each row of
these tables corresponds to a class of instances. Since the LP and CUT values can be
obtained in few hundredths of second for each instance of both data-sets, we report
the average CPU time and number of iterations needed for computing the SC bound
only (columns ‘Time’ and ‘CG iter.’, respectively).

Table 2 Comparison of lower bounds

Class LP bound CUT bound SC bound

Avg. gap (%) Avg. gap (%) Avg. gap (%) Time (s) CG iter.

BENG 6.75 0.47 4.69 1.13 178.90

GCUT 14.91 10.57 0.14 0.02 3.75

NGCUT 12.57 4.21 5.10 0.01 8.17

CGCUT 4.66 4.66 6.95 0.05 20.67

HT 7.80 0.40 4.09 0.02 26.00

MV 01 8.73 6.37 2.29 0.06 3.30

MV 02 7.80 1.00 5.46 0.16 71.44

MV 03 11.95 8.97 2.96 0.07 7.40

MV 04 7.99 1.55 3.80 0.26 94.42

BW 01 11.90 9.40 2.19 0.07 5.34

BW 02 8.68 1.79 3.78 0.32 104.76

BW 03 14.57 12.17 0.69 0.10 2.52

BW 04 8.61 5.42 4.53 0.20 33.76

BW 05 19.18 17.77 0.04 0.09 2.02

BW 06 9.24 4.80 2.56 0.12 19.44
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The LP bound is weaker than the CUT bound also from an experimental point of
view. For the instances of the first data-set, CUT is on the average the tightest bound,
while for the instances of the second data-set the SC bound is clearly superior (see,
for instance, classes BW03 and BW05). On the other hand, the computation of the SC
bound was often two orders of magnitude slower than that of the CUT bound.

Finally it is worth noting that the CUT and SC bounds seem to be complementary,
since they are tighter for different classes of instances. This observation was one of the
motivations for including the computation of both bounds in a unique lower bounding
routine to solve the 2LSPP to optimality.

4.3 Solving the 2LSPP to proven optimality

We compared the performance of our branch-and-price algorithm with that of
CPLEX 8.1, used as a general purpose ILP solver to optimize the compact model
(1)–(4).

Table 3 contains the results for the first and the second data-set, respectively. Each
entry of the table represents an average value of the instances in a class, and the class
identifiers are indicated in the first column. The table is made by three blocks; each
of them corresponds to the solution method indicated in the first row. In each block

Table 3 Solving the 2LSPP to proven optimality

Class B&P, Best-neg. pricing B&P, All-neg. pricing CPLEX 8.1

Inst Avg. gap (%) Time(s) Inst Avg. gap (%) Time(s) Inst Avg. gap (%) Time(s)

BENG 10 0.00 0.02 10 0.00 0.02 3 4.96 24.47

GCUT 4 0.00 9.00 4 0.00 6.86 4 0.00 1.06

NGCUT 12 0.00 0.03 12 0.00 0.02 12 0.00 0.09

CGCUT 3 0.00 0.58 3 0.00 0.97 3 0.00 67.01

HT 9 0.00 0.04 9 0.00 0.03 9 0.00 10.14

Total 38 38 31

MV 01 49 0.62 37.80 49 0.63 36.65 48 0.54 14.09

MV 02 46 1.01 43.59 46 1.01 91.24 25 4.26 150.01

MV 03 49 0.42 9.78 49 0.16 7.16 47 0.47 22.49

MV 04 42 0.86 161.71 42 1.04 75.66 21 3.98 173.26

BW 01 49 0.23 6.84 49 0.27 7.90 48 0.60 19.29

BW 02 37 0.92 259.43 37 0.95 349.79 21 4.35 114.12

BW 03 50 0.00 0.53 50 0.00 0.58 50 0.00 0.16

BW 04 24 1.28 254.85 23 1.28 168.95 17 2.08 94.71

BW 05 50 0.00 0.08 50 0.00 0.09 50 0.00 0.04

BW 06 43 1.51 140.10 43 1.42 129.85 34 1.20 224.74

Total 439 438 361
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we report the number of instances in each class that were solved to proven optimality
(column ‘Inst’), the average percentage gap between the value of the incumbent primal
solution (U B) and the lower bound (L B), defined as (U B−L B)/U B, for the instances
in which optimality was not proven (column ‘Avg. gap’) and the average computing
time for the instances that were solved to proven optimality (column ‘Time’). In the last
row of the table we report the total number of instances solved to proven optimality.

The best-negative pricing policy yielded better results with respect to the all-
negative policy. Using the former policy, branch-and-price solved one more instance
to proven optimality. As far as computing time is concerned, a comparison was made
on the 474 instances solved by both techniques: the average computing time with
best-negative and all-negative was 52.43 and 61.75 s, respectively. Best-negative is
especially preferable for the ‘difficult’ instances (those for which the overall compu-
ting time exceeds 30 min): this can be explained, because in these cases the master
problem tends to grow larger and larger as time passes and hence it pays off to insert
only the best columns and to keep the size of the master problem limited.

Branch-and-price solved all the instances in the first data-set, while CPLEX left
a large gap on 7 of the 10 BENG instances. Moreover, branch-and-price was on
the average much faster on the remaining classes. Branch-and-price performed much
better than CPLEX also on the instances of the second data-set, solving more problems
and consistently requiring less computing time or yielding tighter approximations, with
the only exception of the ‘easy’ instances in the classes BW03 and BW05.
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