
Journal of Scheduling
https://doi.org/10.1007/s10951-022-00751-9

Algorithms for rescheduling jobs with a LIFO buffer to minimize the
weighted number of late jobs

Ulrich Pferschy1 · Julia Resch1 · Giovanni Righini2

Accepted: 1 August 2022
© The Author(s) 2022

Abstract
Rescheduling can help to improve the quality of a schedule with respect to an initially given sequence. In this paper, we
consider the possibility of rescheduling jobs arriving for processing at a single machine under the following limitations: (a)
jobs can only bemoved toward the end of the schedule and not toward the front, and (b) when a job is taken out of the sequence,
it is put on a buffer of limited capacity before being reinserted in its new position closer to the end of the sequence. The buffer
is organized as a stack with a last-in/first-out policy. As an objective function, we consider the minimization of the weighted
number of late jobs. For this NP-hard problem, we first provide two different integer linear programming (ILP) formulations.
Furthermore, we develop a branch-and-bound algorithm with a branching rule based on the movement of jobs. Then a new
pseudo-polynomial dynamic programming algorithm is presented which utilizes dominance criteria and an efficient handling
of states. Our computational experiments with up to 100 jobs show that this algorithm performs remarkably well and can be
seen as the current method of choice.

Keywords Scheduling · Rescheduling · Integer linear programming · Dynamic programming · Branch-and-bound

1 Introduction

In current production environments, planners are facing pres-
sure to ensure the best possible utilization of costly machin-
ery, while at the same time the imperative for high flexibility
and last-minute arrivals of orders implies that production data
are becomingmore volatile. Product customization up to unit
lot size requires a continuous reconsideration of the produc-
tion sequence instead of a once-for-all production plan for the
traditional manufacturing of identical products with large lot
sizes. Usually, jobs go through several work stages which
should be coordinated (cf. Agnetis et al. 2006). If the job

B Ulrich Pferschy
ulrich.pferschy@uni-graz.at

Julia Resch
julia.resch@uni-graz.at

Giovanni Righini
giovanni.righini@unimi.it

1 Department of Operations and Information Systems,
University of Graz, Universitaetsstrasse 15, 8010 Graz,
Austria

2 Department of Computer Science, University of Milan, Via
Celoria 18, 20133 Milan, Italy

sequence is optimized for one critical machine (or simply
given by the arrival of parts), it would be highly desirable
to reorganize the job sequence for the subsequent machine
which may have different characteristics and thus would be
less efficiently utilizedby theoriginal sequence. For example,
in automobile production, cars have different colors, which
asks for a grouping of similarly colored cars in the paint
shop to reduce setup times. However, subsequent production
stages, where for example different sets of options have to
be installed requiring widely differing production times, will
require quite different sequences to optimally utilize the pro-
duction capacity and to fulfill deadlines at the end of the line
(see e.g. Drexl et al. 2006). Thus, different production stages
would imply different optimal sequences. Clearly, consider-
ing space and handling effort, it is out of the question to fully
reorder the sequence of jobs between any two production
stages. However, a limited reordering operation where prod-
uct units are taken out from the line and put into a waiting
area of limited capacity before being reinserted is well within
the technical capabilities of many production environments.
Also last-minute changes of the expected or estimated pro-
cessing times or the late disclosure of job data cause a need
for changes in the sequence of jobs as they arrive for pro-
cessing.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-022-00751-9&domain=pdf
http://orcid.org/0000-0001-8881-1497

Journal of Scheduling

In this paper, we consider the following setting of a single-
machine problem which was introduced in Nicosia et al.
(2019) and treated in more detail in Nicosia et al. (2021).

There is a sequence of jobs given to be processed sequen-
tially on a single machine. Preceding production stages only
play a role insofar as the given sequence of jobs originated
from these stages.We can rearrange the jobs before they enter
the considered machine to improve the value of a certain
objective function depending on the job sequence. However,
the rearrangement is restricted by a physical handling device.
In our setting, we envision jobs to arrive on a (slowly)moving
conveyor belt which transports them toward the considered
single machine for processing. A job (which is equivalent to
a physical part) can be picked, e.g., by a robot, and taken
out of the sequence to be placed in a buffer of limited capac-
ity. Then additional jobs may be taken out of the sequence,
but at some point the job is reinserted into the sequence at a
later position on the conveyor belt. Thus, it is only possible to
“move a job backwards” in the sequence, but never “forward”
to an earlier position. Moreover, we assume that the buffer
is organized as a stack, i.e., the most recently removed job
must be reinserted first which amounts to a last-in/first-out
(LIFO) organization of the buffer.

The main contributions of the preceding paper by Nicosia
et al. (2021) for the rescheduling problem were strictly poly-
nomial algorithms based on dynamic programming for the
minimization of the following classical objective functions:

– total weighted completion time,
– maximum lateness (and maximum of regular scheduling
functions),

– number of late jobs.

Furthermore, the authors considered the minimization of
the weighted number of late jobs. For this objective, the
rescheduling problemwas shown to beNP-hard. InNicosia et
al. (2021), only a pseudo-polynomial dynamic programming
algorithm was given, as an extension of the respective algo-
rithm for the unweighted case. However, the development
and evaluation of actually applicable solution strategies was
left open in this previous work.

In this paper, we will study more extensively this rele-
vant NP-hard case which reflects the case of due dates for
products at the end of the line imposed, for example, by
tight outbound logistic plans. Any violation of the due date
of an item causes inconvenience as well as handling and
penalty costs, weighted by the importance of the customer.
Note that besides being the most natural NP-hard version of
the rescheduling problem, the weighted number of late jobs
can be of particular importance for on-demand production
scenarios. If orders arrive for possible processing with a tight
time frame, but not all of them can ultimately be accepted for
production, it is crucial to keep those with the highest profit

or, equivalently, those which would incur the highest loss if
they were not produced. For orders with low profit, i.e., low
weights, it is less disturbing if they cannot meet the deadline.
However, while in the standard scheduling situation late jobs
are usually moved to the end of the sequence or completely
canceled, this will often be impossible in rescheduling prob-
lems due to the rearrangement restrictions. Therefore, there
will be orders being processed although they will miss their
deadline. This outcome poses an interesting challenge and
leaves room for additional negotiations between the producer
and the ordering customer about the monetary compensation
for orders fulfilled after their deadline.

Other operational restrictions on possible rearrangements
for such a conveyor-based scenariowere considered inAlfieri
et al. (2018b). In the literature, various other situations of
rescheduling were considered. One research branch going
back to the seminal work of Hall and Potts (2004) considers
the arrival of new jobs to be integrated into the sequence of
old jobs (see also Hall et al. 2007 and Rener et al. 2022).
Another direction moving into the area of robust optimiza-
tion deals with changes in the original data of the jobs. The
corresponding rescheduling issues were discussed, e.g., in
Abumaizar and Svestka (1997); Detti et al. (2019); Niu et al.
(2019) andBallestín et al. (2019).An interesting aspect in this
direction is that of recoverable robustness (see e.g. Liebchen
et al. (2009)). There, one looks for a solution that can bemade
feasible by a simple recovery step (see Akker et al. 2018 for
a scheduling contribution). In this context, rescheduling can
also be seen as a recovery step. Also, disruptions can give
rise to the need for rescheduling a previously planned sched-
ule. This was treated, e.g., by Hall and Potts (2010) for the
case of delayed jobs, Nouiri et al. (2018) for random disrup-
tion events, and Li and Li (2020) for accidents. The recently
published monographWang et al. (2020) provides a compre-
hensive overview. Two survey papers treating rescheduling
topics are presented by Ouelhadj and Petrovic (2009) and
Vieira et al. (2003). Additional pointers to the related litera-
ture can be found in Nicosia et al. (2021).

In this paper, we perform a comprehensive algorithmic
treatment of the minimization of the weighted number of late
jobs. Our contributions can be summarized as follows: After
giving the definition of the problem of rescheduling jobs with
a LIFO buffer in order to minimize the weighted number of
late jobs in Sect. 2, we propose ILP formulations in Sect. 3.
One is based on decision variables for every move of a job,
while the other utilizes assignment variables for placing jobs
at their new position. In the former model, the number of
constraints is asymptotically larger than in the latter model
by one or two orders of magnitude. However, it turns out that
computationally, the latter, more compact model is hardly
tractable and is clearly outstripped by the more capacious
move-based model.

123

Journal of Scheduling

In Sect. 4, we develop a new realization of a dynamic pro-
gramming algorithm. While the previous dynamic program
from Nicosia et al. (2021) turns out to be hardly applicable
even for moderate-sized test instances, our new algorithm
employs dominance criteria and an efficient handling of lists
of states, resulting in a competitive solution method.

While dynamic programming can be seen as a bottom-
up strategy, we also develop a branch-and-bound algorithm
following a top-down approach. As described in Sect. 5, we
use a branching rule based on moves of jobs. Note that the
structure of the rescheduling problem requires particular care
to avoid themultiple treatment of identical subproblems. The
lower bound is derived from identifying jobs that can never
be on time in the considered subproblem.

Section 6 reports on experimental results with all the
presented algorithms. It turns out that the new dynamic pro-
gramming algorithm and the branch-and-bound algorithm
are both relevant solution strategies, while the ILP mod-
els and the previous dynamic program are not. Among the
two remaining approaches, branch-and-bound dominates for
smaller stack sizes while dynamic programming takes the
lead for stacks with larger capacities. Finally, concluding
remarks and suggestions for future research are given in
Sect. 7.

2 Problem definition

In this section, we give a formal problem definition of our
rescheduling problem and introduce terminology and nota-
tion.Wemostly follow the description ofNicosia et al. (2021)
where the problem was originally introduced. A determinis-
tic single-machine environment is considered where a given
set J of n jobs has to be scheduled on a single machine in
order to minimize the weighted number of late jobs. In the
following, the standard notation for scheduling problems is
adopted: For each job j ∈ J , its processing time, its due date,
and its weight are denoted by p j , d j , and w j , respectively. It
is assumed that all these quantities are given as positive inte-
gers. Furthermore, for each job j ∈ J , the completion time
of job j in a schedule σ is denoted byC j (σ), and its lateness
in σ by L j (σ) = C j (σ) − d j . To formulate the objective
function, a binary variable Uj (σ) is introduced which takes
value 1 if C j (σ) > d j , i.e., job j is late in σ , and 0 oth-
erwise. Additionally, for a schedule σ = 〈σ1, σ2, . . . , σn〉
with σk ∈ J , k = 1, . . . , n, if i ≤ j , the ordered set of jobs
〈σi , σi+1, . . . , σ j 〉 is referred to as subsequence σ(i, j).

Additionally, it is assumed that an initial sequence σ0 of
the n jobs of set J is given in which the jobs are numbered
from 1 to n, i.e., σ0 = 〈1, 2, . . . , n〉. This simply reveals that
job j is placed in the j th position ofσ0.Hence, it holds for any
i, j ∈ J with i ≤ j that σ0(i, j) = 〈i, i +1, . . . , j〉. For any
of these subsequences σ0(i, j), its total processing time and

its total weight are indicated below as P(i, j) = ∑ j
k=i pk

and W (i, j) = ∑ j
k=i wk , respectively.

In the problem under consideration, a new job sequence σ

is to bedetermined such that on theonehand,
∑

j∈J w jU j (σ)

is minimum, and on the other hand, σ can be derived from
σ0 by applying a number of so-called feasible moves.

In the scheduling environment considered here, any move
is performed by a physical device, for example, a robot arm.
This operates on the ordered sequence of jobs arriving at
the machine, e.g., on a moving conveyor, where the initial
sequence corresponds to σ0. The rescheduling process then
takes place as follows. The device picks up a job j and puts it
on a stackwith bounded capacity S. Next, it possibly picks up
other jobs and places them on the stack too. The device can
also pick jobs from the stack, according to a LIFO policy, and
place them back at a proper position later in the sequence.
In doing so, it is assumed that there is always enough space
between the jobs even to deposit all jobs in the stack between
any two jobs on the conveyor. It should be emphasized at this
point that in this environment, a job can only be reinserted
in a later position of the sequence, since the conveyor belt
keeps moving forward while the robot arm operates at a fixed
position before the machine. At the end of the rescheduling
process, the stack must be empty and all jobs be put back in
the sequence again.

Introducing further terminology, a move i → j , i < j
consists of deleting job i from a given sequence and rein-
serting it immediately after all jobs of the subsequence
σ0(i + 1, j). Due to the stated LIFO policy, two moves
i1 → j1 and i2 → j2 with i1 < i2 are feasible only if
either i1 < j1 < i2 < j2 or i1 < i2 < j2 ≤ j1. In the
latter case, we define i2 → j2 to be nested inmove i1 → j1.
Additionally, since the problem setting stipulates that there
must not be more than S moves nested inside each other,
each move is performed on a specific level in the following
sense: a move that does not contain nested moves is said to
be at level 1. Recursively, a move is at level � > 1 if � is the
smallest value such that it contains feasible nested moves at
level up to �− 1. To avoid ambiguity regarding the level of a
move, a move i → j at level � is referred to as (i, j, �). For
notational convenience, we also allow a move i → i for all
levels �, denoted as (i, i, �), meaning that job i is not moved
at all (in this case the level of this non-move is meaningless).
Finally, a feasible schedule σ for the rescheduling problem
with stack capacity S is a schedule that results from a set of
feasible moves at levels up to a maximum of S starting from
σ0.

As pointed out in the introduction, Nicosia et al. (2021)
considered the four possibly most common objective func-
tions for this rescheduling problem. In this paper, we
concentrate on finding a feasible schedule that minimizes
the weighted number of late jobs. Following the standard

123

Journal of Scheduling

three-field classification scheme of Graham et al. (1979), the
problem is succinctly encoded as 1|resch-LIFO|∑w jU j .

3 Mathematical model

In this section, we present two integer linear programming
(ILP) formulations for our problem 1|resch-LIFO|∑w jU j .
The first model introduces binary variables for possible
moves, while the second one employs binary variables for the
assignment of jobs to positions and auxiliary binary variables
for the relative order of jobs.Note that both formulations have
O(n2)variables (specifically, n2 (n+1) and2n2, respectively),
but while in the first model O(n4) constraints are needed
(we will also introduce a variant with O(n3) constraints), the
number of constraints in the second one is only O(n2).

3.1 Move formulation

In the first ILP formulation, hereinafter referred to as ILP-
move1, we associate with each move i → j , i, j ∈ J with
i < j a binary variable xi j such that each variable xi j takes
value 1 if and only if move i → j is performed. Moreover,
for each j ∈ J , binary variables Uj indicate whether or not
job j is late in the final sequence σ . With these variables, the
problem can be formulated as follows:

minimze
∑

j∈J

w j U j (1)

subject to
n∑

k= j+1

x jk ≤ 1 ∀ j ∈ J (2)

xi j + xkh ≤ 1
∀ i, j, k, h ∈ J ,

i < k ≤ j < h
(3)

j−1∑

i=1

n∑

k= j

xik ≤ S ∀ j ∈ J (4)

C j (σ0) −
j−1∑

i=1

pi

n∑

k= j

xik+

n∑

k= j+1

×P(j + 1, k) x jk − d j ≤ M ·Uj∀ j ∈ J

(5)

xi j ,Uj ∈ {0, 1} ∀ i, j ∈ J , i < j (6)

In (1), we minimize the weighted number of late jobs.
While constraints (2) ensure that each job is moved at most
once, (3) guarantees the LIFO policy. Constraints (4) limit
to S the total number of jobs in the stack at any time and
(5) ensure Uj to be 1 if job j is late in the final sequence
σ (for a large enough constant M). More precisely, the left-

hand side (LHS) of (5) reflects the lateness of job j in the
final sequence: while the first term indicates the completion
time of job j in σ0, the second term expresses the decrease
of the completion time resulting from all moves of jobs from
1, . . . , j − 1 in which j is nested in the final sequence; the
third term indicates the increase of the completion time of
job j as a consequence of its own move, and the fourth term
is simply the due date of job j .

One might see the O(n4) constraints (3) as a major bur-
den on the computational performance of solving ILPmove1.
Indeed, one may aggregate these constraints and replace (3)
by constraints
k∑

h= j

xih +
n∑

h=k+1

x jh ≤ 1 ∀ i, j, k ∈ J , i < j ≤ k. (3′)

This yields a second version of themove-based ILP, which is
referred to as ILPmove2 in the following. At first glance, this
replacement may seem advisable, as it reduces the number
of constraints to O(n3). We investigated this presumption
empirically (see Sect. 6) and found that ILPmove2 outper-
forms ILPmove1 for stack sizes larger than or equal to 4, 6,
or 8 (depending on the particular test set), while for smaller
stack sizes ILPmove1 retains the lead. This is somewhat sur-
prising, as the respective constraints are not directly related
to the stack size.

3.2 Assignment formulation

The second ILP formulation is based on assignment variables
matching the jobs of J , which are numbered according to the
initial sequence σ0, to new positions from I = {1, . . . , n}. In
detail, the model employs assignment variables x jh ∈ {0, 1}
for j ∈ J , and h ∈ I where x jh = 1 indicates that job j is
placed in position h in σ . We also use an additional set of
variables: for all k, h ∈ I with k < h, ykh ∈ {0, 1} indicates
whether the job in position k has a larger index number than
the job in position h. In other words, ykh = 1 if and only
if the job in position k was initially placed after the job in
position h (while satisfying the LIFO constraint). Beyond
that, the variables zi j , i, j ∈ J with i < j indicate whether
job i is placed at a larger position number than job j in the
final sequence, i.e. zi j = 1 if and only if job i is placed after
job j in σ . As in the move formulation, variable Uj , j ∈ J
also indicates here whether or not job j is late in the final
sequence σ .

The job in position h in the final sequence σ can be
expressed as γ (h) = ∑

j∈J j x jh , while the position of job j
can be derived as π(j) = ∑

h∈I h x jh . With these quantities,
we get the following ILP formulation:

minimze
∑

j∈J

w j U j (7)

123

Journal of Scheduling

subject to
∑

h∈I
x jh = 1 ∀ j ∈ J (8)

∑

j∈J

x jh = 1 ∀ h ∈ I (9)

zi j ≥ 1

n
(π(i) − π(j)) ∀ i, j ∈ J , i < j (10)

zi j − 1 ≤ 1

n
(π(i) − π(j)) ∀ i, j ∈ J , i < j

(11)

ykh ≥ 1

n
(γ (k) − γ (h)) ∀ k, h ∈ I , k < h

(12)

ykh − 1 ≤ 1

n
(γ (k) − γ (h)) ∀ k, h ∈ I , k < h

(13)

ykh ≥ 1

n

(

k − γ (h) +
n∑

l=h+1

yhl + 1

)

∀ k, h ∈ I , k < h (14)
n∑

h=k+1

ykh ≤ S ∀ k ∈ I (15)

j−1∑

i=1

pi (1 − zi j) + p j

+
n∑

l= j+1

pl z jl − d j ≤ M ·Uj ∀ j ∈ J (16)

x jh, ykh, zi j , Uj ∈ {0, 1}
× ∀ i, j ∈ J , ∀ k, h ∈ I ,

i < j, k < h
(17)

In (7), we minimize the weighted number of late jobs.
Equations (8) and (9) are the usual assignment constraints.
Constraints (10) and (11) guarantee that zi j is 1 if π(i) >

π(j). In other words, variable zi j , i < j , assumes value 1 if
and only if job i is placed after job j inσ . (12) and (13) ensure
ykh to be 1 if γ (k) > γ (h), meaning that variable ykh , k < h,
assumesvalue1 if andonly if the job inposition kwas initially
placed after the job in position h. Constraints (14) ensure
the LIFO policy. In fact, (14) is equivalent to the following
implication:

∀ k, h ∈ I , k < h : γ (h) −
n∑

l=h+1

yhl ≤ k
⇒ ykh = 1.

Because of the LIFO constraint, when moving job γ (h)

from its initial to its final position, there have to be jobs
with a larger index number than γ (h) in all positions nested
in this move. However, since γ (h) is in turn nested in
∑n

l=h+1 yhl moves, the positions of the entire subsequence
are moved forward by this number. Therefore, we have to

consider all positions k in the final sequence σ for k ∈{
γ (h) − ∑n

l=h+1 yhl , . . . , h − 1
}
and ensure that the index

of the job placed in such a position k is larger than γ (h),
i.e., that all jobs in these positions were initially placed after
the job in position h, which is expressed by ykh = 1. Con-
straints (15) limit the total number of jobs in the stack at any
given time to S. Finally, the LHS of inequality (16) reflects
the lateness of job j in the final sequence where the com-
pletion time of j is composed of the first three expressions,
namely, the sum of the processing times of all jobs that are
in the initial sequence as well as in the final sequence located
before job j , the processing time of job j , and the sum of the
processing times of those jobs that succeed job j in σ0 but
precede it in the final sequence σ . Thus, (16) ensures Uj to
be 1 if job j is late in the final sequence σ (for a large enough
constant M).

4 Dynamic programming

A straightforward dynamic programming algorithm for
1|resch-LIFO|∑ w jU j with five nested for-loops was given
in Nicosia et al. (2021). In that paper, a more complex
dynamic programwas also developed and presented in detail
for the unweighted problem of minimizing the number of
late jobs. Moreover, an adaptation of this approach to the
weighted case was brieflymentioned in Nicosia et al. (2021).
For the sake of self-containment, we will first lay out the
resulting dynamic programming algorithm DynProStatic for
1|resch-LIFO|∑ w jU j in detail. This approach does not
yield a practically usable algorithm (see the experiments in
Sect. 6.2), but it serves as a starting point for a number of
substantial algorithmic improvements leading to our consid-
erably faster dynamic program DynProImpr.

4.1 Static dynamic program

This section provides a detailed description of the pseudo-
polynomial dynamic programming algorithm for
1|resch-LIFO|∑ w jU j which is briefly sketched in Nicosia
et al. (2021). It is an extension of the algorithm presented
in that paper for the unweighted case. For this purpose, let
us first introduce the term �-rearrangement to denote a fea-
sible rearrangement of a subsequence that can be obtained
by moves up to level �. Moreover, all �-rearrangements of a
subsequence which lead tom for the weighted number of late
jobs in it when the starting time is reduced by s̃ ′ are domi-
nated by the �-rearrangements that lead to the sameweighted
number of late jobs m with a time shift of s̃ ′′ < s̃ ′.

In our dynamic program, the state is defined as a quadru-
ple (i, j,m, �), where i and j identify a subsequence, m is
the weighted number of late jobs in the subsequence, and
� is the level. With each state (i, j,m, �), we associate the

123

Journal of Scheduling

minimum required reduction of the starting time of subse-
quence σ0(i, j) to reach the given weighted number of late
jobs m with moves up to level �. This piece of information
is formally defined as follows:

Definition 1 For each i, j ∈ J with i ≤ j , m =
0, . . . ,W (i, j) − 1 and � = 0, . . . , S, let s̃(i, j,m, �) be the
minimum decrease of the starting time of the subsequence
σ0(i, j) in order to ensure a value of at most m for the
weighted number of late jobs in it when the subsequence
can be rearranged with moves up to level �.

At this point, we want to emphasize that s̃(i, j,m, �)may
be both positive and negative where negative values, i.e., an
increase of the starting time, occur if the weighted number
of late jobs in the (rearranged) subsequence is less than m.

At level � = 0, the state values s̃(i, j,m, 0) are eval-
uated on the initial sequence using the lateness values of
the jobs in it. First observe that although for each subse-
quence σ0(i, j) the states s̃(i, j,m, 0) are computed for
m = 0, . . . ,W (i, j) − 1, i.e., for W (i, j) different values
ofm, we only have j − i +1 different values for s̃(i, j, ·, 0),
namely, the lateness values Lk(σ0), k ∈ σ0(i, j).

This follows from the fact that any late job k in σ0(i, j)
only becomes on time if the subsequence is moved forward
by Lk(σ0). Through this starting time reduction, there is (at
least) one late job less (i.e. job k), and the corresponding
number m for the weighted number of late jobs reduces by
the weight wk . However, as the number m, i.e., the largest
allowed weighted number of late jobs in the subsequence,
changes, theminimum reduction of the starting time does not
necessarily have to change too. Hence,wk different states are
assigned the same value Lk(σ0). Consequently, there exists
(at most) one of these wk states that has exactly the given
number of weighted late jobs with a starting time reduction
of s̃.

In order to provide a formal initialization, we use the
notation max[q](L) to indicate the qth largest value in the
multi-set L which corresponds to the qth entry in the non-
increasingly sorted multi-set. Additionally, we use � to
denote a union of multi-sets where the multiplicity of each
element is the sum of its multiplicities in each single multi-
set. Formally, the initialization for all i, j ∈ J , i ≤ j and for
all m = 0, . . . ,W (i, j) − 1 is then as follows:

s̃(i, j,m, 0) = max[m+1]

⎛

⎝
⊎

k∈σ0(i, j)

wk−1⊎

u=0

{Lk(σ0)}
⎞

⎠ .

For each level � ≥ 1, the recursive extension rule is
given as follows. For every given subsequence σ0(i, j), level
�, and number m, the state value s̃(i, j,m, �) is obtained
by taking the minimum reduction of the starting time over
all �-rearrangements of σ0(i, j) that yield at most m for

the weighted number of late jobs in it. For this reason, we
compute for each possible move (i, k, �′), and �′ ≤ �, the
multi-set S̃(i, j, k, �) that contains the minimum reduction
of the starting time for all weighted numbers of late jobs, that
is, m = 0, . . . ,W (i, j) − 1:

S̃(i, j, k, �) =
W (i+1,k)−1⊎

u=0

{̃s(i + 1, k, u, � − 1) − pi } �

W (k+1, j)−1⊎

u=0

{̃s(k + 1, j, u, �)} �
wi−1⊎

u=0

{Ck(σ0) − di }. (18)

As can be seen from (18), the multi-set S̃(i, j, k, �) is
composed of threemulti-sets representing the following three
job subsets: the jobs nested in the move (i, k, �′), the jobs
from σ0(k + 1, j), and the moved job k. The values from the
first multi-set are computed from the non-dominated (�−1)-
rearrangements of the subsequence σ0(i + 1, k) where the
starting time of all jobs is reduced by pi time units due to
move i → k. The second multi-set contains the s̃(·) values
of σ0(k + 1, j) where the starting time of the corresponding
subsequence is not affected by the move. Finally, the third
term corresponds to the multi-set that contains wi times the
lateness of job i after move i → k is performed.

Recall that the multi-set S̃(i, j, k, �) contains the mini-
mum starting time reductions for allm = 0, . . . ,W (i, j)−1.
Accordingly, the (m+1)-largest element of themulti-set rep-
resents the necessary time units by which σ0(i, j) needs to
be moved forward after a move (i, k, �′) with �′ ≤ �, to have
a value ofm for the weighted number of late jobs. Hence, the
value of state s̃(i, j,m, �) corresponds to that move i → k
for which the corresponding decrease of the starting time is
minimal. Consequently, the new state value can be computed
as follows:

s̃(i, j,m, �) = min
k∈σ0(i, j)

{
max[m+1]

(S̃(i, j, k, �)
)}

(19)

Finally, the optimal solution value,
∑

j∈J w jU j (σ
∗), is

given by min{m : s̃(1, n,m, S) ≤ 0}.
Hereinafter, we present a straightforward implementation

of the algorithm sketched above which is illustrated in Algo-
rithm 1. In the pseudocode, we can see that the states are
generated from level � = 0 up to S, since the recursion
requires that the effects of moves nested in any move of
level � have already been evaluated beforehand. Addition-
ally, for each level � = 1, . . . , S, the subsequences need to
be computed in a specific order to guarantee that when move
(i, k, �) is examined, the evaluation of the effects of allmoves
(i ′, k′, �) with k < i ′ ≤ k′ has already taken place. There-
fore, in an outer loop (Steps 9–21), the index j runs from 1
up to n, while in an inner loop the index i runs from j down
to 1 (Steps 10–21). For any given subsequence σ0(i, j) and

123

Journal of Scheduling

any level �, we compute for each k = i, . . . , j the multi-set
S̃(i, j, k, �). The union of the three multi-sets from which
S(i, j, k, �) is composed (see Eq. (18)) is temporally stored
in the list S̃k (Steps 12–18). Note that the procedure Append
used in these steps is used for simply adding an element to
the end of a list.

Algorithm 1 Dynamic Program: DynProStatic
1: procedure Initialization (for � = 0)
2: for i = 1, . . . , n do
3: for j = i, . . . , n do
4: Let S̃ be a list with values Lk(σ0), k = i, . . . , j , where

each Lk(σ0) occurs wk times
5: for m = 0, . . . ,W (i, j) − 1 do
6: s̃(i, j,m, 0) ← (m + 1)-largest value of the list S̃
7: procedure Recursion (for � ≥ 1)
8: for � = 1, . . . , S do
9: for j = 1, . . . , n do
10: for i = j, . . . , 1 do
11: for k = i, . . . , j do
12: Let S̃k be an empty list
13: for u = 0, . . . ,W (i + 1, k) − 1 do
14: Append s̃(i + 1, k, u, � − 1) − pi to the list S̃k

15: for u = 0, . . . ,W (k + 1, j) − 1 do
16: Append s̃(k + 1, j, u, �) to the list S̃k

17: for u = 0, . . . , wi − 1 do
18: Append Ck(σ0) − di to the list S̃k
19: for m = 0, . . . ,W (i, j) − 1 do
20: Let S̃ be a list with the (m + 1)-largest values

of S̃i , . . . , S̃ j
21: s̃(i, j,m, �) ← min(S̃)

22: return min{m : s̃(1, n,m, S) ≤ 0}

Obviously, Algorithm 1 has a pseudo-polynomial running
time of O(n4W) where W = W (1, n) = ∑

j∈J w j is the
sum of the weights of all jobs.

4.2 Improved dynamic program

In order to present an improved implementation of the
dynamic programming algorithm, we take a closer look at
the properties of the states s̃(i, j,m, �) computed in DynPro-
Static. From these, we can derive the following observations
which will then lead to the improved version.

Observation 2 For decreasing m, the values of s̃(i, j,m, �)

are non-decreasing.

In other words, to achieve a smaller weighted number of
late jobs, it will be necessary to move the subsequence for-
ward by a larger (or at least not smaller) amount of time.

Observation 3 Let m′ be the minimum weighted number of
late jobs that can be achieved by an optimal �-rearrangement
of the subsequence σ0(i, j)with fixed starting timeCi−1(σ0).
Then it holds that s̃(i, j,m, �) ≤ 0 for all m ≥ m′.

The statement that s̃(i, j,m′, �) ≤ 0 follows from the
definition of a state. To obtain more late jobs than necessary,
one would have to delay the subsequence which implies non-
positive s̃(i, j,m, �) values for m > m′ (cf. Observation 2).

Note that after performing the move (i, j, �), the result-
ing (already rearranged) subsequence cannot be split by any
move at level �′ > � due to the LIFO constraint. However, if
it is nested in a higher-level move, it will be moved forward
as a whole. Therefore, all non-positive s̃(i, j,m, �) values,
except for the onewith the smallestm argument among them,
are of no interest since they entail delaying the corresponding
subsequence, and their computation can be skipped in order
to save time. Consequently, for each σ0(i, j) and �, we only
record non-negative state values and the first non-positive
one, but we disregard states with larger m corresponding to
non-positive state values.

However, we will not consider all positive states either, as
there is a natural limit how far a subsequence can be moved
forward. In particular, after having performed moves up to
level �, for a job at position i at most S − � preceding jobs
can be moved behind i in the remaining levels. This yields
the following bound.

Observation 4 The rearrangement of a subsequence σ0(i, j)
produced by moves up to level � cannot be moved forward by
more than the processing time of S − � jobs preceding it (or
even fewer if i ≤ S − �). Therefore, the possible reduction
of its starting time is limited by the sum of processing times
of jobs 1, . . . , i − 1 and by the sum of the S − � largest
processing times. Formally, the reduction is bounded by

a(i, �) =
min{S−�,i−1}∑

q=1

max[q] ({pk : k ∈ σ0(1, i − 1)}) .

It follows immediately from Observation 4 that if there
is some state with s̃(i, j,m, �) > a(i, �), then none of the
states s̃(i, j,m′, �) with m′ ≤ m can be reached by any set
of feasible moves. Consequently, these states do not have to
be considered in the algorithm.

Hence, in order to reduce the number of state values that
have to be calculated, it is useful to precompute the threshold
values a(i, �) for each job i ∈ J and each level � = 0, . . . , S.
This is done by Algorithm 2. It builds a decreasingly sorted
list A of the S largest processing times before each job i . If
i − 1 < S, the missing elements are set to zero. Every time
i is incremented by 1, pi−1 is inserted in A, and the smallest
element in A is discarded (while i ≤ S, this element will be
0). For each fixed i , a(i, S) is always equal to zero, and the
threshold values for each level � < S can be easily obtained
from the values at level � + 1 by adding the next largest
element from A. The complexity of the whole procedure is
O(nS).

123

Journal of Scheduling

Algorithm 2 Computation of the thresholds a(i, �)
1: procedure Threshold
2: Let A be a list of length S with value 0 in each position
3: for � = 0, . . . , S do
4: a(1, �) ← 0
5: for i = 2, . . . , n do
6: Insert pi−1 into list A such that A is sorted in non-increasing

order
7: Remove the smallest element of A
8: a(i, S) ← 0
9: for � = S − 1, . . . , 0 do
10: a(i, �) ← a(i, � + 1) + A(S − �)

A further reduction of nonrelevant states can be obtained
by the following dominance principle.

Definition 5 A state s̃(i, j,m′, �) is m-dominated by s̃(i, j,
m′′, �) if both state values are equal, i.e., s̃(i, j,m′, �) =
s̃(i, j,m′′, �), but m′′ < m′.

In our improved dynamic programming algorithm, we
only record non-m-dominated states. This dominance rela-
tion between states enables us to significantly reduce the
number of states to be considered which results in a crucial
improvement in terms of running time.

Another observation which will give rise to an improved
implementation concerns the number of moves that have to
be examined when calculating s̃(i, j,m, �). Recall that for
every givennumberm, the state value s̃(i, j,m, �) is obtained
by taking the minimum reduction of the starting time over
all possible moves (i, k, �′) for k = i, . . . , j at some level
�′ ≤ � that produce (atmost)m late jobs inσ0(i, j). However,
the following observation shows that it is not necessary to
consider all moves (i, k, �′), k = i, . . . , j .

Observation 6 In order to optimally rearrange the subse-
quence σ0(i, j) with moves up to level �, a move (i, k, �′) at
some level �′ ≤ � with i < k is only worthy of examination
if job k is late.

Proof Suppose job k is on time with respect to the given
starting time Ci−1(σ0) of σ0(i, j). For the weighted lateness
of job k, move (i, k, �′) does not lead to any improvement
compared tomove (i, k−1, �′), since job k is not late in either
case. The weighted lateness of job i is obviously smaller
if move (i, k − 1, �′) is performed than if move (i, k, �′)
is executed. While for the weighted lateness of the jobs in
σ0(i + 1, k − 1) the effects of both moves are the same, the
weighted lateness for jobs in σ0(k + 1, j) is smaller (or at
least not greater) for move (i, k − 1, �′) compared to move
(i, k, �′). Hence, a move (i, k, �′) is worth examining only if
job k is late.

In the following, we will present the algorithm Dyn-
ProImpr, an improved implementation of dynamic program-
ming that takes all observations stated above into account. For

this purpose, we define four operations for handling sorted
lists L of tuples v = (v1, v2): Append v to L adds the tuple
v at the end of list L; Head (L) returns the first tuple of
L; Tail (L) returns the last tuple of L; and DeleteHead (L)

deletes the first element of L. Furthermore, we will Merge
two or more sorted lists into a single sorted list (which can be
done in linear time). Last but not least, the function LessOrE-
qual ((v′

1, v
′
2), (v

′′
1 , v

′′
2)) returns true if and only if v′

1 ≤ v′′
1

and v′
2 ≤ v′′

2 .
Taking into account Observation 2, for a fixed subse-

quence σ0(i, j) and a fixed level �, the values s̃(i, j,m, �)

form a (not strictly) decreasing sequence inm. Naturally, the
sequence can be restricted to m ≤ W (i, j) − 1. The first
part of this sequence consists (possibly) of values greater
a(i, �) which are irrelevant by Observation 4. State values
s̃(i, j,m, �) smaller or equal to a(i, �) and a m ≥ m =
min{m : s̃(i, j,m, �) ≤ 0} are non-dominated and there-
fore relevant and will be stored in a list θ(i, j, �). Finally,
non-positive state values except for the first one, that is
s̃(i, j,m, �), will be simply ignored (cf. Observation 3).

As already mentioned, for each subsequence σ0(i, j)
and for each level �, we record an ordered list of non-
m-dominated states denoted by θ(i, j, �). Each element of
such a list is described by a tuple (m, s) and represents
an �-rearrangement with a total weighted number of late
jobs of m that can be reached by a minimum advance s
for the subsequence σ0(i, j), considering rearrangements
up to level �. The list θ(i, j, �) is sorted in decreasing
order of the cost value s, and the elements (or tuples)
in it represent a Pareto frontier of possible outcomes for
the subsequence σ0(i, j). The endpoints of each such list
θ(i, j, �) are given by (0,max{maxk∈σ0(i, j){Lk(σ0)}, 0})
and (

∑
k∈σ0(i, j): Lk (σ0)>0 wk, 0).

Algorithm 3 Dynamic program: DynProImpr
1: procedure Initialization (for � = 0)
2: Let L be a list of all late jobs, sorted in non-increasing order of

its lateness values in σ0
3: for i = 1, . . . , n do
4: for j = i, . . . , n do
5: M ← 0
6: for all k ∈ L with i ≤ k ≤ j do
7: if Lk(σ0) ≤ a(i, 0) then
8: if θ(i, j, 0) empty or [θ(i, j, 0) not empty and

LessOrEqual ((M, Lk(σ0)),Tail (θ(i, j, 0)))]
then

9: Append the tuple (M, Lk(σ0)) to the list θ(i, j, 0)

10: M ← M + wk

11: Append (M, 0) to the list θ(i, j, 0)

Procedure Initialization of Algorithm 3 settles the case
� = 0. At this level, the values of θ(i, j, 0) are evaluated
on the initial subsequence σ0(i, j) using the lateness values
of the jobs in it. Accordingly, we first create a list L of all

123

Journal of Scheduling

late jobs in σ0, sorted in non-increasing order of the corre-
sponding lateness values (Step 2). Subsequently, to span all
subsequences σ0(i, j), two loops over all indices i and j are
performed. For each subsequence σ0(i, j), the list is scanned
fromhigh to low lateness values in Steps 6–10: each late job k
between i and j that is non-m-dominated (Step 8) originates
a record that is inserted in θ(i, j, 0) (Step 9). The record has
a time value m equal to the lateness of job k and a cost value
s equal to the accumulated weights of all jobs with lateness
not smaller than Lk(σ0). Note that the last entry in θ(i, j, 0)
indicates the cost, i.e., the total weighted number of late jobs,
of the subsequence with no time shift (Step 11).

For each subsequence σ0(i, j) and for each level � =
1, . . . , S, the list θ(i, j, �) of non-m-dominated states cor-
responding to σ0(i, j) is generated as follows. All relevant
insertion positions k ∈ σ0(i, j) (see Observation 6) for job i
are considered. For each move (i, k, �), its effects on the
subsequence σ0(i + 1, k) are computed from all non-m-
dominated states in θ(i + 1, k, � − 1), knowing that the
whole subsequence σ0(i + 1, k) is advanced by pi owing
to the move. No effects occur on subsequence σ0(k + 1, j)
whose non-m-dominated states are stored in θ(k + 1, j, �).
The effect on job i can be computed directly: its new lateness
value isCk(σ0)−di . These three lists of states are composed
to produce the list of states that can be reached in σ0(i, j)
with move (i, k, �). The compose procedure is described in
Loop 1 of Algorithm 3. After computing the composed lists
Rk for all relevant k ∈ σ0(i, j), these lists Rk are merged,
and only non-m-dominated states are kept (Observation 5),
which leads to the lists θ(i, j, �). The merge procedure is
outlined in Loop 2 of Algorithm 3.

In the main procedure Recursion of Algorithm 3, we
compute for each level � = 1 up to S and every subsequence
σ0(i, j) the list θ(i, j, �) in two loops. In Loop 1, we com-
pute lists Rk for k = i and every late job k ∈ σ0(i + 1, j)
(cf. Observation 6). For this purpose, we first set up three
temporary sorted listsRk,1,Rk,2, andRk,3 in Steps 18–31,
resembling the three components in (18). In detail,Rk,1 con-
sists of all those pairs of θ(i + 1, k, � − 1) where the s-entry
is reduced by pi and thereby remains positive. Addition-
ally, Rk,1 contains the first pair with a non-positive reduced
s-value, where the s-value is replaced by 0 for the sake of
simplicity (Steps 20–25).Rk,2 equals θ(k+1, j, �) (Step 27),
and the components of list Rk,3 depend on the new lateness
value of the moved job k: if Ck(σ0) − di > 0, then Rk,3

consists of the two states (0,Ck(σ0) − di) and (wi , 0); oth-
erwise the list contains only the tuple (0, 0) (Steps 28–31).
In Steps 34–40, the listsRk,1,Rk,2, andRk,3 are merged in
order to get the sorted listRk . Note that if the s argument is
larger than a(i, �) (Step 37), the state related to the tuple is
not included in Rk , since it cannot be reached in any case.
Finally, in Steps 41–48, the list θ(i, j, �) is created by keep-
ing all non-m-dominated states from the merged lists Rk ,

Algorithm 3 Dynamic program: DynProImpr
12: procedure Recursion (for � ≥ 1)
13: for � = 1, . . . , S do
14: for j = 1, . . . , n do
15: for i = j, . . . , 1 do
16: Let K be a set containing job i and all late jobs from

{i + 1, . . . , j}
17: for all k ∈ K do � Loop 1
18: Let Rk,1, Rk,2 and Rk,3 be empty lists
19: if k �= i then � Fill Rk,1
20: for all (m, s) ∈ θ(i + 1, k, � − 1) do
21: if s − pi > 0 then
22: Append (m, s − pi) to the list Rk,1
23: else
24: Append (m, 0) to the list Rk,1
25: break
26: if k �= j then � Fill Rk,2
27: Append each tuple (m, s) of θ(k + 1, j, �) to the

list Rk,2

28: if Ck(σ0) − di > 0 then � Fill Rk,3
29: Append (0,Ck(σ0) − di) and (wi , 0) to the list

Rk,3
30: else
31: Append (0, 0) to the list Rk,3

32: Let Rk be an empty list � Merge lists Rk,1, Rk,2
and Rk,3

33: Let P ⊆ {1, 2, 3} such thatRk,p is not empty for all
p ∈ P

34: while |Rk,1| + |Rk,2| + |Rk,3| ≥ |P| do
35: p∗ ← argmaxp∈P

{
Head

(Rk,p
)
.s

}

36: ζ ← Head
(Rk,p∗

)
.s

37: if ζ ≤ a(i, �) then
38: M ← ∑

p∈P Head
(Rk,p

)
.m

39: Append (M, ζ) to the list Rk

40: DeleteHead (Rk,p∗)

41: while (Rk �= ∅ holds for all k ∈ K) do � Loop 2
42: M ← mink∈K{Head (Rk).m}
43: K ← {k ∈ K : Head (Rk).m = M}
44: ζ ← mink∈K {Head (Rk).s}
45: Append (M, ζ) to the list θ(i, j, �)
46: for all k ∈ K do
47: while Rk �= ∅ and LessOrEqual ((M, ζ) ,

Head (Rk)) do
48: DeleteHead (Rk)

49: return Head (θ(1, n, S)).m

k ∈ K and removing all m-dominated states: after identi-
fying a non-m-dominated state (M, ζ) (Steps 42–44), it is
added to θ(i, j, �) (Step 45). Afterwards, all states from all
lists Rk , k ∈ K that are m-dominated by (M, ζ) are dis-
carded (Steps 46–48). Whether the states are m-dominated
or not is indicated by a call to the function LessOrEqual.

As Algorithm 3 is far from trivial, we give a detailed
numerical example in Appendix 1 to illustrate the steps of
the improved dynamic programming recursion.

It remains to analyze the computational complexity of
Algorithm 3. It is easy to determine that the worst-case
computational complexity of procedure Initialization is
O(n3). Since this is not the bottleneck of the complex-

123

Journal of Scheduling

ity of the algorithm, we did not study any specialized data
structure to possibly improve its complexity. In Recursion,
Loop 1 (Steps 17–40) and Loop 2 (Steps 41–48) are executed
O(n2S) times, namely, over all pairs (i, j) and for all levels
�. Each loop is executed O(n) times. Since for the tuples
in θ(·), the m-argument is bounded by W (i, j), and the s-
argument is bounded by the sum of the S largest processing
times, each iteration in Loop 1 and Loop 2 takes O(B) time

where B = min
{∑

j∈J w j ,
∑S

q=1 max[q]({p j : j ∈ J })
}
.

Thus, the overall worst-case time complexity of Algorithm
3 is O(n4B).

The above discussion can be summed up in the following
theorem, which improves upon the complexity of Algo-
rithm 1 for large weight coefficients.

Theorem 7 Problem 1|resch-LIFO|∑w jU j is pseudo-
polynomial solvable within O(n4B) where

B = min
{∑

j∈J w j ,
∑S

q=1 max[q]({p j : j ∈ J })
}
.

5 Branch-and-bound

As an alternative to the dynamic programming approaches
which might become impractical for larger data coef-
ficients, in particular for large weights, we devised a
combinatorial branch-and-bound algorithm CombB&B for
1|resch-LIFO|∑w jU j . A preceding variant of the algo-
rithm is described in Polimeno (2019). Hereafter, we discuss
the branching strategy and bounding procedures as well as
the search technique we employed.

5.1 Branching strategy

While dynamic programming works bottom-up since states
at lower levels are computed first, branch-and-bound works
top-down so that moves at higher levels correspond to earlier
branching decisions.

This processing strategy, however, does not allow the use
of the definition of a move at level � (recall that � is the small-
est value such that themove contains feasible nestedmoves at
levels up to �−1) sincewe do not know in advance themoves
nested in it (due to the top-down approach) and therefore also
not level �. Thus, further terminology is necessary.

Definition 8 A move that does not contain nested moves is
said to be at branching-level (B-level) 1. Recursively, a move
is at B-level � > 1 if it can contain feasible nested moves up
to a B-level of � − 1.

Definition 9 A move i → j at B-level � is denoted as
branching-move (B-move) (i, j, �). For notational conve-
nience, we also define B-moves (i, i, �) for every B-level �,
meaning that job i is not moved at all.

Observe that

– a move at B-level � can but does not necessarily have to
contain � − 1 moves nested inside one another, whereas
for a move at level � it must contain � − 1 moves nested
inside each other;

– a B-move (i, j, �) is itself nested in S − � B-moves;
– for a move at B-level �, there always exists an �′ ≤ �

such that it is a move at level �′.

The observation presented next is a direct result of the
LIFOconstraint and serves as a basis for the branching policy.

Observation 10 When a B-move (h, k, �) is performed
within a subsequence σ0(i, j), i ≤ h ≤ k ≤ j , the subse-
quence σ0(i, j) is divided into at most three parts (less only
if h = i and/or k = j), namely, σ0(i, h − 1), σ0(h, k), and
σ0(k + 1, j), such that for all feasible B-moves (h′, k′, �′)
within σ0(i, j) with �′ ≤ � jobs h′ and k′ must belong to
the same part. Furthermore, the rearrangement of any of the
(at most) three resulting subsequences does not affect the
starting time of the others.

When a subsequence σ0(i, j) is examined, all moves in
which it is nested have already been decided due to the top-
down approach, and therefore, its starting time is known and
does not change subsequently. Hence, we can define a sub-
problem in the branch-and-bound tree as follows:

Definition 11 A subproblem in the branch-and-bound tree
corresponds to a quadruple (i, j, �, μ) where the subse-
quence σ0(i, j) is to be optimally rearranged with moves
up to a B-level of � with a starting time Ci−1(σ0) − μ; i.e.,
μ ≥ 0 is the reduction in the starting time of the subsequence
compared to its initial starting time.

When examining a subproblem (i, j, �, μ), the starting
time and the residual number of levels � are fixed, and there-
fore there is a natural limit on how far a job k ∈ σ0(i, j) can
be moved forward by rearranging the subsequence σ0(i, j).
In detail, at most k − i preceding jobs can be moved behind
k in the remaining B-levels, so that the following threshold
arises.

Observation 12 A job k of the subproblem (i, j, �, μ) cannot
be moved forward by more than the processing time of k − i
jobs preceding it (or even fewer if � ≤ k − i). Therefore,
the possible reduction of its starting time is limited by the
quantity

α(i, k, �) =
min{�,k−i}∑

q=1

max[q] ({ph : h ∈ σ0(i, k − 1)}) .

123

Journal of Scheduling

Note that α(·) and the threshold a(·) (defined in Sect. 4.2)
are closely related to each other, since α(1, k, �) = a(k, S −
�). Consequently, because the computation of α(·) can be
done in a similar way as the one for a(·) (see Algorithm 2),
we do not provide a detailed description for computing the
threshold values at this point.

Whether or not a late job k in a considered subproblem
(i, j, �, μ) can be made on time with a set of feasible moves,
depends on the value α(i, k, �). The corresponding definition
is given below.

Definition 13 Consider a subproblem (i, j, �, μ). A job k ∈
σ0(i, j) is called repairable if it fulfills the following two
properties:

(i) without rearranging the subsequenceσ0(i, j) job k is late,
i.e., Ck(σ0) − μ > dk ;

(ii) the maximal possible reduction of the starting time
α(i, k − 1, �) of job k in σ0(i, j) is larger than or
equal to the current lateness of k, i.e., α(i, k − 1, �) ≥
Ck(σ0) − μ − dk .

Note that if part (ii) of Definition 13 does not hold, job k
is late regardless of how the subsequence σ0(i, j) is subse-
quently rearranged.

With the definition above, we are now able to state an
observation that is of fundamental importance to limit the
number of branches that need to be examined in the branch-
and-bound algorithm.

Observation 14 There exists an optimal solution of the sub-
problem (i, j, �, μ) where all performed B-moves (h, k, �),
i ≤ h < k ≤ j satisfy that job k is repairable.

Proof Suppose job k is not late with respect to the given
starting time Ci−1(σ0) − μ of the subsequence σ0(i, j).

For the lateness of job k, any B-move (h, k, �) with h <

k does not yield an improvement compared to the B-move
(h, k − 1, �), since job k is not late in either case. For the
lateness of job h, B-move (h, k−1, �) is obviously preferable
to B-move (h, k, �), while for the lateness of the jobs in
σ0(i, h−1), σ0(h+1, k−1), and σ0(k+1, j), the effects of
the two B-moves are the same. Thus, a B-move (h, k − 1, �)
should be preferred over a B-move (h, k, �) for any h < k if
k is on-time.

Contrarily, suppose that job k is late but not repairable. For
the lateness of job k, any B-move (h, k, �)with h < k cannot
yield any improvement compared to B-move (h, k − 1, �),
since job k is late in any case. For the other jobs, the same
arguments apply as above. Hence, a B-move (h, k − 1, �)
should be preferred over a B-move (h, k, �) for any h < k if
job k is late but not repairable.

Consequently, there exists an optimal solution of the
subproblem (i, j, �, μ) that does not contain any B-moves
(h, k, �) for non-repairable jobs k.

After these preparations, we can define the branching rule
of our algorithm. From any given subproblem (i, j, �, μ),
several subproblems are generated as follows: on the basis of
Observation 14, we choose job k so that among all repairable
jobs, k is the one with the largest index number, meaning
that among all repairable jobs it is placed furthest behind.
After fixing job k, all possible jobs h ∈ σ0(i, k) that can be
moved after job k are considered. Thus, a branching decision
in a subproblem (i, j, �, μ) of the branch-and-bound tree is
imposed by a B-move (h, k, �) with i ≤ h ≤ k ≤ j such
that each subproblem is divided into k − i + 1 subproblems.

As a result of the choice of k, the weighted lateness of
σ0(k + 1, j) is known without further branching decisions,
and only σ0(i, h − 1) and σ0(h + 1, k) have to be examined
further. Thus, we can see that Observation 14 is essential for
limiting the number of branches that need to be examined in
the branch-and-bound algorithm.

Each branching decision imposed by a B-move (h, k, �)
induces four different cost terms: the optimal costs z(1) of
subsequence σ0(i, h − 1) obtained by a feasible rearrange-
ment with moves up to B-level �, the optimal costs z(2) of
subsequence σ0(h + 1, k) obtained by a feasible rearrange-
ment with moves up to B-level � − 1, the costs z(3) of the
moved job h in its new position, and the optimal costs z(4)

of subsequence σ0(k + 1, j) (without any rearrangement).
When all four values are known, they are summed up to get
the optimal solution value z of the subproblem (i, j, �, μ).

The recursive procedure Branch, outlined inAlgorithm4,
takes the quadruple (i, j, �, μ) as input and returns the opti-
mal solution value z of the corresponding subproblem.When
a subproblem (i, j, �, μ) is examined, a loop runs from j
down to i , until a repairable job k is found (Steps 3–6). All
jobs succeeding k that are non-repairable are skipped (see
Observation 14). If they are late, their weight is summed up
in order to obtain z(4) (Step 5). Afterwards, for each job h
in σ0(i, k), the corresponding branching decision is consid-
ered (Steps 8–13). Because of this approach, the number of
successors in the branch-and-bound tree is not fixed a priori.
For each choice of h, a B-move (h, k, �) is performed, and
the corresponding costs are evaluated (Steps 9–13). Costs
z(1) and z(2) are evaluated by recursive calls (Steps 10 and
11): z(1) is the optimal solution value of the subproblem
(i, h − 1, �, μ); that is, the minimum cost of subsequence
σ0(i, h−1) at level �with time shift equal toμ; z(2) is the opti-
mal solution value of the subproblem (h+1, k, �−1, μ+ph),
which is the minimum cost of subsequence σ0(h + 1, k) at
level � − 1 with time shift μ + ph . Empty subsequences
that occur when either h = i or h = k do not incur any
costs and therefore do not imply any recursive calls; they
form the recursion base. The value z(3) can be computed
directly (Step 12): it corresponds to the weight of job h if
Ck(σ0) − μ > dh and zero otherwise.

123

Journal of Scheduling

The procedure in Algorithm 4 is initially invoked with
i = 1, j = n, � = S, and μ = 0, which leads to the initial
call Branch(1, n, S, 0).

Algorithm 4 Branching strategy
1: procedure Branch(i, j, �, μ)

2: z ← ∞, z(4) ← 0
3: k ← j
4: while (k > i and (� = 0 or Ck(σ0) − μ ≤ dk or Ck(σ0) − μ −

α(i, k − 1, �) > dk)) or k = i do
5: if Ck(σ0) − μ > dk then z(4) ← z(4) + wk

6: k ← k − 1
7: if k > i then
8: for h = i, . . . , k do
9: z(1) ← 0, z(2) ← 0, z(3) ← 0
10: if h > i then z(1) ← Branch(i, h − 1, �, μ)

11: if h < k then z(2) ← Branch(h + 1, k, � − 1, μ + ph)

12: if Ck(σ0) − μ > dh then z(3) ← wh

13: if
∑4

u=1 z
(u) < z then z ← ∑4

u=1 z
(u)

14: else
15: z ← z(4)

16: return z

5.1.1 Duplicate avoidance

The branching scheme described above has a major draw-
back, namely, that the same subproblems have to be opti-
mized several times since they occur in several distinct
branches of the branch-and-bound tree. For instance, the opti-
mization of the subproblem (1, h, �, 0)will be required in all
nodes of the branch-and-bound tree of the form (1, h′, �, 0)
with h′ > h, when h + 1 is the job selected to be moved.
To avoid solving the same subproblems multiple times, a
suitable data structure is defined to store the results of the
subproblems once they have been solved. At the expense
of increased consumption of memory space, this technique
allows us to substantially reduce the computing time.

5.2 Bounding

The definition of a repairable job is not only the basis for
the branching policy, but it is also useful for the purpose of a
lower bound. In detail, for each subproblem (i, j, �, μ), the
sum of the weights of late but non-repairable jobs in it is a
valid lower bound of its cost. For each successor correspond-
ing to a move h → k, lower bounds ζ (1) and ζ (2) for z(1) and
z(2), respectively, are evaluated. If ζ (1)+ζ (2)+z(3)+z(4) < z,
then the successor node in the branch-and-bound tree is opti-
mized; otherwise it is fathomed.

In addition to the lower bound, an upper bound is com-
puted for each subproblem. It initially corresponds to the cost
of the subsequence with no rearrangements and is updated

Table 1 Distribution of the processing times and the weights for the
different test sets

set 1 p j ∼ U (1, 100) w j ∼ U (1, 100)

set 2 p j ∼ U (1, 1000) w j ∼ U (1, 100)

set 3 p j ∼ U (1, 100) w j ∼ U (1, 1000)

set 4 p j ∼ U (1, 1000) w j ∼ U (1, 1000)

every time a better rearrangement is found in one of the suc-
cessors of the subproblem.

5.3 Search strategy

A subproblem represented by the quadruple (i, j, �, μ) can
have up to j − i + 1 successors. They are examined in an
order that depends on their associated lower bound, i.e.,
ζ (1) + ζ (2) + z(3) + z(4). More precisely, the successors
are solved in non-decreasing order of their associated lower
bound. Some preliminary computational tests showed that
this strategy enables early detection of the optimal solution
and thus makes it possible to substantially reduce the number
of nodes in the branch-and-bound tree.

Apart from this local ordering of the successors, the
branch-and-bound tree is visited depth-first, since this allows
for recursive implementation.

6 Computational experiments

This section provides computational experiments based on
five data sets aiming for comparisons between the different
solution approaches. All experiments were performed on an
Intel Core i5 2.10 GHz computer (in 64-bit mode) with a
memory of 8 GB. Each of the algorithms was coded in Pascal
language, and for the integer linear programs, we used the
commercial ILP solver Gurobi v9.1.1. Hereinafter, first, the
procedure for generating the various instances is described,
followed by a discussion of the results obtained.

6.1 Generation of test instances

We generated test instances with 50 and 100 jobs according
to the data generation scheme proposed by Potts andWassen-
hove (1988). For each instance of the test sets 1 to 4, we chose
integer processing times p j and integer weightsw j , indepen-
dent and identically, uniformly distributed, respectively, with
distribution parameters as given in Table 1.

Moreover, we chose independent and identically, uni-
formly distributed integer due dates d j ∼ U (P · d�, P · du)
for various lower and upper bounds d� and du , where
P = ∑

j∈J p j is the sum of the processing times for all

jobs. The choices for the two parameters d� and du are

123

Journal of Scheduling

d� ∈ {0.2, 0.4, 0.6, 0.8} and du ∈ {0.2, 0.4, 0.6, 0.8, 1.0},
with d� ≤ du . Accordingly, this results in 14 pairs of param-
eter values. For each of the 14 resulting classes of instances,
10 instances were randomly generated, ultimately yielding a
total of 140 instances for each value of n. Note that a similar
test environmentwas used inNicosia et al. (2021) to illustrate
the influence of the stack capacity S on the solution structure
for the three objective functions where strictly polynomial
algorithms exist, but not for 1|resch-LIFO|∑ w jU j .

Test set 5 was generated in a completely different way
by the following procedure. For each instance of data set 1,
the optimal solution for minimizing

∑
w jU j (completely

reordering the given jobs) was computed. Subsequently, ran-
domly selected jobs were moved forward in compliance with
the LIFO policy and a stack capacity of 12. Clearly, when
solving our stated problem with S = 12, we again obtain the
optimal solution value. For smaller values of S, we expected
to obtain hard-to-solve instances.

6.2 Performance comparison

Table 2 and Table 3 report on the experimental comparison
between the different solution procedures for
1|resch-LIFO|∑w jU j presented in Sects. 3 to 5.

Although the number of constraints of the assignment-
based ILP (ILPassign) is asymptotically smaller by one or
two orders ofmagnitude than the number of constraints in the
move-based ILPs (ILPmove1 and ILPmove2) (cf. Sect. 3),
the running times for ILPassignwere disproportionately long
compared to all other solution approaches. Thus, we have not
solved themajority of the instanceswith this solutionmethod,
and so we do not present any results for ILPassign. In this
context, we would like to point out that for ILPassign, the
relative gap between the optimal value of the LP relaxation
at the root node and the optimal objective value is on aver-
age about 96% for all values of S, while for the move-based
ILPs, it is often considerably smaller (see Table 4). Further-
more, DynProStatic could not be executed for test sets 3 and
4 due to excessively high memory usage caused by the high
number of states required for solving the rescheduling prob-
lem. Recall that for these two sets, the weights are random
variables with uniform distribution in [1, 1000], and that for
each triple (i, j, �), the number of states to be computed is
W (i, j).

In Tables 2 and 3, we report for each of the consid-
ered algorithms the average computation time (over 140
instances) needed to compute the optimal solution value.
Since in some cases obtaining an optimal solution may take
too long, we set a time limit of 900 000milliseconds (15min-
utes) for each computational experiment. In cases where the
algorithm did not terminate within this time limit or where it
terminatedprematurely due to insufficientmemory,weused a
computation time limit of 900 000milliseconds for taking the

average values. For all the solutionmethods, additional infor-
mation is provided in the respective second row. The values
in these second rows have different meanings for the vari-
ous algorithms, which is indicated by the different brackets:
the values in parentheses (DynProStatic and DynProImpr)
indicate the average number of states computed until the pro-
gram terminates; the values in square brackets (CombB&B)
indicate the average number of solved subproblems; for the
values in curly brackets, the first number (CombB&B, ILP-
move1, and ILPmove2) denotes the number of instances (out
of 140) that cannot be solved within the predefined time limit
or due to lack ofmemory; and the second number (ILPmove1
and ILPmove2) indicates the number of instances for which
an optimal solution was found, but the optimality guaran-
tee was not provided because the time out expired before the
algorithm terminated.Clearly, the unsolved instances are also
not taken into account when calculating the average number
of solved subproblems.

As can be seen in Table 2, the dynamic programming algo-
rithm DynProStatic presented in Nicosia et al. (2021) cannot
compete at all with the other solution procedures, even with
the move-based ILP formulation. Even for very small values
of S, it consumes enormous computation times. For the ILPs,
it must be said that they do not always terminate within the
predefined time limit, but for almost all instances the optimal
solution value has been found at that point, but without prov-
ing its optimality. In only 12 cases for ILPmove1 and 3 cases
for ILPmove2 (out of 6300), the ILP solver stopped with a
suboptimal solution after being interrupted by the time limit.

As can be expected, for smaller stack sizes, the lower com-
putation times for ILPmove1 coincide with smaller relative
LP gaps. However, it is interesting to note that for larger
stack sizes, the average computation time for ILPmove2 is
smaller than the time for ILPmove1, but the relative LP gap
for ILPmove2 is on average still larger compared to ILP-
move1 for all values of S. For S ≥ 10, the gaps of ILPmove2
even get closer to the gaps of ILPassign, although the run-
ning times are incomparable. This illustrates that the value
of the LP gap at the root node has only limited explanation
power for the performance of the ILP. The results for the
gaps are presented in Table 4, where the relative LP gap for
each instance is calculated by taking the difference between
the optimal objective value of the ILP and the optimal LP
relaxation objective value at the root node and dividing it by
the former.

Nonetheless, compared to the ILP models and DynPro-
Static, bothDynProImpr andCombB&Bdominate by several
orders of magnitude and require comparatively really short
average running times. For this reason, we only evaluated
these two procedures for instances with 100 jobs, as shown
in Table 3.

As a main outcome of our computational analysis, it turns
out that for smaller stack capacities, i.e., less than or equal

123

Journal of Scheduling

Ta
bl
e
2

C
om

pu
ta
tio

na
lr
es
ul
ts
fo
r
al
li
ns
ta
nc
es

w
ith

n
=

50
jo
bs

fo
r
th
e
di
ff
er
en
ta
lg
or
ith

m
s.

se
t

al
go

ri
th
m

st
ac
k
ca
pa
ci
ty

S

1
2

3
4

5
6

8
10

12

1
D
yn

Pr
oS

ta
tic

48
60
4

95
92
3

14
3
59
0

19
1
49
3

23
9
45
6

28
7
46
5

38
3
60
4

47
9
79
2

57
5
99
4

(2
21
1
95
2)

(3
31
7
92
9)

(4
42
3
90
5)

(5
52
9
88
1)

(6
63
5
85
7)

(7
74
1
83
4)

(9
95
3
78
6)

(1
2
16
5
73
9)

(1
4
37
7
69
1)

D
yn
Pr
oI
m
pr

3
8

12
17

26
33

57
87

12
8

(3
42
0)

(7
02
0)

(1
2
32
9)

(1
9
53
6)

(2
8
70
0)

(3
9
48
6)

(6
7
98
1)

(1
04

65
7)

(1
49

53
7)

C
om

bB
&
B

0
0

0
1

3
15

14
6

61
8

1
71
8

[3
]

[1
1]

[5
9]

[5
74
]

[4
32
2]

[2
1
72
1]

[1
54

20
9]

[4
58

92
1]

[1
04
9
70
8]

IL
Pm

ov
e1

2
86
0

7
91
7

14
84
1

33
53
0

64
23
9

10
8
91
4†

23
4
33
0†

42
8
61
7†

53
2
14
5†

—
—

—
—

—
{3
:3
}

{1
6:
16
}

{3
1:
30
}

{5
7:
52
}

IL
Pm

ov
e2

2
92
5

12
25
3

24
86
4

48
72
4

78
36
0

10
6
35
3

18
8
30
9†

30
0
02
8†

37
6
84
4†

—
—

—
—

—
—

{2
:2
}

{1
2:
11
}

{2
2:
20
}

2
D
yn

Pr
oS

ta
tic

49
76
0

98
23
1

14
7
06
8

19
6
02
9

24
5
13
6

29
4
25
8

39
2
63
4

49
1
07
9

58
9
66
3

(2
23
3
17
5)

(3
34
9
76
2)

(4
46
6
34
9)

(5
58
2
93
6)

(6
69
9
52
4)

(7
81
6
11
1)

(1
0
04
9
28
6)

(1
2
28
2
46
0)

(1
4
51
5
63
5)

D
yn
Pr
oI
m
pr

3
6

10
18

25
35

60
91

13
0

(3
50
7)

(7
17
0)

(1
2
79
0)

(2
0
08
5)

(2
9
45
0)

(4
1
01
6)

(7
1
81
2)

(1
10

25
6)

(1
56

61
1)

C
om

bB
&
B

0
0

0
1

4
81

4
89
3

34
37
5

11
1
43
4†

[3
]

[1
0]

[4
9]

[4
65
]

[4
33
8]

[3
4
48
5]

[4
76

32
5]

[1
99
6
34
7]

[3
94
1
07
4]
:{
5}

IL
Pm

ov
e1

2
75
5

7
49
8

14
38
0

36
64
0

68
12
4†

12
4
75
3†

29
3
04
3†

45
7
95
7†

53
2
06
8†

—
—

—
—

{1
:1
}

{3
:3
}

{1
7:
17
}

{4
8:
48
}

{6
2:
61
}

IL
Pm

ov
e2

2
83
1

10
98
3

24
37
7

51
37
6

86
81
0

12
5
71
5

21
2
14
6†

34
0
43
5†

39
3
39
6†

—
—

—
—

—
—

{2
:2
}

{1
8:
18
}

{2
0:
20
}

3
D
yn
Pr
oI
m
pr

3
6

12
18

26
35

60
92

13
3

(3
41
4)

(6
94
5)

(1
2
10
9)

(1
9
30
7)

(2
9
02
0)

(4
0
73
8)

(7
0
95
8)

(1
10

00
2)

(1
55

69
7)

C
om

bB
&
B

0
0

1
0

2
13

12
7

58
2

16
44

[3
]

[1
2]

[7
5]

[4
78
]

[3
43
5]

[1
8
01
1]

[1
37

63
7]

[4
57

48
6]

[1
06
6
03
5]

IL
Pm

ov
e1

2
72
3

7
51
9

16
26
6

42
79
1†

67
29
2

11
9
72
9†

27
3
28
2†

44
8
21
8†

55
3
37
9†

—
—

—
{1
:1
}

—
{2
:2
}

{1
4:
14
}

{4
4:
43
}

{6
3:
59
}

IL
Pm

ov
e2

2
89
3

11
67
6

27
43
0

56
68
5

83
53
8

11
9
79
7

21
2
22
3†

32
0
75
1†

39
2
74
2†

—
—

—
—

—
—

{2
:2
}

{1
6:
16
}

{2
6:
26
}

123

Journal of Scheduling

Ta
bl
e
2

co
nt
in
ue
d

se
t

al
go

ri
th
m

st
ac
k
ca
pa
ci
ty

S

1
2

3
4

5
6

8
10

12

4
D
yn
Pr
oI
m
pr

3
6

10
19

26
36

60
98

14
9

(3
44
1)

(7
06
1)

(1
2
46
2)

(1
9
62
0)

(2
9
32
3)

(4
0
89
2)

(6
9
90
7)

(1
07

80
6)

(1
53

87
5)

C
om

bB
&
B

0
1

0
1

11
19
9

67
73

39
52
1

12
45
91
†

[3
]

[1
0]

[6
6]

[7
45
]

[8
29
3]

[5
5
02
1]

[5
78

00
7]

[2
15
9
81
1]

[4
65
4
11
2]
:{
4}

IL
Pm

ov
e1

2
70
6

7
54
9

15
11
7

31
92
9

67
86
8†

10
8
05
0†

26
1
41
2†

38
9
51
3†

52
0
78
0†

—
—

—
—

{1
:1
}

{3
:3
}

{1
6:
16
}

{3
4:
34
}

{5
2:
52
}

IL
Pm

ov
e2

2
82
6

11
19
6

28
15
1

50
74
8

86
33
3

11
3
43
9

20
5
57
7†

29
2
69
8†

36
7
62
0†

—
—

—
—

—
—

{4
:4
}

{9
:9
}

{1
6:
16
}

5
D
yn

Pr
oS

ta
tic

52
94
3

10
4
84
1

15
7
09
1

20
9
52
2

26
2
05
1

31
4
64
2

41
9
93
0

52
5
31
3

63
0
81
4

(2
28
1
78
3)

(3
42
2
67
5)

(4
56
3
56
6)

(5
70
4
45
8)

(6
84
5
35
0)

(7
98
6
24
1)

(1
0
26
8
02
5)

(1
2
54
9
80
8)

(1
4
83
1
59
1)

D
yn
Pr
oI
m
pr

2
5

9
14

19
26

40
52

69

(3
80
7)

(7
67
9)

(1
2
20
5)

(1
7
40
8)

(2
3
20
1)

(2
9
76
3)

(4
4
57
7)

(6
1
87
8)

(8
1
66
8)

C
om

bB
&
B

0
0

1
1

4
15

10
1

39
6

1
16
3

[4
]

[2
0]

[1
64
]

[1
21
0]

[6
49
4]

[2
2
96
8]

[1
20

55
3]

[3
43

25
5]

[7
65

98
7]

IL
Pm

ov
e1

3
22
7

11
82
0

33
13
2

92
19
3†

15
3
03
9†

23
0
20
9†

34
5
94
2†

40
1
81
4†

44
9
71
8†

—
—

—
{6
:6
}

{1
0:
10
}

{2
1:
21
}

{4
1:
41
}

{5
0:
50
}

{5
2:
52
}

IL
Pm

ov
e2

3
49
9

16
91
4

37
14
8

64
99
4

98
95
7

14
0
41
0

23
3
54
0†

33
9
88
1†

38
2
14
3†

—
—

—
—

—
—

{1
2:
12
}

{2
7:
27
}

{3
7:
37
}

Fo
re
ac
h
so
lu
tio

n
ap
pr
oa
ch
,t
he

va
lu
es

in
th
e
fir
st
ro
w
re
fle
ct
th
e
av
er
ag
e
co
m
pu
ta
tio

n
tim

e
(o
ra

lo
w
er
bo
un
d†
)i
n
m
ill
is
ec
on
ds
.T

he
va
lu
es

in
th
e
se
co
nd

ro
w
ha
ve

di
ff
er
en
tm

ea
ni
ng
s
fo
rt
he

va
ri
ou
s

al
go

ri
th
m
s,
as

in
di
ca
te
d
by

th
e
di
ff
er
en
tb

ra
ck
et
s:
th
e
va
lu
es

in
pa
re
nt
he
se
s
(D

yn
Pr
oS

ta
tic

an
d
D
yn
Pr
oI
m
pr
)
gi
ve

th
e
av
er
ag
e
nu

m
be
r
of

st
at
es

co
m
pu

te
d
un

til
th
e
pr
og

ra
m

te
rm

in
at
es
;t
he

va
lu
es

in
sq
ua
re

br
ac
ke
ts
(C
om

bB
&
B
)
in
di
ca
te
th
e
av
er
ag
e
nu
m
be
r
of

so
lv
ed

su
bp
ro
bl
em

s;
fo
r
th
e
va
lu
es

in
cu
rl
y
br
ac
ke
ts
,t
he

fir
st
nu
m
be
r
(C

om
bB

&
B
,I
L
Pm

ov
e1
,a
nd

IL
Pm

ov
e2
)
de
no
te
s
th
e
nu
m
be
r
of

in
st
an
ce
s
th
at
ca
nn

ot
be

so
lv
ed

w
ith

in
th
e
pr
ed
efi

ne
d
tim

e
lim

it
or

du
e
to

la
ck

of
m
em

or
y,
th
e
se
co
nd

nu
m
be
r
(I
L
Pm

ov
e1

an
d
IL
Pm

ov
e2
)
in
di
ca
te
s
th
e
nu

m
be
r
of

in
st
an
ce
s
th
at
ha
ve

be
en

so
lv
ed

to
op

tim
al
ity

de
sp
ite

a
pr
em

at
ur
e
te
rm

in
at
io
n
†I
n
ca
se
s
w
he
re

th
e
al
go

ri
th
m

te
rm

in
at
ed

pr
em

at
ur
el
y
du

e
to

a
re
ac
he
d
tim

e
lim

it
of

90
0
00

0
m
ill
is
ec
on

ds
or

du
e
to

la
ck

of
m
em

or
y,
th
e
co
m
pu
ta
tio

n
tim

e
w
as

se
tt
o
90
0
00
0
m
ill
is
ec
on
ds

w
he
n
co
m
pu
tin

g
th
e
av
er
ag
e
co
m
pu
ta
tio

n
tim

e

123

Journal of Scheduling

Ta
bl
e
3

C
om

pu
ta
tio

na
lr
es
ul
ts
fo
r
al
li
ns
ta
nc
es

w
ith

n
=

10
0
jo
bs

fo
r
th
e
al
go
ri
th
m
s
D
yn
Pr
oI
m
pr

an
d
C
om

bB
&
B
.

se
t

al
go

ri
th
m

st
ac
k
ca
pa
ci
ty

S

1
2

3
4

5
6

8
10

12

1
D
yn
Pr
oI
m
pr

21
47

86
13
7

20
8

30
3

59
7

99
3

1
53
1

(1
4
17
4)

(2
8
07
9)

(4
9
07
8)

(7
9
33
9)

(1
19

26
6)

(1
68

25
6)

(3
08

95
0)

(4
95

81
8)

(7
28

87
7)

C
om

bB
&
B

2
1

2
4

11
44

60
0

4
08
4

15
78
6

[3
]

[1
1]

[5
7]

[7
08
]

[7
42
8]

[3
8
83
6]

[4
21

11
3]

[2
03
0
68
0]

[5
85
4
55
9]

2
D
yn
Pr
oI
m
pr

20
49

87
14
0

21
7

32
0

60
4

1
08
2

1
95
8

(1
3
98
7)

(2
9
17
5)

(5
0
67
4)

(8
1
44
4)

(1
23

06
1)

(1
76

38
5)

(3
15

36
2)

(5
13

24
6)

(7
67

40
6)

C
om

bB
&
B

1
1

2
4

41
1
02
4

49
46
9†

19
0
27
0†

34
7
75
6†

[3
]

[1
2]

[8
3]

[1
16
7]

[1
9
13
9]

[1
70

49
9]

[2
52
7
45
4]
:{
1}

[3
58
0
16
8]
:{
20
}

[7
09
0
30
5]
:{
38
}

3
D
yn
Pr
oI
m
pr

20
49

87
14
1

21
6

31
6

61
6

1
30
4

1
84
8

(1
3
98
9)

(2
9
17
8)

(5
1
23
2)

(8
1
73
2)

(1
23

33
8)

(1
74

72
2)

(3
19

99
7)

(5
20

89
1)

(7
70

50
1)

C
om

bB
&
B

2
2

2
3

9
46

60
5

3
67
1

14
26
7

[3
]

[1
0]

[6
9]

[6
80
]

[6
61
2]

[4
1
30
3]

[4
15

81
7]

[1
90
1
47
8]

[5
59
1
66
7]

4
D
yn
Pr
oI
m
pr

21
49

89
14
1

22
1

31
7

60
5

1
05
5

1
94
2

(1
3
95
7)

(2
7
90
6)

(4
9
03
1)

(7
8
57
6)

(1
22

39
7)

(1
76

44
8)

(3
19

94
9)

(5
18

16
7)

(7
80

03
7)

C
om

bB
&
B

2
2

2
3

23
53
3

35
34
8

17
3
53
1†

35
3
98
4†

[3
]

[9
]

[5
7]

[7
33
]

[1
0
24
0]

[9
6
42
0]

[2
00
7
28
9]

[4
09
1
21
8]
:{
15
}

[7
86
1
76
2]
:{
35
}

5
D
yn
Pr
oI
m
pr

16
38

70
10
9

16
0

21
4

34
5

52
4

76
6

(1
5
22
2)

(3
1
63
4)

(5
3
95
4)

(7
9
92
1)

(1
09

70
7)

(1
41

36
0)

(2
12

14
7)

(2
95

87
5)

(3
94

86
9)

C
om

bB
&
B

2
2

3
11

56
21
6

1
63
5

6
89
7

18
81
5

[4
]

[3
8]

[5
44
]

[7
42
0]

[4
8
07
3]

[1
75

30
7]

[9
29

45
8]

[2
83
1
90
9]

[6
37
3
56
1]

Fo
re
ac
h
so
lu
tio

n
ap
pr
oa
ch
,t
he

va
lu
es

in
th
e
fir
st
ro
w
re
fle
ct
th
e
av
er
ag
e
co
m
pu
ta
tio

n
tim

e
(o
ra

lo
w
er
bo
un
d†
)i
n
m
ill
is
ec
on
ds
.T

he
va
lu
es

in
th
e
se
co
nd

ro
w
ha
ve

di
ff
er
en
tm

ea
ni
ng
s
fo
rt
he

va
ri
ou
s

al
go

ri
th
m
s
w
hi
ch

is
in
di
ca
te
d
by

th
e
di
ff
er
en
t
br
ac
ke
ts
:
th
e
va
lu
es

in
pa
re
nt
he
se
s
(D

yn
Pr
oI
m
pr
)
gi
ve

th
e
av
er
ag
e
nu
m
be
r
of

st
at
es

co
m
pu
te
d
un
til

th
e
pr
og
ra
m

te
rm

in
at
es
;
th
e
va
lu
es

in
sq
ua
re

br
ac
ke
ts
(C
om

bB
&
B
)
in
di
ca
te
th
e
av
er
ag
e
nu
m
be
r
of

so
lv
ed

su
bp
ro
bl
em

s;
th
e
va
lu
es

in
cu
rl
y
br
ac
ke
ts
de
no
te
th
e
nu
m
be
r
of

in
st
an
ce
s
th
at
ca
nn
ot

be
so
lv
ed

w
ith

in
th
e
pr
ed
efi

ne
d
tim

e
lim

it
or

du
e

to
la
ck

of
m
em

or
y
†I
n
ca
se
s
w
he
re

th
e
al
go
ri
th
m

te
rm

in
at
ed

pr
em

at
ur
el
y
du
e
to

a
re
ac
he
d
tim

e
lim

it
of

90
0
00
0
m
ill
is
ec
on
ds

or
du
e
to

la
ck

of
m
em

or
y,
th
e
co
m
pu
ta
tio

n
tim

e
w
as

se
tt
o
90
0
00
0

m
ill
is
ec
on
ds

w
he
n
co
m
pu
tin

g
th
e
av
er
ag
e
co
m
pu
ta
tio

n
tim

e

123

Journal of Scheduling

Table 4 Average relative gaps
between the LP relaxation
objective value at the root node
and the optimal objective value
for the different ILP
formulations

set ILP model stack capacity S

1 2 3 4 5 6 8 10 12

1 ILPmove1 0.01 0.24 0.25 0.31 0.35 0.42 0.52 0.64 0.72

ILPmove2 0.01 0.58 0.62 0.66 0.70 0.73 0.77 0.81 0.83

ILPassign 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.96

2 ILPmove1 0.02 0.23 0.25 0.30 0.37 0.44 0.53 0.63 0.72

ILPmove2 0.02 0.59 0.62 0.67 0.70 0.73 0.77 0.81 0.83

ILPassign 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.96 0.96

3 ILPmove1 0.01 0.26 0.28 0.33 0.37 0.45 0.53 0.65 0.74

ILPmove2 0.02 0.59 0.63 0.67 0.71 0.73 0.78 0.81 0.83

ILPassign 0.97 0.97 0.96 0.96 0.96 0.96 0.96 0.96 0.95

4 ILPmove1 0.01 0.23 0.27 0.32 0.36 0.43 0.50 0.62 0.72

ILPmove2 0.02 0.57 0.62 0.66 0.70 0.73 0.77 0.81 0.83

ILPassign 0.97 0.97 0.97 0.97 0.96 0.96 0.96 0.96 0.96

5 ILPmove1 0.15 0.44 0.51 0.54 0.57 0.60 0.67 0.75 0.80

ILPmove2 0.16 0.69 0.71 0.73 0.75 0.77 0.81 0.84 0.85

ILPassign 0.95 0.94 0.94 0.93 0.93 0.93 0.93 0.93 0.93

to 5 or 6 (depending on the particular test set), CombB&B
performs better than DynProImpr, while for larger values
of S, the improved dynamic program delivers outstanding
results by comparison.

Another interesting finding from our results is the fol-
lowing observation, which holds for both values of n: when
comparing the results of the different solution approaches
between sets 1 and 2 (recall that in both test sets, the weights
are generated from the uniform distribution on the interval
[1, 100], whereas the processing times are generated from
U (1, 100) and U (1, 1000), respectively), the average com-
putation times (and also the average number of computed
states/subproblems) do not differ significantly for any of the
dynamic programming algorithms and any of the considered
stack capacities. This is rather surprising as it might have
been expected that dynamic programming is more sensitive
to the size of the input coefficients. In contrast, the branch-
and-boundprocedure only produces similar results for a stack
capacity smaller or equal to 4, while the running times are
noticeably different for larger values of S. The same results
can be observed when comparing test sets 3 and 4.

Recall that test sets 1 and 5 contain the same sets of
jobs, but the initial ordering of set 5 was designed to obtain
more difficult instances. For n = 100, this could indeed
be observed for CombB&B, but not for DynProImpr. For
n = 50, the comparison of algorithms does not show a sig-
nificant trend. It seems that the effect of perturbing an optimal
schedule by moving jobs with a stack capacity 12 (roughly
25%) yields instances which do not differ too much from
randomly sorted sequences.

7 Conclusions

In this paper, we considered a rescheduling problem where
jobs arrive in a given sequence which can be modified by
extracting jobs from the sequence and putting them on a
stack of limited capacity. Jobs can be reinserted from the
stack into the sequence at a position further to the end (no
forward moves) whereby the stack must be accessed accord-
ing to a LIFO policy. While other objective functions were
considered in a preceding paper, our goal in this paper is
the minimization of the weighted number of late jobs in the
modified sequence.

We study the exact solution of this NP-hard problem
from several perspectives. We introduce two ILP models,
an advanced algorithm based on dynamic programming and
a branch-and-bound approach.

Summarizing our computational experiments, the ILP
models soon reach their limits of practicability. However,
it turns out that our advanced dynamic programming algo-
rithm DynProImpr solves all our classes of test instances in
less than 2 seconds (on average), while all other approaches
exhibit a dramatic increase in their running time consump-
tion. In particular, we want to emphasize the importance of
the technical and implementational improvements applied
to the previous dynamic program. Although the underlying
algorithmic principle remains the same, the application of
dominance relations and state reductions improves the per-
formance by several orders of magnitude. Careful algorithm
engineering turns a pseudo-polynomial algorithm of only
theoretical value into a viable solution approach.

The branch-and-bound algorithm CombB&B performs
even better than DynProImpr for smaller stack sizes, but

123

Journal of Scheduling

becomes less efficient for larger stack sizes and larger weight
coefficients. We pose as an open problem the improvement
of its performance by developing tighter and efficiently com-
putable lower bounds.

As a summary for a decision maker, we can conclude
that even with today’s amazing capabilities of commercial
ILP solvers, the combinatorial difficulty of a rescheduling
problem with a limited buffer can be much better handled
by tailor-made solution algorithms. Looking for an effec-
tive one-size-fits-all solution, the dynamic programming
approach can be recommended as the most effective and ver-
satile algorithm. Its running time gains considerably from
advanced algorithmic features.

For future research, it would be interesting to consider
other policies for managing the stack, in particular, a queue
environment (first-in/first-out, FIFO) or a random access
buffer. Considering, for example, a chain of three sequen-
tial production stages would open up the question of two
rescheduling phases in between the successive stages, but
with an interdependent objective. Of course, generalizations
to multistage production systems could follow.

Author Contributions Not applicable

Funding Open access funding provided by University of Graz. This
study was partially funded by the University of Graz under the Field
of Excellence “COLIBRI” and by the Regione Lombardia, grant agree-
ment no. E97F17000000009, project AD-COM.

Data Availability Not applicable

Code Availability Not applicable

Declarations

Conflicts of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

ANumerical example for Algorithm 3

In this appendix, we illustrate Algorithm 3 by a numerical
example. For ease of comparison, we continue the example
given in Nicosia et al. (2021), but with additional weights as
required for our purpose.

Example 1 Consider a schedule σ0 = 〈1, 2, 3, 4〉with 4 jobs.
The respective processing times, due dates, and weights are
given in Table 5. Since the intention behind the example is
to demonstrate how the lists θ(i, j, �) of non-m-dominated
states are calculated, we confine our computation to the case
S = 1. Note that it can be proceeded analogously for larger
values of S.

To determine the minimum weighted number of late jobs
in the sequence σ0 with moves up to level 1, all ordered lists
θ(i, j, �) of non-m-dominated states with i, j ∈ {1, 2, 3, 4},
i ≤ j , and � ∈ {0, 1} need to be calculated.

First, however, the threshold values a(i, �) have to be
determined for each job i ∈ {1, 2, 3, 4} and each level
� ∈ {0, 1} according to Algorithm 2: a(1, �) = 0 for
� ∈ {0, 1} (Steps 3–4), a(i, 0) = 25 and a(i, 1) = 0 for
i ∈ {2, 3, 4} (Steps 5–10).

At level � = 0, the initialization of the improved dynamic
programming algorithm is performed (Steps 1–11 of Algo-
rithm 3). Recall that the values of θ(i, j, 0) are evaluated on
the initial sequence σ0(i, j). Hence, with the lateness values
already presented in Table 5 and the previously computed
threshold values, a(i, 0), θ(i, j, 0) can easily be determined.

For example, when computing θ(2, 4, 0), Steps 5–11 need
to be performed. In so doing, we first initialize M = 0
(Step 5). Subsequently, we have to consider all late jobs in
σ0(2, 4) in non-increasing order of their lateness values, i.e.,
in the order 3, 2, and 4, as also indicated by the columns of
Table 6. For k = 3, we have L3(σ0) = 30 > a(2, 0) = 25.
Consequently, Steps 8–9 do not need to be performed. How-
ever, Step 10 demands M to be increased by w3 = 2
such that M = 2. In contrast, for k = 2, the if-statement
of Step 7 is satisfied (L3(σ0) = 20 ≤ a(2, 0) = 25).
Since θ(2, 4, 0) is (still) empty, the tuple (2, 20) is added
to θ(2, 4, 0) (Step 9) and M is set to 5 (Step 10). For k = 4,
we have L4(σ0) = 20 ≤ a(2, 0) = 25, i.e., the if-condition
of Step 7 is fulfilled, but when comparing (5, 20) with the
last element of θ(2, 4, 0) which is (2, 20), we observe that

Table 5 Processing times, due
dates, weights, completion
times, and lateness values of an
initial schedule σ0 = 〈1, 2, 3, 4〉
with a weighted number of late
jobs of 8

job 1 2 3 4

pi 25 10 5 10

di 45 15 10 30

wi 1 3 2 3

Ci (σ0) 25 35 40 50

Li (σ0) −20 20 30 20

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Scheduling

LessOrEqual ((5, 20), (2, 20)) does not hold (Step 8). There-
fore, M is increased by w4 = 3 without previously adding
an element to θ(2, 4, 0). Last but not least, the tuple (8, 0) is
appended to θ(2, 4, 0) (Step 11) such that the list θ(2, 4, 0)
finally consists of the elements (2, 20) and (8, 0). All lists of
non-m-dominated states at level 0 are shown in Table 6.

At level � = 1, the recursion of the improved dynamic
programming algorithm is performed (Steps 12–49 of Algo-
rithm 3). To compute the list θ(i, j, 1) of non-m-dominated
states, we first have to compute Rk for all k ∈ K according
to Steps 16–40 where K contains all late jobs in σ0(i, j) in
addition to job i . As Rk is composed of the sets Rk,1, Rk,2

and Rk,3, the middle part of Table 7 states each of the three
sets separately.

When, for example,R4 in σ0(2, 4) is to be computed, we
first have to determine R4,1, R4,2, and R4,3 (Steps 18–31).
The set R4,1 contains, on the one hand, the tuple (2, 10),
which is the first element of θ(3, 4, 0), but with an s-value
reduced by p2 = 10, and on the other hand, (5, 0), which is
the second element of θ(3, 4, 0), but with an s-value equal to
0, since a reduction of the s-value would lead to a negative
entry. While set R4,2 is empty since k and j both equal 4,
R4,3 consists of the two elements (0, 35) and (3, 0) since
C4(σ0) − d2 = 45 − 10 = 35 > 0. For the purpose of
computing R4 in σ0(2, 4), we first observe that P = {1, 3}
because only R4,1 and R4,3 are non-empty. In Step 35 ,
we find that p∗ = 3, since from the two tuples (2, 10) and
(0, 35), the second one, contained in R4,3, has the larger s-
value.Consequently, ζ equals 35 (Step 36).As it is larger than
a(2, 0) = 25, Steps 38–39 are disregarded. After deleting
(0, 35) from R4,3 (Step 40), we find that p∗ = 1 and thus
ζ = 10. Hence, the if-statement is again not satisfied, so we
just delete (2, 10) from R4,1. Next, we have p∗ = 1. Note

that we could also choose p∗ = 3 which leads to the same
value of ζ = 8 as it is the sum of the m-values of the first
elements of R4,1 and R4,3. After appending (8, 0) to R4

(Step 39) and deleting the first element fromR4,1 (Step 40),
the termination condition is reached. It follows that R4 in
σ0(2, 4) contains only the element (8, 0), as also shown in
the last column of Table 7.

After computingRk for all k ∈ K, the list θ(i, j, 1) can be
obtained by performing Steps 41–48. In order to do this, a set
K is formed by selecting all tuples with the smallestm-value,
i.e., the smallest first entry, among all the first elements of
the lists Rk , k ∈ K (Step 43). That tuple of set K with the
smallest s-value, i.e., the smallest second entry (Step 44) is
then added to θ(i, j, 1) (Step 45). Before the next element to
be added to θ(i, j, 1) can be determined, the listsRk must be
reduced by all tuples where both entries are larger or equal to
the one just added to θ (Steps 46–48). For example, θ(2, 4, 1)
is obtained as follows: Among all first elements of the lists
Rk , k ∈ {2, 3, 4}, we identify (8, 0) as that element which is
the first to be appended to θ(2, 4, 1) (note that in our case, all
the first elements are equal to (8, 0)). After decimating the
three lists according to Steps 46–48, all three of these lists
are empty, andwe terminate. Hence, θ(2, 4, 1) is an (ordered)
list containing only the tuple (8, 0). This result is also shown
in Table 7 together with all other θ values.

As shown in the last row of Table 7, the optimal solution
for stack capacity S = 1 has a weighted number of late jobs
of 3. In this example, there is only one optimal schedule,
namely, σ = 〈2, 3, 4, 1〉. It can be obtained by the single
move 1 → 4 that causes jobs 1 and 3 to be late.

Table 6 Lists θ(i, j, 0) of
non-m-dominated states for all
i, j ∈ {1, 2, 3, 4} with i ≤ j

k = 3 k = 2 k = 4 Step 11 θ(i, j, 0)

j = 1 i = 1 (0, 0) (0, 0)

j = 2 i = 2 (0, 20) (3, 0) (0, 20), (3, 0)

i = 1 (3, 0) (3, 0)

j = 3 i = 3 (2, 0) (2, 0)

i = 2 (2, 20) (5, 0) (2, 20), (5, 0)

i = 1 (5, 0) (5, 0)

j = 4 i = 4 (0, 20) (3, 0) (0, 20), (3, 0)

i = 3 (2, 20) (5, 0) (2, 20), (5, 0)

i = 2 (2, 20) (8, 0) (2, 20), (8, 0)

i = 1 (8, 0) (8, 0)

123

Journal of Scheduling

Table 7 Lists θ(i, j, 1) of
non-m-dominated states for all
i, j ∈ {1, 2, 3, 4} with i ≤ j

move i → k Rk,1 Rk,2 Rk,3 Rk

j = 1 i = 1 k = 1 (0, 0) (0, 0)

θ(1, 1, 1) (0, 0)

j = 2 i = 2 k = 2 (0, 20), (3, 0) (3, 0)

θ(2, 2, 1) (3, 0)

i = 1 k = 1 (3, 0) (0, 0) (3, 0)

k = 2 (0, 0) (0, 0) (0, 0)

θ(1, 2, 1) (0, 0)

j = 3 i = 3 k = 3 (0, 30), (2, 0) (2, 0)

θ(3, 3, 1) (2, 0)

i = 2 k = 2 (2, 0) (0, 20), (3, 0) (5, 0)

k = 3 (2, 0) (0, 25), (3, 0) (5, 0)

θ(2, 3, 1) (5, 0)

i = 1 k = 1 (5, 0) (0, 0) (5, 0)

k = 2 (0, 0) (2, 0) (0, 0) (2, 0)

k = 3 (2, 0) (0, 0) (2, 0)

θ(1, 3, 1) (2, 0)

j = 4 i = 4 k = 4 (0, 20), (3, 0) (3, 0)

θ(4, 4, 1) (3, 0)

i = 3 k = 3 (3, 0) (0, 30), (2, 0) (5, 0)

k = 4 (0, 15), (3, 0) (0, 40), (2, 0) (5, 0)

θ(3, 4, 1) (5, 0)

i = 2 k = 2 (5, 0) (0, 20), (3, 0) (8, 0)

k = 3 (2, 0) (3, 0) (0, 25), (3, 0) (8, 0)

k = 4 (2, 10), (5, 0) (0, 35), (3, 0) (8, 0)

θ(2, 4, 1) (8, 0)

i = 1 k = 1 (8, 0) (0, 0) (8, 0)

k = 2 (0, 0) (5, 0) (0, 0) (5, 0)

k = 3 (2, 0) (3, 0) (0, 0) (5, 0)

k = 4 (2, 0) (0, 5), (1, 0) (3, 0)

θ(1, 4, 1) (3, 0)

Bold entries represent the outcome of each iteration

References

Abumaizar, R., & Svestka, J. (1997). Rescheduling job shops under ran-
dom disruptions. International Journal of Production Research,
35(7), 2065–2082.

Agnetis, A., Hall, N. G., & Pacciarelli, D. (2006). Supply chain
scheduling: Sequence coordination. Discrete Applied Mathemat-
ics, 154(15), 2044–2063.

Alfieri, A.,Nicosia,G., Pacifici,&Pferschy,U. (2018a). Singlemachine
scheduling with bounded job rearrangements. In: Proceedings of
16th cologne-Twente workshop on graphs and combinatorial opti-
mization, 124–127.

Alfieri, A., Nicosia, G., Pacifici, A., & Pferschy, U. (2018b). Con-
strained Job Rearrangements on a Single Machine. In P. Daniele
& L. Scrimali (Eds.), New Trends in Emerging Complex Real Life
Problems, AIRO Springer Series (Vol. 1, pp. 33–41). Springer.

Ballestín, F., Pérez, A., & Quintanilla, S. (2019). Scheduling and
rescheduling elective patients in operating rooms to minimise the
percentage of tardy patients. Journal of Scheduling, 22(1), 107–
118.

Detti, P., Nicosia, G., Pacifici, A., Manrique, Zabalo, & de Lara, G.
(2019). Robust single machine scheduling with a flexible mainte-
nance activity. Computers & Operations Research, 107, 19–31.

Drexl, A., Kimms, A., & Matthießen, L. (2006). Algorithms for the car
sequencing and the level scheduling problem. Journal of Schedul-
ing, 9, 153–176.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A.
H. G. (1979). Optimization and Approximation in Deterministic
Sequencing and Scheduling: a Survey. Annals of Discrete Mathe-
matics, 5, 287–326.

Hall, N. G., Liu, Z., & Potts, C. N. (2007). Rescheduling for Multiple
New Orders. INFORMS Journal on Computing, 19(4), 633–645.

Hall,N.,&Potts,C.N. (2004).Rescheduling for neworders.Operations
Research, 52(3), 440–453.

Hall, N. G., & Potts, C. N. (2010). Rescheduling for Job Unavailability.
Operations Research, 58(3), 746–755.

Liebchen, C., Lübbecke, M., Möhring, & Stiller, S. (2009). The Con-
cept of Recoverable Robustness, Linear Programming Recovery,
and RailwayApplications. In: Robust and online Large-Scale opti-
mization: models and techniques for transportation systems, vol
5868, Springer, 1–27.

123

Journal of Scheduling

Li, C. L., & Li, F. (2020). Rescheduling production and outbound deliv-
eries when transportation service is disrupted. European Journal
of Operational Research, 286(1), 138–148.

Nicosia, G., Pacifici, A., Pferschy, U., Polimeno, E., & Righini, G.
(2019) Optimally rescheduling jobs under LIFO constraints. In:
Proceedings of the 17th cologne-twente workshop on graphs and
combinatorial optimization, pp 107–110

Nicosia, G., Pacifici, A., Pferschy, P., Resch, J., & Righini, G. (2021).
Optimally rescheduling jobs with a LIFO buffer. Journal of
Scheduling, 24, 663–680.

Niu, S., Song, S., Ding, J. Y., Zhang, Y., & Chiong, R. (2019). Distribu-
tionally robust single machine scheduling with the total tardiness
criterion. Computers & Operations Research, 101, 13–28.

Nouiri, M., Bekrar, A., Jemai, A., Ammari, A. C., & Niar, S. (2018). A
New Rescheduling Heuristic for Flexible Job Shop Problem with
Machine Disruption. Studies in Computational Intelligence, 762,
461–476.

Ouelhadj, D., & Petrovic, S. (2009). A survey of dynamic scheduling in
manufacturing systems. Journal of Scheduling, 12(4), 417–431.

Polimeno, E. (2019). Optimal rescheduling of jobs under LIFO con-
straints. Master thesis, University of Milan, Department of Com-
puter Science.

Potts, C. N., & VanWassenhove, L. N. (1988). Algorithms for Schedul-
ing a Single Machine to Minimize the Weighted Number of Late
Jobs. Management Science, 34(7), 843–858.

Rener, E., Salassa, F., & T’kindt, V,. (2022). Single machine reschedul-
ing for new orders with maximum lateness minimization. Com-
puters & Operations Research,144, 105815.

van den Akker, M., Hoogeveen, H., & Stoef, J. (2018). Combining
two-stage stochastic programming and recoverable robustness to
minimize the number of late jobs in the case of uncertain processing
times. Journal of Scheduling, 21(6), 607–617.

Vieira, G. E., Herrmann, J. W., & Lin, E. (2003). Rescheduling Man-
ufacturing Systems: A Framework of Strategies, Policies, and
Methods. Journal of Scheduling, 6(1), 39–62.

Wang, D., Yin, Y., & Jin, Y. (2020). Rescheduling Under Disruptions
in Manufacturing Systems: Models and Algorithms. Uncertainty
and Operations Research: Springer.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Algorithms for rescheduling jobs with a LIFO buffer to minimize the weighted number of late jobs
	Abstract
	1 Introduction
	2 Problem definition
	3 Mathematical model
	3.1 Move formulation
	3.2 Assignment formulation

	4 Dynamic programming
	4.1 Static dynamic program
	4.2 Improved dynamic program

	5 Branch-and-bound
	5.1 Branching strategy
	5.1.1 Duplicate avoidance

	5.2 Bounding
	5.3 Search strategy

	6 Computational experiments
	6.1 Generation of test instances
	6.2 Performance comparison

	7 Conclusions
	A Numerical example for Algorithm 3
	References

