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Column generation (CG) models have several advantages over compact formulations: they provide better
linear program bounds, may eliminate symmetry, and can hide nonlinearities in their subproblems. How-

ever, users also encounter drawbacks in the form of slow convergence, also known as the tailing-off effect, and
the oscillation of the dual variables. Among different alternatives for stabilizing the CG process, Ben Amor
et al. [Ben Amor H, Desrosiers J, Valério de Carvalho JM (2006) Dual-optimal inequalities for stabilized column
generation. Oper. Res. 54(3):454–463] suggest the use of dual-optimal inequalities (DOIs) in the context of cutting
stock and bin packing problems. We generalize their results, provide new classes of (deep) DOIs, and show the
applicability to other problems (vector packing, vertex coloring, bin packing with conflicts). We also suggest the
dynamic addition of violated dual inequalities in a cutting-plane fashion and the use of dual inequalities that
are not necessarily (deep) DOIs. In the latter case, a recovery procedure is needed to restore primal feasibility.
Computational results proving the usefulness of the methods are presented.
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1. Introduction
Column generation (CG) has been proven a versatile
tool for solving large-scale linear programs (LPs), often
with more variables than explicitly representable. Such
huge models may arise naturally or may result from
a reformulation of an integer compact model using
a Dantzig-Wolfe decomposition (Dantzig and Wolfe
1960), which then leads to an integer CG approach
also known as branch-and-price (Barnhart et al. 1998,
Lübbecke and Desrosiers 2005). The resulting exten-
sive formulation (cf. Lübbecke and Desrosiers 2005,
p. 1009) has an enormous number of variables corre-
sponding to extreme points and extreme rays of the
domain chosen as the subproblem in the decomposi-
tion. Although the huge number of variables in the
extensive formulation lets the model seem unattrac-
tive, it also has some profound advantages. The
extensive formulation has a tighter LP-bound if the
subproblem does not posses the integrality property.
Moreover, if nonlinearities are present in the com-
pact formulation, they may be well managed using
the right definition of the subproblems. Additionally,
some very successful CG-based algorithms have been
invented for applications in, e.g., vehicle and crew
routing and scheduling (Desaulniers et al. 1998), cut-
ting and packing (Ben Amor and Valério de Carvalho
2005), and graph coloring (Mehrotra and Trick 1996).
Their success can be attributed to the availability of

very powerful subproblem solution algorithms that
have reached a high degree of maturity; see Irnich and
Desaulniers (2005) for constrained shortest path prob-
lems, Kellerer et al. (2004) for knapsack problems, and
Östergård (2002) and Carraghan and Pardalos (1990)
for cliques/stable sets.

However, CG approaches in practice often suffer
from instability difficulties. The dual variables, which
drive the generation process, may oscillate heavily
before they finally converge to some optimal dual val-
ues. On the primal side, extensive formulations tend
to be degenerate: In many applications the master
program is some (generalized) set-partitioning or set-
covering problem, in which each variable represents
a crew schedule, vehicle route, packing, or partition,
which is often a dense column, so a few columns
comprise a solution. However, a primal basis must
include several other variables that are then at value
zero. As a consequence, primal degeneracy leads
to rather small and often nonimproving LP pivots,
known as the tailing-off effect (Gilmore and Gomory
1961, Vanderbeck 2005). The process of variable gener-
ation then continues over many iterations to produce
nearly no improvement in the LP objective. To explic-
itly stabilize the dual values, algorithmic techniques
like the box-step method (Marsten et al. 1975), bun-
dle methods (Hiriart-Urruty and Lemaréchal 1993),
and tailored CG stabilization approaches have been
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proposed, e.g., by du Merle et al. (1999), Rousseau
et al. (2007), and Lee and Park (2011). Furthermore,
a branch of the recent literature is especially devoted
to tools that can help overcome or even benefit from
primal degeneracy when solving huge LPs (Gauthier
et al. 2015, Desrosiers et al. 2014).

In this paper, we continue the path originally fol-
lowed by Valério de Carvalho (2005) and Ben Amor
et al. (2006). For the cutting stock problem (CS) and
the bin packing problem (BP), they have shown that the
knowledge of the domain of optimal dual values can
be used to stabilize the CG process. In particular, any
valid inequality known for the optimal dual space can
be added as an additional variable to the correspond-
ing primal formulation.

We introduce the concept of dual inequalities in a
more formal way now, following the notation of Ben
Amor et al. (2006). Consider a pair of primal and dual
LPs of the forms

4P5

zP = min c>� zD = max b>�

s.t. A�= b (D) s.t. A>� ≤ c

�≥ 0

with a matrix A = 4aij5 ∈ �I×J , c = 4cj5 ∈ �J , and b =
4bi5 ∈ �I with row indices i ∈ I and column indices
j ∈ J . Let m= �I � denote the number of rows. We refer
to the jth column of A as aj ∈�I such that A= 4aj5j∈J .
For any vector a ∈ �I , we write a ∈ A if and only if
a = aj for some j ∈ J . Rows of A are denoted by ai∗ ∈
�J for i ∈ I .

We always assume that the primal formulation P
is the extensive formulation to which a CG algorithm
is applied. Therefore, we do not solve P directly, but
work with a restricted version of P , the restricted mas-
ter program (RMP), for which reoptimization of the
LP and the solution of the pricing problem (or sub-
problem) alternate. The pricing problem asks for the
determination of at least one column aj ∈A, for which
cj −�>aj < 0 holds, or the guarantee that no such col-
umn exists. In the latter case, P has been solved to
optimality and the CG process terminates.

The idea of Ben Amor et al. (2006) is to add addi-
tional constraints E>� ≤ e to the dual D. Additional
constraints in the dual D correspond with additional
variables in the primal P , denoted by y in the follow-
ing. The extended primal and dual models are

4P̃5

zP̃ =min 8c>�+e>y9 zD̃ =max b>�

s.t. A�+Ey=b 4D̃5 s.t. A>�≤c

�≥01 y≥0 E>�≤e0

The set of additional dual inequalities (DIs) E>� ≤ e
cuts part of the dual solution space. Thus, D̃ is a
restriction of D, whereas the corresponding primal

Table 1 Some Acronyms Used in the Paper

Acronym Full name

CG Column generation
RMP Restricted master program
DI Dual inequality; any inequality in the variables of D
DOI Dual-optimal inequality; fulfilled by every dual-optimal

solution of D
DDOI (Set of) deep dual-optimal inequality/ies
WSI Weighted subset inequality
SI Subset inequality
CS Cutting stock problem
BP Bin packing problem
BPC Bin packing problem with conflicts
VP Vector packing problem
VC Vertex coloring problem
KP Binary knapsack problem
UKP Unbounded knapsack problem
KPC Binary knapsack problem with conflicts
DKP Unbounded version of the d-dimensional knapsack problem
MWIS Maximum weight independent set

model P̃ is a relaxation of P . We denote by D∗ the
set of optimal solutions to the model D, i.e., the dual-
optimal space. Throughout the paper, we heavily use
acronyms; for convenience, Table 1 lists those that are
most frequently used.

One can further differentiate two special classes of
DIs depending on which part of the dual solution
space they cut off (see Ben Amor et al. 2006, p. 455):
DIs E>� ≤ e are called dual-optimal inequalities (DOIs)
if all dual-optimal solutions �∗ ∈ D∗ also satisfy the
DIs, i.e., D∗ ⊆ 8�2 E>� ≤ e9. If DIs E>� ≤ e are sat-
isfied by at least one dual-optimal solution �∗ ∈ D∗,
i.e., D∗ ∩ 8E>� ≤ e9 6= �, they are called a set of deep
dual-optimal inequalities (DDOIs). Note that deep dual-
optimal is a property referring to a set of DIs, mean-
ing that DDOIs cannot be tested individually for each
inequality in E>� ≤ e. In contrast, for a set of DOIs,
every single DI Ej∗� ≤ ej , where Ej∗ refers to the jth
row of E, must qualify as a DOI. This is fulfilled if all
dual-optimal solutions �∗ ∈D∗ respect Ej∗�

∗ ≤ ej .
Our paper contributes at least five new findings:

First, we generalize Propositions 1 and 2 of Ben Amor
et al. (2006) and Proposition 1 of Valério de Carvalho
(2005), providing insights into the relations of optimal
solution values and optimal solutions to models P , D,
P̃ , and D̃ when E>� ≤ e are DOIs or DDOIs. Second,
we define several new classes of properties for inte-
ger and binary valued matrices A and unit costs c = 1
that enable the identification of new DOIs and DDOIs.
For example, the coefficient matrices of some pack-
ing and coloring problems having a set covering or
capacitated covering formulation fulfill these matrix
properties. Herewith, we derive additional classes of
DDOIs for BP and DOIs for CS. The latter can be
extended also to the vector packing problem (VP), which
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can be seen as the multidimensional generalization
of CS.

The third aspect is the extension of the DI-based
stabilization to several new classes of problems: We
address the vertex coloring problem (VC), in which the
task is to color the vertices of a given undirected
graph with a minimum number of colors so that adja-
cent vertices receive different colors. The synthesis of
VC and BP is the bin packing problem with conflicts
(BPC). In all cases, the derivation of DOIs and DDOIs
is based on showing that the above mentioned new
matrix properties are valid.

Fourth, we show that a kind of overstabilization of
CG procedures can result in an overall faster conver-
gence. There exist cases in which one can suspect that
E>� ≤ e are DDOIs, but this may not be true. The
property may be fulfilled just for some instances of
the problem or just for a proper subset that one is
unable to identify. In the negative case, the outcome
of the stabilized CG algorithm is an infeasible primal
solution and a weaker bound than zP (see Proposi-
tion 1). We show that there is a constructive way of
identifying the DIs that have cut off D∗. This can be
seen as a recovery procedure. To accelerate the over-
all CG approach, we therefore propose to alternate
between solving the (over-)stabilized formulation P̃
and the recovery procedure until a feasible primal
solution results.

Fifth and finally, we show that the dynamic gener-
ation of DIs during the CG process is another option
that often helps reduce the computation time. Note
that up to now, DOIs and DDOIs have been used in
a static fashion. Indeed, when the number of known
DOIs or DDOIs is relatively small, e.g., polynomial
in the size of the input instance, then P̃ is not signif-
icantly larger than P , and the advantage of stability
can then outreach the resulting larger RMP reopti-
mization times. Such a family of DOIs has been used
in a branch-and-price approach for the capacitated
arc-routing problem (Bode and Irnich 2012). How-
ever, in all problems considered here, the families of
DIs, DOIs, and DDOIs are exponential in size. For
the problems CS, BP, VC, and BPC we demonstrate
that often the dynamic generation, sometimes in com-
bination with an a priori addition of the expectedly
strongest DIs provides the best trade-off between sta-
bilization, effort of DI generation, and effort for reop-
timizing the RMP.

The remainder of this paper is organized as fol-
lows: §2 presents the generalized proposition on the
relations of solutions of models P , D, P̃ , and D̃. In
§3, we derive properties of the coefficient matrix that,
if fulfilled, allow the identification of DIs that are
DOIs and/or DDOIs. Along with introducing the new
properties, we present their application to different
problems. This includes the proper introduction of

the extensive formulations of these problems and the
specification of the different new classes of DOIs and
DDOIs. Section 4 clarifies the dynamic identification
of violated DIs and presents the recovery procedure.
In §5, we present aggregated computational results
for BP, CS, VC, and BPC. Final conclusions are drawn
in §6.

2. Equivalence Conditions for the
Original and Extended Models

The central question of this section is the following:
Under which conditions are the models P and P̃ and
D and D̃ equivalent? Equivalence of the respective
models means that they provide identical LP-bounds.
Moreover, optimal solutions to the extended models
P̃ and D̃ can be transformed into optimal solutions of
the corresponding original models P and D, respec-
tively. In case of equivalence, the stabilized model P̃
can be solved by CG instead of the nonstabilized
model P . Conditions for the equivalence depend on
the constraints E>� ≤ e.

Proposition 1 generalizes the findings of Ben Amor
et al. (2006), including some results of Valério de Car-
valho (2005). In essence, if the E>� ≤ e are DDOIs,
then the models P1D1 P̃ , and D̃ are equivalent, and
vice versa.

Proposition 1. The following statements are equiv-
alent:

(i) E>� ≤ e are DDOIs.
(ii) There exists a �∗ ∈D∗ that is feasible also for D̃.
(iii) zD = zD̃.
(iv) zP = zP̃ .
(v) For every feasible primal solution 4�̃1 y5 to P̃ there ex-

ists a primal feasible solution � to P with c>�≤ c>�̃+ e>y.
(vi) There exists a primal optimal solution 4�̃∗1y∗5 to P̃

with Ey∗ = 0. Also, �̃∗ is an optimal solution to P .
(vii) Every optimal dual solution �∗ to D̃ is optimal

for D.

The proof of Proposition 1 and proofs for all other
propositions and theorems can be found in §EC.1
of the online supplement (available as supplemental
material at http://dx.doi.org/10.1287/ijoc.2015.0670).

Ben Amor et al. (2006) have shown the implica-
tions (i) ⇒ (iii), (i) ⇒ (iv), and (i) ⇒ (vii). Moreover, for
DOIs they showed that if there exists a primal optimal
solution 4�̃∗1y∗5 to P̃ with Ey∗ = 0, then �̃∗ is opti-
mal for P . Since DOIs are also DDOIs, Proposition 1
proves the fact that if E>� ≤ e are DOIs, then this
implies (i)–(vii). The reverse does not hold in general.

From a practical point of view, the condition (v)
is particularly useful for problems for which a con-
structive procedure is known to transform solutions
4�̃1 y5 of P̃ so they lead to a solution � of P with
less or equal cost. A solution to model P can then
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be determined by first solving the relaxed model P̃
to optimality and then converting this solution into
a solution to P . This approach has been taken by
Valério de Carvalho (2005) when solving CS with CG:
He first solves the extended master program P̃ , in
which several additional y variables corresponding to
DIs have been added a priori. As a result, the opti-
mal master program may contain positive y variables.
This solution is then transformed into a feasible CS
solution with identical cost (our recovery procedure
presented in §4.2 is inspired by this transformation).
Thus, Valério de Carvalho (2005) was the first to show
that the original CS problem is actually solved to opti-
mality, even if additional y variables are positive. In
fact, the DIs that he used for CS are DOIs, as later
shown by Ben Amor et al. (2006).

Even if no direct transformation from solu-
tions 4�̃1 y5 of P̃ into solutions � of P is known, the
model P can still be solved by solving a stabilized vari-
ant of the model P̃ . Ben Amor et al. (2006) show that
for DOIs it suffices to marginally increase the costs e of
the y variables to e+ �. As a result, all DOIs are inac-
tive and the corresponding primal variables y must be
at 0 (resulting from complementary slackness). More-
over, Ben Amor et al. (2006) suggest a two-phase pro-
cedure for DDOIs: In the first phase, they determine
an optimal solution to P̃ . It has a corresponding dual
solution �∗. In the second phase, they use a stabilized
model P , in which the dual variables � are stabilized
with the help of a trust region around �∗. The primal
solution �∗ to this stabilized model is then a feasible
solution to P (see Ben Amor et al. 2006, Prop. 5).

3. Matrix Properties for Deriving
DOIs and DDOIs

The definition of DOIs and DDOIs refers to the set
of dual-optimal solutions D∗. Up to now, DOIs and
DDOIs have been derived directly by analyzing struc-
tural properties of the problem at hand, i.e., for CS
and BP. In this section, we derive some new results
by analyzing the structure of the constraint matrix A
defining the model P . If these properties are fulfilled,
some generic classes of DIs are automatically known
to be DOIs or DDOIs. Testing these matrix proper-
ties simplifies the identification of DOIs or DDOIs
because it makes clear which structural properties of
the problem at hand need to be tested. We validate
these matrix properties for new and different prob-
lems showing that several classes of DIs are DOIs or
DDOIs.

Some additional notation is needed: Recall that I
represents the row indices and J represents the col-
umn indices of the coefficient matrix A. We denote
the ith unit vector for i ∈ I by ui ∈ �I

+. Moreover, 0

and 1 are vectors with all entries 0 and 1, respec-
tively, of appropriate size. In the following, we con-
sider an integer valued matrix A ∈ �I×J

+ , an integer
valued, strictly positive right-hand side b ∈ �I

>0, and
unit costs c = 1 ∈�J .

3.1. Exchange Property
Several results presented in the following use the
exchange property.

Definition 1 (Exchange Property). Let r1 t ∈ �I
+

be given. A matrix A ∈ �I×J
+ has the 4r1 t5-exchange

property if aj ∈A1aj ≥ r implies aj − r + t ∈A.

If one or both vectors r and t are unit vectors,
e.g., r = uh, we simplify the notation and write 4h1 t5-
exchange property. If one of the vectors is the null
vector, e.g., t = 0, we write 4r105-exchange property.

The exchange property means that the columns
in A are related to each other. Any column that is not
too small, i.e., that fulfills aj ≥ r , can be converted into
another column by exchanging entries in some rows
against entries in other rows (described by t − r). In
this case, useful relations between optimal values of
primal and dual variables can be derived.

Proposition 2. We assume a primal model P with in-
teger valued matrix A ∈�I×J

+ and unit costs c = 1 ∈�J . Let
r = 4ri51 t = 4ti5 ∈�I

+ be given. If A has the 4r1 t5-exchange
property and 4�∗1�∗5 is a pair of optimal solutions to P
and D, then

(Exch-D)
∑

i∈I
ri�

∗
i ≥∑

i∈I
ti�

∗
i or

(Exch-P) �∗
k = 0 for all k ∈ J with ak ≥ r0

If r is a unit vector uh for h ∈ I , the exchange prop-
erty allows that an entry in row h is replaced by
entries in a subset of other rows given by the posi-
tive entries in t. The following proposition shows that
valid DOIs result for the dual variables described by h
and the positive components of t.

Proposition 3. We assume a primal model P with in-
teger valued matrix A ∈ �I×J

+ , an integer valued, strictly
positive right-hand side b ∈�I

>0, and unit costs c = 1 ∈�J .
Let h ∈ I and t ∈�I

+ be given. If A has the 4h1 t5-exchange
property, then any dual-optimal solution �∗ ∈D∗ fulfills

�∗
h ≥∑

i∈I
ti�

∗
i 0

Proposition 3 can directly be applied to identify
DOIs for problems whose coefficient matrix A has
the 4h1 t5-exchange property. We exemplify this for CS
and VP.
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Cutting Stock. The CS consists of finding cutting
patterns for cutting rolls of length L into items i ∈ I
of length wi ≤ L such that the total number of rolls
is minimal and demands bi of the items i ∈ I are
fulfilled. A feasible cutting pattern cuts a roll into
several of the items with

∑

i∈I aijwi ≤ L, where aij
denotes the number of items of length wi that are
produced by pattern j ∈ J . An extensive formulation
for CS was first presented by Gilmore and Gomory
(1961), and several CG-based algorithms have been
presented over the years, e.g., by Valério de Carvalho
(1998), Vanderbeck (2000), Ben Amor and Valério de
Carvalho (2005). In our notation, model P for CS con-
sists of columns aj ∈ �I

+ forming A, one for each
feasible cutting pattern. The variable �j gives the
number of rolls that are cut according to pattern j (cf.
Gilmore and Gomory 1963). The pricing problem has
to identify a cutting pattern with negative reduced
cost. This is an unbounded knapsack problem (UKP),
which can be solved by dynamic programming algo-
rithms as a longest path problem in an acyclic digraph
(see Kellerer et al. 2004). We provide some more
details in §4.1.

Vector Packing. The VP is the d-dimensional (d ≥ 2)
generalization of CS. CG algorithms for VP have been
presented by Caprara and Toth (2001) and Alves et al.
(2014). In VP, items i ∈ I have a size wi11wi21 0 0 0 1wid

in each of the d dimensions (e.g., weight, volume,
cost, etc.), and cutting patterns or packings are restricted
not only by a single capacity, but by d capacities L11
L21 0 0 0 1Ld. A straightforward extensive model for VP
is analog to the one for CS: Columns in the mas-
ter program correspond to feasible packings, whereas
the subproblem is the unbounded version of a d-
dimensional knapsack problem (DKP) (see Kellerer et al.
2004, Chap. 9).

A direct consequence of Proposition 3 is shown in
Theorem 1.

Theorem 1. Let d = 1 or d ≥ 2. Moreover, let wi1 i ∈ I
( for d = 1) or wip1 i ∈ I1 p ∈ 81121 0 0 0 1 d9 ( for d ≥ 2) be the
d-dimensional weights defining CS and VP, and let h ∈ I ,
S ⊆ I\8h9, and t ∈ �S

>0 be given. We distinguish between
d = 1 and d ≥ 2:

(i) If wh ≥∑s∈S tsws , then the inequality �h ≥∑s∈S ts�s

is a DOI for CS.
(ii) If whp ≥ ∑

s∈S tswsp for all p = 11 0 0 0 1 d, then the
inequality �h ≥∑s∈S ts�s is a DOI for VP.

In the following, we refer to DIs of the form �h ≥
∑

s∈S ts�s as weighted subset inequalities (WSIs). In the
primal model P̃ , the corresponding kth column to a
WSI is 4Eik5i∈I ∈�I with

4Eik5=











ti i ∈ S1

−1 i = h1

0 otherwise1
(1)

and a cost of zero; i.e., ek = 0. We refer to such a WSI
and its (so-called) WSI column as 4h← t1 S5 with h ∈ I ,
S ⊆ I\8h9, and t ∈ �S

>0 instead of using the column
index k. Moreover, for t = 1 ∈�S

>0, the DI �h ≥∑s∈S �s

is a subset inequality (SI), and we refer to it and its
column as 4h← S5.

The WSIs and the associated primal WSI columns
have a very intuitive practical interpretation in CS:
The quantities ts for s ∈ S describe a combination of
items including copies whenever ts > 1. Whenever the
total length of the combination is not longer than
the length wh of item h, then it is more difficult to
include item h in a cutting pattern than all items (and
their copies) of the combination. Hence, the marginal
cost �h of producing item h should be not smaller
than the overall marginal cost of producing the com-
bination. It also means that in any cutting pattern that
includes item h one can safely replace this item h by
the combination, i.e., all items s ∈ S in quantities given
by ts1 s ∈ S. The result is a different, but certainly fea-
sible cutting pattern.

When P̃ is solved by CG, the presence of a WSI
4h ← t1 S5 in the RMP implicitly represents several
other cutting pattern columns. For any cutting pat-
tern column aj including item h, i.e., aj ≥ uh, the sum
of column aj and a WSI column 4h ← t1 S5 realizes
the cutting pattern (1) in which items s ∈ S are cut an
additional ts times and item h is cut one time fewer
than given by ahj . Thus, the presence of WSI columns
in the RMP prevents having to explicitly generate
specific columns because they are already implicitly
represented. Moreover, these implicitly represented
cutting patterns and other WSIs together represent
additional cutting pattern columns.

Note that the WSIs for CS in Theorem 1 are general-
izations of the SIs introduced by Valério de Carvalho
(2005) and proven to be DOIs by Ben Amor et al.
(2006). Both works exclusively consider DOIs of the
form �h ≥∑

s∈S �s ; hence they neglect the possibility
of replacing a single item by multiples of one or more
items s ∈ S.

3.2. Covering Property
It seems to be common knowledge or folklore that
(generalized) covering formulations are preferable to
partitioning formulations, i.e., inequality over equal-
ity constraints. In the light of Proposition 3 we can
justify this as follows: If the matrix A has the 4h105-
exchange property, it means that matrix entries in the
row h can be decreased as long as a column aj1 j ∈ J
has a positive entry ahj . Intuitively, the hth equality of
A�= b can then be replaced by a covering constraint.
The following proposition formalizes the idea from a
primal and dual perspective:

Proposition 4. Let a matrix A ∈�I×J
+ have the 4h105-

exchange property for every h ∈ I . Then:
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(i) For every primal solution � to the system A� ≥ b,
� ≥ 0 there exists another primal solution �′ to A�′ = b,
�′ ≥ 0 with 1>�′ = 1>�.

(ii) Any dual-optimal solution �∗ ∈D∗ fulfills �∗
h ≥ 0.

This result can be used to explain why some (gen-
eralized) partitioning problems are equivalent to their
covering versions, which is a well-known fact for
many problems. A prerequisite is that the coefficient
matrix A of the problem has the 4h105-exchange prop-
erty for every h ∈ I . Practically speaking, a subset of
a feasible structure is again a feasible structure of the
same type with no greater cost (note the unit costs
assumption made at the beginning of §3). The feasi-
bility of subsets is known as the concept of heredity
(see, e.g., Pattillo et al. 2013). For CS, e.g., removing an
item from a cutting pattern clearly results in another
feasible cutting pattern, unless it becomes empty.

Note that for solving these equivalent formulations
by CG the covering formulation (with A� ≥ b) is
significantly more stable than the one with equal-
ity (A� = b). In the latter, the feasible dual space is
in �I , whereas feasible dual solutions for covering
come from the positive quadrant �I

+. Hence, the dual
space is reduced by a factor of 2m.

Hereditary problems are VP and BP. Additional
examples are VC, which is equivalent to partitioning
with independent sets and partitioning with cliques
in the complement graph, the edge coloring problem,
and partitioning with matchings. In the context of
truck routing, most tour minimization problems are
hereditary. In all these problems (some are considered
and formally introduced later in this article), subsets
of packings, independent sets, cliques, and matchings
are clearly feasible subsets and, hence, partitioning
and covering are equivalent formulations.

For other problems, however, covering and parti-
tioning differ: Covering and partitioning a graph with
certain types of subgraphs are different problems if
the subgraphs are, e.g., cycles or k-clubs. Here the
subgraph formed by a subset of the vertices of a cycle
or a k-club is generally not a cycle or k-club (see Pat-
tillo et al. 2013). The same is true for routing problems
with a maximal waiting time constraint, since a sub-
tour of a feasible tour may violate the waiting time
constraint.

3.3. Row Interchange Properties
We now consider LPs with only binary coefficients
so that A ∈ �I×J and b = 1 holds. Moreover, the pri-
mal model is assumed to have unit costs c = 1. For
these we define a modified version of the exchange
property:

Definition 2 (Row Replacement Property). Let h,
i ∈ I be given. A binary matrix A ∈�I×J has the 4h1 i5-
row replacement property if aj ∈ A1aj ≥ uh and aij = 0

implies aj − uh + ui ∈ A. In this case, the pair 4h1 i5 ∈
I × I is called a valid replacement for A.

The analog to Proposition 3 for LPs P whose coef-
ficient matrix A satisfies the row replacement prop-
erty is:

Proposition 5. We assume a primal model P with
binary matrix A ∈ �I×J , right-hand side b = 1 ∈ �I , and
unit costs c = 1 ∈�J . Let E>� ≤ e be the set of all inequal-
ities �i −�h ≤ 0 for valid replacements 4h1 i5 for A ∈�I×J .
Then E>� ≤ e are DDOIs.

Using Proposition 5, we can show that specific
classes of DIs for BP, VC, and BPC are DDOIs. We
briefly introduce these problems now.

Bin Packing. The BP is a restricted CS in which all
items i ∈ I have unit demand bi = 1. Consequently,
an item cannot appear more than once in a feasi-
ble cutting pattern, called bin in BP. Thus, A is a
binary matrix (A ∈�I×J ) and the CG pricing problem
is a binary knapsack problem (KP) (see Kellerer et al.
2004). CG algorithms for BP have been suggested by
Gilmore and Gomory (1963), Vance et al. (1994), and
Valério de Carvalho (1999). Clearly, for BP, 4h1 i5 is a
valid replacement for A if wh ≥wi.

Vertex Coloring. The VC is defined for an undirected
graph G= 4I1E5 with vertex set I and edge set E. VC
is the problem of feasibly coloring the vertices with a
minimum number of colors such that any two adja-
cent vertices receive different colors. We denote by
N4i5 the set of vertices adjacent to vertex i ∈ I . An
independent set in G is a subset S ⊆ I such that no two
vertices of S are adjacent. Clearly, in VC all vertices
of the same color form an independent set. Exten-
sive models for VC were analyzed, e.g., in Mehro-
tra and Trick (1996), Malaguti et al. (2011), Gualandi
and Malucelli (2012), and Held et al. (2012), and they
are defined as follows: The columns aj ∈ �I of A are
incidence vectors of independent sets, and the task
is to properly partition I into independent sets; i.e.,
the right-hand side is b = 1. The pricing problem in
this formulation consist of finding a maximum-weight
independent set (MWIS).

Bin Packing with Conflicts. The BPC is the synthesis
of BP and VC: Items i ∈ I with unit demand bi = 1
and weights wi have to be packed into a minimum
number of bins each with a capacity of L. Moreover,
a conflict graph G= 4I1E5 with vertex set I and edge
set E is given, where an edge 8i1 j9 indicates that the
items i and j are in conflict. Conflicting items cannot
be packed into the same bin. An extensive formula-
tion for BPC is analog to the formulations for BP or
VC and has been presented by Fernandes Muritiba
et al. (2010) and Sadykov and Vanderbeck (2013).
Columns can equivalently be seen as conflict-free bins
or capacity constrained-independent sets.
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We refer to a DI of the form �h ≥�i as pair inequal-
ity. Clearly, the pair inequalities are a special case of
the SIs.

Theorem 2. (i) The pair inequalities 8�h≥�i2 wh≥wi9
are DDOIs for BP. The pair inequality �h ≥ �i is a DOI
for BP, if in addition wh + wi > L holds. The SI �h ≥
∑

s∈S �s is a DOI for BP, if wh ≥ ∑

s∈S ws and wh +
mins∈S ws >L.

(ii) The pair inequalities 8�h ≥ �i2 N 4h5∪ 8h9 ⊇ N4i59
are DDOIs for VC. The pair inequality �h ≥ �i is a DOI
for VC, if in addition h ∈N4i5 holds. The SI �h ≥∑s∈S �s

is a DOI for VC, if N4h5 ∪ 8h9 ⊇ N4s5 and h ∈ N4s5 for
all s ∈ S, and S is an independent set.

(iii) The pair inequalities 8�h ≥ �i2 wh ≥ wi1N 4h5 ∪
8h9 ⊇ N4i59 are DDOIs for BPC. The pair inequality
�h ≥�i is a DOI for BPC, if in addition wh +wi > L or
h ∈ N4i5 holds. The SI �h ≥∑

s∈S �s is a DOI for BPC,
if wh ≥ ∑

s∈S ws , N4h5 ∪ 8h9 ⊇ N4s5 for all s ∈ S, S is
an independent set, and wh + mins∈S ws > L or h ∈ N4s5,
s ∈ S holds.

These pair inequalities of Theorem 2(a) are DOIs for
CS and VP, but they are only DDOIs for BP. Note that
for BP the equality constraints �h = �i for items h1 i ∈ I
with wh =wi used by Ben Amor et al. (2006) are a spe-
cial case of the DDOIs of Theorem 2(a). Equality con-
straints are analyzed in a more general form in §3.4.

The pair inequalities for VC (see Theorem 2(b))
were earlier stated by Malaguti et al. (2011, p. 180),
but not found useful, maybe because they were added
only a priori and were not used in combination
with SIs.

Also note that for BP and CS a linear-sized subset
of the DIs of Theorem 2 is sufficient to enforce all
O4m25 pair inequalities: one can assume that all items
are sorted by nondecreasing weights so that w1 ≤w2 ≤
· · · ≤wm. Then the m− 1 ranking inequalities �1 ≤�2 ≤
· · · ≤�m imply all pair inequalities (cf. Valério de Car-
valho 2005, Ben Amor et al. 2006, for CS). For VP,
VC, and BPC such an ordering of the vertices/items
is generally not possible, and no linear system of DIs
can impose all pair inequalities.

3.4. Constraint Aggregation and Elimination
It is well known for BP that equally sized items
i11 0 0 0 1 ip ∈ I with wi1

= · · · = wip
can be aggregated

(Vanderbeck 1999, Ben Amor et al. 2006). It means that
the p rows i11 0 0 0 1 ip are dropped and a new row, say
row k ∈ I , is introduced instead. The result is a mas-
ter program, in which the aggregated row has right-
hand side bk = p, and the new entry of a column aj
is the sum

∑p

l=1 ail1 j so that akj can take the values
from 80111 0 0 0 1 p9. Consequently, the pricing problem
of a CG approach to BP with aggregation is a bounded

knapsack problem; see Kellerer et al. (2004). Note that a
similar aggregation is also possible for CS and VP.

In the context of DIs, Ben Amor et al. (2006) have
characterized this principle of aggregation for BP in
more detail. They have shown that the set of equality
constraints �h =�i for all h1 i ∈ I with wh =wi is a set
of DDOIs for BP. Furthermore, they proposed two dif-
ferent ways to enforce the equality constraints in a CG
algorithm: explicitly adding the corresponding primal
columns to the RMP or using constraint aggregation.
Their computational results indicated that constraint
aggregation is by far superior, which can be attributed
to the following facts (see Ben Amor et al. 2006): The
size of the RMP decreases significantly in terms of
both the number of constraints and the number of fea-
sible packings and the size of the subproblem is also
reduced.

With the following proposition we generalize the
simple addition of two rows.

Proposition 6. Let � ∈ �, h1 i ∈ I be two row indices
with the primal constraints ah∗� = bh and ai∗� = bi and
associated dual variables �h and �i, respectively.

(i) The following constraints are equivalent:

4ah∗+�ai∗5�̃=bh+�bi ⇔
(

ah∗
ai∗

)

�̃+
(

�

−1

)

y=
(

bh
bi

)

1

y∈�0 (2)

(ii) Let �∗ ∈ D∗ be a dual-optimal solution with ��∗
h

= �∗
i , which fulfills E>�∗ ≤ e for a set of given DDOIs.

(This is equivalent to stating that ��h = �i together with
E>� ≤ e are DDOIs.)

Then P and P̃ are equivalent to an aggregated formula-
tion P̃ ′ in which the hth and ith equalities are replaced by
the lhs of (2). The dual solution � ′∗ defined by

� ′∗
k =

{

�∗
k for k ∈ I with k 6= h1 i1

�∗
h for the new aggregated constraint

is an optimal solution to the dual of P̃ ′.

Proposition 6 gives rise to the following interesting
result for instances of CS with no loss.

Remark 1. Consider an instance of CS that has a
solution without loss. An optimal solution then uses
the minimum number of rolls given by

∑

i∈I wibi/L.
Ben Amor et al. (2006) have shown that the DIs �∗

i =
wi/L1 i ∈ I are a set of DDOIs. Using this informa-
tion about optimal dual values, the repeated aggre-
gation of rows results in a corresponding LP with a
single row, right-hand side b′ =∑

i∈I biwi/L, and coef-
ficients a′

j ≤ 1 for all j ∈ J . Those aggregated columns
with entry a′

j = 1 correspond to original columns
aj1 j ∈ J , which represent a cutting pattern without
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loss. In the aggregated master problem, exactly one of
these columns forms the basic solution. This variable
takes the value

∑

i∈I wibi/L.
The fact that the aggregated model can be solved by

finding a cutting pattern without loss seems appeal-
ing. However, this result is not useful for computing
a primal feasible LP solution for the original model P .
By disaggregation one can find a solution to P̃ , where
the above DDOIs are generally no WSIs. Thus, the
recovery algorithm is not applicable (see §4.2). The
only tool to transform the solution to P̃ with some
active DDOIs is running a stabilized CG algorithm, as
discussed at the end of §2.

The above example of CS instances without loss is
an extreme example in the sense that all constraints
can be aggregated into a single constraint. In contrast,
if only a partial aggregation but with � 6= 1 is possi-
ble, one can benefit from Proposition 6 and the aggre-
gated formulation because CG can then be applied
to the corresponding nontrivial, but smaller, instance.
The result, the LP-bound and the optimal dual val-
ues, both for the aggregated formulation and here-
with also for the original formulation, may be rather
helpful: Faster bounding procedures can be devel-
oped, and optimal dual values can stabilize the CG
algorithm for the original disaggregated model P̃ ; see
again §2.

We now consider the special case of �= 0 in Propo-
sition 6. It means that the ith constraint is com-
pletely eliminated. The elimination of dominated con-
straints has long been used to reduce the size of
set-covering/set-partitioning instances (e.g., Balinski
1965, Garfinkel and Nemhauser 1969, Balas and Pad-
berg 1976): If for two rows h1 i ∈ I the inequality
aij ≥ ahj holds for all j ∈ J , then row i is dominated by
row h and can be eliminated. Using this property, it
is possible to eliminate specific rows in the extensive
formulation for VC, as earlier observed and exploited
in preprocessing by Méndez-Díaz and Zabala (2006,
p. 831) and Malaguti et al. (2011, p. 181):

Proposition 7. Consider two vertices h1 i ∈ I in VC.
If N4h5 ⊇ N4i5, row i is dominated by row h and can
therefore be eliminated.

The positive effects of constraint elimination on a
CG approach to VC are similar as those of aggregation
for BP, CS, and VP. One can solve VC for the graph
induced by the noneliminated vertices, which leads to
a row- and column-reduced RMP as well as smaller
subproblem instances.

Following Proposition 6, the elimination of row i
is one possibility to enforce the DI �i = 0. Let P ′ be
the primal model resulting from eliminating all dom-
inated rows I ′ ⊆ I from P . Because zP ′ = zP , the set
of DIs �i = 01 i ∈ I ′ is a set of DDOIs (Proposition 1).

An alternative way of enforcing the DI �i = 0 is to
explicitly include the corresponding column, i.e., the
ith unit vector with cost zero, in the RMP. As for
constraint aggregation and equality constraints, con-
straint elimination is computationally superior to an
extended formulation with the DDOIs.

4. Separation and Recovery
Algorithms

Our approach differs in several aspects from the
approaches of Valério de Carvalho (2005) and Ben
Amor et al. (2006) for stabilizing CG with DOIs or
DDOIs. From an application point of view, we cover
additional problems (VP, VC, and BPC) and provide
general insights on how DOIs and DDOIs may be
determined for alternative problems. The focus of this
section is, however, on the differing algorithmic parts.

First, because the number of known DOIs and
DDOIs is exponential in size, Valério de Carvalho
(2005) and Ben Amor et al. (2006) suggested using
only a linear-sized subset of the SIs with �S� ≤ 2 when
solving CS and BP. The associated primal variables y
are here added as additional columns to P̃ before
solving the RMP for the first time. We do not limit
our approach in this way, but consider exponential
classes of DOIs and DDOIs, which makes it neces-
sary to identify violated DIs dynamically in the CG
process. Indeed, this is a separation problem, and the
first part of this section presents effective separation
algorithms for CS, BP, VC, and BPC. The result of
separation is the identification of a violated DI for D̃,
which is then added as a new column to the primal
formulation P̃ . In this sense, separation of DIs is also
column generation.

Second, we do not restrict our approaches to DIs
that have been proven to be DOIs or DDOIs for the
problem at hand. Instead, we may perform a kind of
overstabilization by also using classes of DIs that are
generally neither DOIs nor DDOIs. As a result, we
might end up with an optimal solution to the over-
stabilized primal P̃ that cannot be transformed into a
feasible solution to P (as in Proposition 1). In these
cases, we apply a recovery procedure to restore pri-
mal feasibility. Such a procedure is presented in the
second part of this section.

In the following, all classes of DIs under consid-
eration are in fact WSIs so that we present separa-
tion algorithms and the recovery algorithm for these.
Recall that WSIs and SIs are denoted by 4h ← t1 S5
and 4h ← S5, respectively. Clearly, one should only
consider such subclasses of WSIs that are likely to be
DDOIs at least for some instances. For pure binary
problems such as BP, VC, and BPC, we therefore
restrict ourselves to SIs 4h← S5.

A WSI 4h← t1 S5 or SI 4h← S5 is probably no DDOI
if it violates the weight inequality for CS and BP, if the
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defining set S is no independent set for VC, and both
for BPC. Therefore, we require h, t, and S to meet the
following conditions:

• For CS and VP, the weights inequality wh ≥
∑

s∈S tsws must hold.
• For BP, we use the criterion wh ≥∑s∈S ws .
• For VC, h and S need to fulfill N4h5 ∪ 8h9 ⊇

⋃

s∈S N4s5, and S must constitute an independent set.
• For BPC, we require both of the above conditions

of BP and VC.

4.1. Dynamic Separation of Violated
Dual Inequalities

The careful dynamic generation and addition of vio-
lated WSIs prevents the RMP from being stuffed with
useless DOIs as may happen with an a priori addition
of many DIs that one suspects helps stabilize the CG
process. Clearly, mixing both strategies, the a priori
integration of expectedly helpful DIs and the dynamic
generation of violated DIs is a viable strategy that we
analyze later in the computational experiments.

For the identification of violated WSIs, a separation
procedure is needed. Let �̄i1 i ∈ I be the dual values
in a CG iteration after the reoptimization of the RMP.
The task of the separation procedure is to identify one
or several violated WSIs 4h ← t1 S5 if any, i.e., with
�̄h <

∑

s∈S ts�̄s . In the following, we describe the indi-
vidual separation algorithms that we later use for CS,
BP, VC, and BPC in our computational study.

Cutting Stock. For CS, we consider a given item
h ∈ I for which a violated WSI of the form 4h ←
t1 S5 requires the identification of the subset S and
the quantities ts ∈ �S

>0. Such a violated WSI exists if
and only if �̄h < zh, where zh = ∑

i∈I �̄iti, such that
∑

i∈I witi ≤ wh. This is, for each item h ∈ I , an UKP
with identical coefficients, as in the pricing problem,
except for a smaller capacity of wh instead of L. Note
that the WSI 4h ← t1 S5 with t and S = 8i ∈ I 2 ti > 09
for the optimal solution to the prior UKP is the most
violated WSI for this specific item h.

From a worst case point of view, the best known
algorithms for solving the UKP pricing problem

0 0
zh

0 1 2 3 4 wh L–2

w1 = 2

¯

w2 = 3

wh

L–1 L

�1

�̄2

�̄h

Figure 1 (Color online) Dynamic Programming State Graph for the Unbounded Knapsack Problem

are based on dynamic programming (DP), and
they require O4mL5 time (see Kellerer et al. 2004).
Figure 1 shows the state graph, in which states corre-
spond with residual capacities 011121 0 0 0 1L. For each
item i ∈ I , arcs 4p1 p + wi5 are present for 0 ≤ p and
p+wi ≤ L. They all have an associated profit �̄i. Addi-
tional arcs 4p1 p+15 with profit 0 model possible slack
in a solution. UKP can now be interpreted as a longest
0-L-path problem in this directed acyclic graph. When
solved with DP, the value zh for h ∈ I can be found
at state wh. If �̄h < zh, then the associated longest 0-
wi-path defines the subset of selected items S ⊆ I and
their quantities t ∈�S

+. Thus, the exact dynamic sepa-
ration of violated WSIs is a byproduct of solving the
pricing problem for CS. The additional effort for iden-
tifying a most violated WSI is O4m5 and, therefore,
the separation comes almost for free. Note that the
approach provides not only a most violated WSI, but
several other violated WSIs can also be separated.

For VP, the multidimensional extension of CS, the
pricing problem is an unbounded DKP (Kellerer et al.
2004, Chap. 9). Finding a most violated WSI requires
the solution of m smaller DKPs, which are identi-
cal to the pricing problem, but the multidimensional
capacity 4L11 0 0 0 1Ld5 is set to 4wh11 0 0 0 1whd5 for each
h ∈ I . The literature reports different exact solution
algorithms for DKP (see Ozden 1988, Fréville 2004). It
seems that none of these approaches allows the direct
retrieval of the solution to the WSI separation prob-
lem in a straightforward way.

Bin Packing. The pricing problem and the SI sep-
aration problem for BP are KPs. Again, they can be
solved efficiently in O4mL5 pseudopolynomial time
using DP (Kellerer et al. 2004, Chap. 5). The state
graph, however, differs from the one of UKP. There
is one stage for each item i ∈ I = 811 0 0 0 1m9 plus one
start stage with the single state 0. At stage i ∈ I , the
states 011121 0 0 0 1L are the possible residual capacities.
Stage i − 1 and stage i for i ∈ I are connected in the
following way: The arcs 4p1 p +wi5 with profit �i for
0 ≤ p ≤ p + wi ≤ L (p = 0 for i = 1) model the inclu-
sion of item i in the respective solution, whereas the
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arcs 4p1 p5 with profit 0 for 0 ≤ p ≤ L (p = 0 for i = 1)
model the exclusion of item i. Using forward DP, the
values at the states wh at stage m are zh = maxi∈I �̄iti,
such that

∑

i∈I witi ≤ wh and t ∈ 80119I , i.e., the val-
ues of the same KP instance as the pricing problem,
but for smaller residual capacities. For each h ∈ I , the
corresponding path from 0 to wh (connecting stages 0
and m) defines a set S of items to include. The respec-
tive SI 4h← S5 is violated if and only if zh > �̄h holds.
Summing up, as for CS, if the BP pricing problem is
already solved with DP, the additional effort needed
to identify violated SIs is O4m5. Thus, separation is a
byproduct of pricing.

Vertex Coloring. For VC, we consider again a fixed
vertex h ∈ I . For some S ⊆ I\8h9, 4h← S5 is a possible
SI if S is an independent set and N4h5 ∪ 8h9 ⊇ N4s5
holds for all s ∈ S. Denote by Sh = 8s ∈ I 2 N 4h5∪ 8h9 ⊇
N4s59 the set of all vertices that have a subset of the
conflicts of vertex h. Then the SI 4h← S5 is violated if
and only if �̄h < zh, where zh = maxS⊆Sh

∑

s∈S �̄s such
that S is an independent set. This is an MWIS prob-
lem (Balas and Xue 1991). Again, the separation prob-
lem is identical to the pricing problem, but defined
on the vertex-induced subgraph G6Sh7. As such, it is
strongly NP-hard and no byproduct of solving the
pricing problem.

For the separation of violated SIs 4h← S5, we solve
an MWIS for each vertex h ∈ I using the same exact
algorithm as for the pricing problem; see §5. The
respective sets Sh for each vertex h ∈ I are computed
once and prior to the CG process. Typically, the sets Sh
are very small compared to I in the VC benchmark
instances. As a result, separation times are negligible.
Analog to CS and BP, the separation procedure pro-
vides not only the most violated SI, but also several
others.

Bin Packing with Conflicts. Since the BPC can be
seen as the synthesis of BP and VC, it can be ex-
pected that ideas for the separation of DIs can be
adapted from these problems. First note that the CG
subproblem is a binary knapsack problem with con-
flicts (KPC). For general conflicts, i.e., defined by
arbitrary conflict graphs 4I1E5, the KPC is strongly
NP-hard and also very hard to solve (Hifi and
Michrafy 2007, Bettinelli et al. 2014). If the con-
flict graph is of bounded treewidth or is a chordal
graph, an efficient DP algorithm with complexity
O4m2L5 has been proposed by Pferschy and Schauer
(2009). A substantial part of the CG literature on BPC
focuses on an even more restricted class of conflict
graphs: interval graphs. Herein, each item i ∈ I has
an associated interval Ii 2= 4ai1 bi5, and two items
i1 j ∈ I are in conflict if and only if Ii ∩ Ij 6= �.
For interval graphs, the KPC subproblem can be
solved by dynamic programming in O4mL5 time and

space with the algorithm of Sadykov and Vander-
beck (2013). The following computational analysis
is likewise restricted to the case of interval conflict
graphs.

We briefly sketch the DP algorithm for the KPC pro-
posed by Sadykov and Vanderbeck (2013): The state
graph consists of the same O4mL5 states as the one
for KP, one for each residual capacity 011121 0 0 0 1L
and item i ∈ I plus one start state at stage 0. The
crucial difference, however, is that items i ∈ I need
to be sorted according to the right-hand side bi of
their conflict intervals. Let predi denote a last vertex in
8011121 0 0 0 1 i−19 that is not in conflict with a vertex i
(items are sorted in the above order and 0 is an arti-
ficial start item not in conflict to any other). Then the
arcs 4p1 p+wi5 connect stage predi to stage i (instead
of stages i − 1 and i, as for KP). They represent the
selection of the item i and result in the profit �̄i. Sim-
ilar to KP, the arcs 4p1 p5 connect stages i − 1 and i.
They model that item i is not part of the KPC solution
with resulting profit of 0. By construction, paths in
the state graph correspond to conflict free packings.

As before, for the separation of SIs 4h ← S5, we
consider the possible items h ∈ I one by one. The
most violated SI 4h ← S5 results from the solution
of a smaller KPC subproblem, which is defined by
the smaller capacity wh (≤ L) and on the item subset
Sh = 8s ∈ I 2 wh ≥ ws1N 4h5 ∪ 8h9 ⊇ N4s59. This separa-
tion problem is no byproduct of the BPC subproblem
in this case. In fact, the DP value for the last item m
and the residual capacity wh results in a solution that
is an independent set S with weight not exceeding wh.
However, the necessary condition S ⊆ Sh generally
does not hold. Thus, the DI 4h← S5 does typically not
qualify as a possible SI.

Since separation is nontrivial, the following three
procedures for identifying violated SIs are considered:

pairs Pair inequalities can be separated by explicit
inspection, which takes O4m25 time.

DP Based on the solution of the KPC pricing prob-
lem, the following DP-based heuristic can be
applied: One inspects all states w = 1121 0 0 0 1L
at the final stage m. Each state reached rep-
resents a solution that is an independent set
Sw with weight w. For this set Sw, one can
find a best item h ∈ I (if any) with wh ≥ w
and Sh ⊇ Sw so that h and Sw induce a SI. Sec-
tion EC.2 in the online supplement explains
that the entire procedure can be implemented
to run in O4mL5 time.

exact The exact separation of SIs 4h← S5 must solve
a smaller KPC for each vertex h ∈ I with capac-
ity wh and vertices s ∈ Sh. This requires O4m2L5
time, which turns out to be rather time con-
suming. Thus, we only solve the DP for an
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item h ∈ I , for which the LP-bound of the KP
with vertices s ∈ Sh results in a sufficiently high
violation compared to the currently most vio-
lated SI found. The procedure is still exact, but
potentially misses some SIs when separating
multiple SIs within certain quality compared
to the most violated one.

4.2. Overstabilization and Recovery of Feasible
Primal Solutions

For further stabilizing the CG process, we propose to
use not only DIs that are proven to be DOIs or DDOIs.
It may then happen that all dual-optimal solutions �∗

to D are cut off. From a primal perspective, this means
that we have overstabilized the CG process and that
we terminate with a primal solution to P̃ that cannot
be transformed into a feasible solution of P with the
same cost; see Proposition 1. The following example
illustrates this behavior.

Example 1. Consider an instance of BP with bin
capacity L = 10 and four items with w1 = 5, w2 = 2,
w3 = 2, and w4 = 2. The linear relaxation uses four fea-
sible packings—411111105>, 411110115>, 411011115>,
and 401111115>—with corresponding dual constraints
�1 +�2 +�3 ≤ 1, �1 +�2 +�4 ≤ 1, �1 +�3 +�4 ≤ 1, and
�2 +�3 +�4 ≤ 1, respectively. The unique primal and
dual optimal solutions are �∗ =�∗ = 4 1

31
1
31

1
31

1
3 5

> with
z4P5= z4D5= 4

3 .
After adding the SI �1 ≥ �3 +�4, the optimal solu-

tion �∗ is cut off, and a new dual-optimal solution is
given by 4 1

21
1
41

1
41

1
4 5

> with z4D̃5 = 1025. Thus, the SI
�1 ≥ �3 +�4 is no DDOI. The corresponding column
in P̃ is 4−11011115>, and an optimal solution for P̃ is
given by 4�̃∗1y∗5= 44 1

21
1
21

1
4105>1 1

4 5.
Transforming 4�̃∗1y∗5 into a feasible solution to P

means exchanging item 1 for items 3 and 4 in one of
the chosen bin columns that include item 1. Doing so,
however, results in a new bin column, in which either
item 3 or 4 is packed twice, which is infeasible for BP.

Note that for CS, 4�̃∗1y∗5 can be transformed into a
feasible solution for P because columns are allowed
to have nonnegative integer coefficients. This also
reflects the intuition that WSIs are DOIs for CS and
VP, but they are not for BP.

Before we formally state the recovery algorithm, we
introduce some additional notation. Recall that any
WSI is of the form 4h ← t1 S5, where h ∈ I is the row
with the −1 entry in the coefficient column vector
4Eik5 in (1) and 4t1 S5 are the nonzero entries ti > 0 for
i ∈ S. Let K denote the column indices of E. Thus, in
the primal model P̃ , these indices refer to the vari-
ables yk1 k ∈ K and rows of E> with associated WSI
4h ← t1 S5. We write k = k4h ← t1 S5 in this case. Two
indices j ∈ J and k ∈K are said to be WSI compatible if
aj −uh + t ∈A for h ∈ I defined by k = k4h← t1 S5.

Algorithm 1 (Column generation recovery algorithm)
1 repeat
2 Compute solution ��∗�y∗� to P̃ using CG
3 while WSI compatible pairs �j� k� ∈ J ×K

with �∗
j > 0 and y∗

k > 0 exist do
4 Select a WSI compatible pair �j� k� ∈ J ×K

with �∗
j > 0 and y∗

k > 0
5 Let � �=min��∗

j � y
∗
k �

6 Let j ′ ∈ J such that aj ′ = aj −uh + t
7 Let �∗

j �= �∗
j − �, y∗

k �= y∗
k − �, �∗

j ′ �= �∗
j ′ + �

8 if y∗ > 0 then
9 Select one (or several) h ∈ I such that y∗

k > 0
for h defined by k= k�h← t� S�

10 Eliminate all WSIs �h← t′� S ′� for S ′ ⊆ I ,
t′ ∈ZI

>0 from the RMP and prohibit
their re-generation

11 until y∗ = 0
Result Solution �∗ to P

The recovery algorithm is formally stated by Algo-
rithm 1. First note that by definition of compatible
pairs 4j1 k5 ∈ J ×K the value of � is strictly positive in
step 5. Moreover, the assignments in the step 7 nei-
ther invalidate the primal feasibility A�∗ + E>y = b
nor alter the cost of the solution. This results from the
equalities aj ′ = aj − uh + t and cj = cj ′ = 1. Therefore,
the inner loop (steps 4–10) is successful if an equiva-
lent primal solution with y∗ = 0 is constructed. Other-
wise (step 8), there must exist an active WSI with row
index h for which no compatible j ∈ J exists. In this
case, replacements to row h cannot be recovered. The
recovery algorithm has failed in this iteration, and
therefore some active WSIs are eliminated from the
RMP and their reintroduction is made impossible. As
a result, the next RMP solution (step 2) does not con-
tain any WSIs that refer to the row index h ∈ I selected
in step 9. Thus, after a maximum of m outer loops,
the Algorithm 1 must terminate with a solution 4�∗105
to P̃ . Since the recovery procedure is cost preserving,
Proposition 1(v) is fulfilled so that the modified �∗ is
an optimal primal solution to P .

Steps 4 and 9 leave different strategies for choices
of specific pairs 4j1 k5 and h open. For step 4, the selec-
tion of a pair 4j1 k5 leading to a maximal � may help to
minimize the number of necessary iterations of Algo-
rithm 1. For the selection of a row h in step 9, we
observed in our computational test that the number
of possible choices is always small so that we always
choose all h ∈ I with y∗

k > 0 and k4h← t1 S5.

5. Computational Results
In the following, we present computational results for
CS, BP, VC, and BPC, showing how the stabilization
with DIs affects the CG process. Furthermore, we ana-
lyze the effects of using different classes of DIs and
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show that the dynamic generation of DIs is often ben-
eficial. All presented results are on the linear relax-
ation of the respective master programs. Recall that
because of a possible overstabilization, the recovery
procedure needs to be applied for BP and BPC. All
algorithms described in this paper were implemented
in C++ using CPLEX 12.5 as LP solver. The exper-
iments were conducted on two standard PCs, one
with an Intel® Core™ i7-3770 (for BP) and one with
an Intel® Core™ i7-2600 (for CS, VC, and BPC), each
running at 3.4 GHz and with 16.0 GB main memory
using a single thread only.

5.1. Results for Bin Packing
We use the same basic CG algorithm for each of the
different stabilization strategies that we compare. The
main features of the CG algorithm are as follows: We
use a best fit decreasing heuristic (Martello and Toth
1990) to generate an initial set of columns for warm
starting the CG process. The subproblems are solved
by the DP algorithm described in §4.1, and a single
best reduced-cost bin column is generated in each iter-
ation. Pretests indicated that adding a single bin col-
umn is generally the best strategy. If DIs are generated
dynamically, multiple SI columns with a violation of
at least 25% of the most violated SI are added. In
preliminary computational tests, this appeared to be
marginally superior than values of 50% and 75% and
adding a single DI column only.

The first strategy we consider is the standard CG
approach without using any DIs referred to by stan-
dard in the following. In contrast, the strategy denoted
by aggregation uses constraint aggregation on items
with identical weight. This is the approach Ben Amor
et al. (2006) followed and can be seen as the state
of the art for BP. It is, therefore, used as the base-
line strategy for comparisons with all other strate-
gies. Moreover, all following strategies also make use
of this aggregation. We also consider using DIs in a
static fashion only (static), i.e., the addition of a set of
expectedly helpful DIs to the RMP as static columns
prior to the CG process. Motivated by preliminary
computational tests, we use DIs that are similar to
what Ben Amor et al. (2006) proposed for CS. More
precisely, we use the m−1 ranking inequalities, which
are DDOIs for BP, see Theorem 2. Additionally, O4m5
SIs 4h ← S5 with �S� = 2 are added, namely one for
each item h ∈ I . Herein, the set S = 8i1 j9 is chosen (if
existing) such that the slack in wh ≥ wi + wj is mini-
mal (and nonnegative). The pure dynamic generation
of violated SIs using the separation procedure of §4.1
is denoted by dynamic. Finally, we consider the com-
bination of the latter two, i.e., the use of static DIs
and the dynamic generation of additional violated SIs.
This last strategy is referred to as stat + dyn.

As test instances we used the benchmark sets by
Scholl et al. (1997) and Sim and Hart (2013) compris-
ing a total of 1,210 and 15,830 instances, respectively.
Both benchmark sets are subdivided into several sub-
classes differing with respect to the number of items,
the capacity, and the variance of the item weights,
resulting in instances with very different characteris-
tics and degrees of complexity. In the following, we
present results averaged over all subclasses. However,
we include only those instances for which the com-
putation time of aggregation is at least one second.
This reduces the number of benchmark instances to
207 and 4,032, respectively. The other instances are
solved in too little time with the stronger algorithmic
strategies. Hence, the consideration of these instances
would, if they were taken into account, produce unre-
liable values for the computation times.

We further differentiate two subgroups for each
benchmark set: Group 1 comprises the instances with
computation times between one and 10 seconds for
aggregation, and it consists of 157 and 3,352 instances
for the sets of Scholl et al. (1997) and Sim and Hart
(2013), respectively. The hardest instances in terms
of solution time (>10 seconds for aggregation) are
in Group 2, consisting of the remaining 50 and 680
instances.

Table 2 summarizes the results for BP, where the
table columns have the following meaning:

m The average number of rows in the
RMP relative to aggregation

Solution time The time for solving the linear
relaxation of the RMP relative to
aggregation; we present average,
maximum, and minimum values
over the instances

# CG Iterations The number of CG iterations
relative to aggregation; we present
average, maximum, and minimum
values over the instances

SP/RMP The ratio of the times spent for
solving the subproblem and
reoptimizing the RMP, averaged
over the instances.

# Dynamic DIs The number of DIs that are
generated dynamically during the
CG process; we present average,
maximum, and minimum values
over the instances

Recovery The total number of instances for
which a recovery is needed (# inst.)
and the maximum number of
iterations of the recovering
algorithm for one of the instances
(max it.).
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Table 2 Computational Results for the Bin Packing Problem

Solution time # CG Iterations SP/ # Dynamic DIs Recovery
Instances Algorithm m (avg./max/min) (avg./max/min) RMP (avg./max/min) (# inst./max it.)

Sim and Hart (2013) standard 2050 3.26/31.46/0.84 2.52/20.47/0.96 2066 — −/−
all instances (n = 41032) aggregation 1000 1.00/1.00/1.00 1.00/1.00/1.00 21024 — −/−

static 1000 0.97/1.39/0.67 0.66/1.02/0.47 30003 — 7/1
dynamic 1000 0.40/1.39/0.07 0.35/1.11/0.08 11020 1,462/9,852/26 54/2
stat+ dyn 1000 0.38/1.30/0.06 0.24/1.02/0.03 14096 865/7,351/0 54/2

Sim and Hart standard 2065 3.40/31.46/0.87 2.67/20.47/0.96 2041 — −/−
Group 1 (n = 31352) aggregation 1000 1.00/1.00/1.00 1.00/1.00/1.00 20018 — −/−

static 1000 0.96/1.35/0.67 0.65/1.02/0.47 28074 — 7/1
dynamic 1000 0.46/1.39/0.09 0.39/1.11/0.10 12000 1,007/7,029/26 37/2
stat+ dyn 1000 0.44/1.30/0.08 0.28/1.02/0.04 15043 529/5,531/0 39/2

Sim and Hart standard 1088 2.64/8.55/0.84 1.91/3.70/1.05 4033 — −/−
Group 2 (n = 680) aggregation 1000 1.00/1.00/1.00 1.00/1.00/1.00 26081 — −/−

static 1000 1.02/1.39/0.79 0.71/0.87/0.59 36057 — 0/0
dynamic 1000 0.19/1.21/0.07 0.21/0.81/0.08 8018 3,704/9,852/669 17/2
stat+ dyn 1000 0.18/1.20/0.06 0.11/0.82/0.03 13009 2,520/7,351/0 15/2

Scholl et al. (1997) standard 2028 3.24/28.77/0.91 2.41/20.26/0.96 2036 — −/−
all instances (n = 207) aggregation 1000 1.00/1.00/1.00 1.00/1.00/1.00 18006 — −/−

static 1000 0.97/1.22/0.76 0.65/1.00/0.47 26087 — 1/1
dynamic 1000 0.31/1.07/0.08 0.28/1.03/0.10 6081 2,252/11,567/35 6/2
stat+ dyn 1000 0.28/1.12/0.07 0.17/1.00/0.04 10047 1,465/7,270/0 2/1

Scholl et al. standard 2048 3.41/28.77/1.08 2.62/20.26/1.06 2024 — −/−
Group 1 (n = 157) aggregation 1000 1.00/1.00/1.00 1.00/1.00/1.00 18025 — −/−

static 1000 0.97/1.19/0.76 0.64/1.00/0.47 27017 — 1/1
dynamic 1000 0.37/1.07/0.13 0.33/1.03/0.14 7079 1,372/4,472/35 4/2
stat+ dyn 1000 0.34/1.12/0.09 0.21/1.00/0.07 11058 871/3,443/0 2/1

Scholl et al. standard 1077 2.75/8.11/0.91 1.86/3.57/0.96 2080 — −/−
Group 2 (n = 50) aggregation 1000 1.00/1.00/1.00 1.00/1.00/1.00 17052 — −/−

static 1000 0.99/1.22/0.86 0.68/0.79/0.55 26002 — 0/0
dynamic 1000 0.17/1.07/0.08 0.18/0.70/0.10 4061 5,015/11,567/936 2/1
stat+ dyn 1000 0.15/1.08/0.07 0.09/0.70/0.04 8003 3,329/7,270/0 0/0

Note that the average values in the first four cases are
geometric means because each data point is a ratio.
In contrast, the average for # Dynamic DIs is an arith-
metic average.

Table 2 shows that the dynamic generation of DIs
results in an average speedup of approximately factor
two compared to aggregation. For the hard Group 2
instances, the average speedup even reaches factor
three to four. Thereby, stat+dyn is slightly faster than
the pure use of dynamic DIs. There are also instances
for which stat + dyn and dynamic perform worse than
aggregation in terms of computation times. However,
computation times never go beyond 139% and 130%
of aggregation for dynamic and stat + dyn, respectively.
On the contrary, the biggest speedups exceed fac-
tor 15, and standard CG is at least one order of mag-
nitude slower than all strategies applying aggregation.

The static use of DIs results in a small speedup
of approximately 3% on average. Recall that ranking
inequalities were not yet known as DDOIs in the work
of Ben Amor et al. (2006). Therefore, a static DI-based
CG algorithm was not considered for BP at that time.

Regarding the number of iterations, the differ-
ences between the strategies using dynamic DIs and
aggregation are even more pronounced than for the

computation times. Also, static performs considerably
better, as it requires only about two-thirds of the iter-
ations of aggregation.

Another interesting result is that a recovery is nec-
essary only for a small number of instances. Even
more, the maximum number of iterations of the recov-
ery algorithm is two (cf. Algorithm 1). This demon-
strates that the SIs we add to the RMP (static or
dynamic) are indeed DDOIs for most of the instances
in the benchmark.

Table 2 also indicates that there are instances for
which no dynamic DIs are generated when static DIs
are added a priori. These are instances in which the
item sizes are very similar, so no three items h1 i1 j ∈ I
with wh ≥wi +wj exist. It is therefore clear that no SIs
4h ← S5 with �S� ≥ 2 exist in these cases so no addi-
tional speedup can be achieved. Our results include
a total of 11427 and 39 such instances for the sets of
Sim and Hart and Scholl et al., respectively. In sum-
mary, the overall average speedup for the instances
in which SIs with �S� ≥ 2 exist actually exceeds factor
two significantly.

In Figure 2, we display more generally the influ-
ence of the number of possible SIs on the per-
formance of the different CG strategies. The ratio
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Figure 2 (Color online) Average Computation Times Relative to Aggregation (Ordinate, in Logarithmic Scale) Depending on the Ratio
maxi∈I wi/mini∈I wi (Abscissae) for all Considered Sim and Hart Instances for the Bin Packing Problem

RBP = maxi∈I wi/mini∈I wi serves as an approximate
measure of how many SIs potentially exist. Clearly,
this ratio reveals no information on the distribution
of the items’ weights. In fact, the number of SIs is
generally not computable in closed form, but RBP

can be determined easily for each BP instance. Note
that a ratio RBP < 2 reflects the case described earlier,
in which no SI with �S� ≥ 2 exists. The relationship
between the ratio RBP and the speedups using DIs is
depicted in Figure 2: It shows the average compu-
tation times of static, dynamic, and stat + dyn relative
to aggregation for all 4,032 considered Sim and Hart
instances depending on RBP . Note that the abscis-
sae groups instances according to RBP (rounded to
one decimal) and that the ordinate shows the rela-
tive computation times in logarithmic scale. Figure 2
clearly demonstrates that the dynamic generation of
SIs, i.e., implicitly considering the set of all SIs, works
better the bigger the ratio RBP . One can therefore sus-
pect that there is a highly significant positive cor-
relation between the number of SIs and the result-
ing acceleration of the CG process. For larger values
of RBP , average speedups reach factors between five
and ten.

5.2. Results for Cutting Stock
For CS, the basic CG algorithm and the different stabi-
lization strategies are similar to BP. We only describe
the differences. The UKP subproblems are solved with
the DP approach of §4.1. For CS, the basic CG algo-
rithm already makes use of constraint aggregation.
Thus, the standard and aggregation strategies coincide,
and results are solely reported as standard. Strategy
static as proposed by Ben Amor et al. (2006) is the

state of the art for CS. Therefore, static is the base-
line strategy, meaning that results for all other strate-
gies are presented relative to it. Recall that the WSIs
are DOIs for CS and no recovery is needed; see
Theorem 1(i).

Generally, the BP benchmark instances of the pre-
vious section can also be interpreted as CS instances,
in which items of identical length need to be aggre-
gated. In preliminary experiments, we found that
the UKP subproblems of CS are solved significantly
faster than the (binary) KP subproblems of BP for
all the benchmark instances. We suspect that this is
a result of the smaller state space of the DP of the
UKP compared to the one of KP. Recall that the state
graph of the UKP (depicted in Figure 1) has only
L + 1 states, whereas the state graph of KP has 1 +
4L+ 15m = O4mL5 states. We would like to stress that
for both UKP and KP we implemented state-of-the-art
DP algorithms: In particular, for KP we do not explic-
itly build the O4mL5 states but use a list-based imple-
mentation, as discussed in Kellerer et al. (2004, § 3.4).
In contrast, for UKP we found that a straightforward
array-based implementation of the DP approach is
faster than the list-based approach. We suspect that on
a modern CPU, the smaller-state graph of UKP can be
accessed much faster (because of caching techniques)
so the solution of the UKP subproblems as they occur
in the BP benchmark instances is possible in almost
no (measurable) time.

As a result, of the 17,040 benchmark instances
from the sets of Scholl et al. and Sim and Hart,
over 99% are solved by standard CG in less than
one second, most of them in only a few milliseconds,
meaning that a large number of UKP can be solved
in this short time. Therefore, we considered these
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Table 3 Computational Results for the Cutting Stock Problem

Solution time # CG Iterations SP/ # Dynamic DIs
Instances Algorithm (avg./max/min) (avg./max/min) RMP (avg./max/min)

All instances (n = 240) standard 1.43/8.73/0.93 1.63/29.00/1.31 14091 —
static 1.00/1.00/1.00 1.00/1.00/1.00 11091 —
dynamic 0.98/4.80/0.44 0.81/9.00/0.41 5001 5,590/18,100/247
stat+ dyn 0.81/1.53/0.29 0.74/1.00/0.31 8045 1,120/3,742/0

CS instances of limited interest and generated new
and harder CS instances. These are characterized by
huge values for the capacity (to complicate the sub-
problems) and larger numbers of items with distinct
lengths. The instances we generated can be grouped
into different subclasses of problems. Capacities take
values L ∈ 8500100011150010009 and integer item
lengths are uniformly drawn from 642/155L1 42/35L7
and 641/1505L1 42/35L7, resulting in items for which
the ratios wi/L are analog to those in the bench-
mark instances used by Ben Amor et al. (2006).
The number of items with distinct item length takes
values m = 8125125015009. Demands are uniformly
distributed in the range 611207. For each subclass,
20 instances were generated. The entire benchmark
set comprises 240 instances and is available at
http://logistik.bwl.uni-mainz.de/Dateien/CS.zip.

Table 3 presents our results for CS. First and fore-
most, the overall speedups of using stabilized CG are
significantly smaller for CS than BP. The static use
of DIs results in an average speedup of about one-
third. The additional use of dynamically generated DI
saves an extra 17% of the computation time. The pure
dynamic generation even results in a slightly slower
overall algorithm than the static version.

The results regarding the number of iterations are
more in favor of using stabilized CG. Iterations are on
average reduced by a larger factor than the computa-
tion times. The results by subclass are similar to the
overall results, as can be seen in §EC.3 of the online
supplement.

5.3. Results for Vertex Coloring
Analog to BP and CS, we use one basic CG algorithm
for our experiments and run it with different strate-
gies regarding the stabilization with DIs. To warm
start the CG process, a simple greedy coloring is per-
formed. The MWIS pricing problem is solved using
the branch-and-bound algorithm and code by Held
et al. (2012). In each iteration, a single best reduced-
cost column is added to the RMP. If dynamic gen-
eration of DIs is used, violated SIs are separated
using the procedure described in §4.1 and multiple SI
columns with a violation of at least 25% of the most
violated SI are generated.

Standard denotes the basic CG algorithm without
stabilization. The algorithm using constraint elimina-
tion is denoted by elimination, and all following strate-
gies also make use of constraint elimination. The setup
elimination serves as the baseline algorithm for the
other strategies. For an approach that uses DIs in a
static fashion, recall that no linear system of DIs can
impose all pair inequalities; see §3.3. Still, we suggest
a strategy that uses a linear-sized subset of the pair
inequalities similar to the ranking inequalities in CS
and BP. For each vertex h ∈ I , we determine a vertex
i∈arg maxs∈Sh �N4s5�. This is a vertex in the candidate
set Sh (see §4.1) that has the most conflicts, and we add
the corresponding SI column to initialize the RMP. The
intuition is that this vertex i is the hardest one to
cover of all the vertices that are easier to cover than h.
Therefore, the repetition of this SI selection for each
vertex h ∈ I should result in a near ranking of all
the duals. We refer to this approach as static, and no
SIs with �S� > 1 are used in this case. The strategies
dynamic and stat + dyn are analog to CS and BP.

Note that because constraint elimination is per-
formed in each strategy that uses DIs, the candidate
sets Sh for all vertices h ∈ I comprise only vertices s ∈
Sh for which h ∈ N4s5 holds. Consequently, by Theo-
rem 2(b) all SIs generated by our separation procedure
are in fact DOIs, and no recovery is needed.

As benchmark problems, we used the instances
from the graph coloring benchmark Web page https://
sites.google.com/site/graphcoloring/home of Gua-
landi and Chiarandini (2014). The entire benchmark
comprises 136 instances. We restrict our analysis to
those instances in which at least one possible SI exists.
This eliminates approximately half of the instances,
so 74 VC instances remain. Furthermore, we exclude
from our computational analysis those instances for
which the linear relaxation of the RMP cannot be
solved within a time limit of one hour using all strate-
gies (15 instances), and those instances, for which the
solution time is less than 0.1 second for the standard
strategy (34 instances). This leaves 25 instances for the
test set, which we further subdivided into two groups:
Group 1 comprises all instances for which the ratio
RVC = 4

∑

h∈I �Sh�5/m2 > 00001; the remaining instances
form Group 2. RVC measures the number of possi-
ble replacements of items relative to the instance size,
thus giving an approximation on the number of pos-
sible SIs relative to the instances size. One can expect

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

93
.3

4.
21

2.
19

0]
 o

n 
10

 M
ar

ch
 2

01
6,

 a
t 0

8:
22

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 

http://logistik.bwl.uni-mainz.de/Dateien/CS.zip
https://sites.google.com/site/graphcoloring/home
https://sites.google.com/site/graphcoloring/home


Gschwind and Irnich: Dual Inequalities for Stabilized Column Generation Revisited
190 INFORMS Journal on Computing 28(1), pp. 175–194, © 2016 INFORMS

Table 4 Computational Results for the Vertex Coloring Problem

Poss. Solution time # CG Iterations SP/ # Dynamic DIs
Instances Algorithm m repl. % (avg./max/min) (avg./max/min) RMP (avg./max/min)

All instances (n = 25) standard 1033 0000 1.18/2.89/0.86 1.09/1.93/0.89 5087 —
elimination 1000 0000 1.00/1.00/1.00 1.00/1.00/1.00 8006 —
static 1000 0064 0.55/1.35/0.06 0.72/1.05/0.16 6051 —
dynamic 1000 0064 0.51/1.85/0.04 0.69/1.12/0.09 4095 349/5,314/0
stat+ dyn 1000 0064 0.51/1.75/0.06 0.66/1.05/0.09 5003 121/2,015/0

Group 1 (n = 11) standard 1006 0000 0.99/1.11/0.86 1.00/1.14/0.89 10052 —
elimination 1000 0000 1.00/1.00/1.00 1.00/1.00/1.00 11044 —
static 1000 1045 0.28/0.79/0.06 0.52/0.90/0.16 6089 —
dynamic 1000 1045 0.23/0.68/0.04 0.47/0.92/0.09 4081 765/5,314/26
stat+ dyn 1000 1045 0.24/0.64/0.06 0.43/0.90/0.09 4056 270/2,015/0

Group 2 (n = 14) standard 1059 0000 1.35/2.89/0.96 1.17/1.93/0.97 3071 —
elimination 1000 0000 1.00/1.00/1.00 1.00/1.00/1.00 6012 —
static 1000 0001 0.93/1.35/0.66 0.93/1.05/0.79 6026 —
dynamic 1000 0001 0.93/1.85/0.63 0.93/1.12/0.81 5006 23/288/0
stat+ dyn 1000 0001 0.92/1.75/0.60 0.93/1.05/0.79 5043 4/52/0

that (dynamic) stabilization generally performs better
for Group 1 than for Group 2.

The results of the computational tests are summa-
rized in Table 4. The additional column Poss. repl. %
shows the ratio RVC in percent. A general observa-
tion is that with stabilized CG an average speedup
of approximately factor two can be achieved com-
pared to elimination. Thereby, all three strategies using
DIs perform comparably well, although the biggest
gains can be achieved with a strategy that dynami-
cally adds DOIs. For larger values of RVC , stabiliza-
tion with SIs is even more attractive and the average
speedup reaches factor four for Group 2.

Table 4 reveals that the biggest speedups exceed
factors 15, 25, and 15 for static, dynamic, and stat+dyn,
respectively. Expectedly, elimination works better the
more vertices can be eliminated. The insights regard-
ing the number of iterations are evident: stabilization
by DIs can help reduce the number of CG iterations
and is rarely detrimental.

5.4. Results for Bin Packing with Conflicts
Analog to §5.1–5.3, we run one basic CG algorithm
for BPC with different stabilization strategies to ana-
lyze their impact on the CG approach. An initial set
of columns to warm start the process is obtained by
performing a first fit decreasing heuristic several times
with different orderings of the items. The KPC sub-
problems, for which the conflicts are defined on inter-
val graphs in all benchmark instances, are solved with
the DP algorithm of Sadykov and Vanderbeck (2013),
described in §4.1. Again, a single best reduced-cost
bin and multiple SI columns with a minimum viola-
tion of 25% of the most violated SI are generated in
each iteration.

Standard CG without stabilization serves as the
baseline strategy for comparisons with the other
strategies. Similar to VC, no linear system of DIs can

impose all pair inequalities; see §3.3. For an approach
that uses DIs in a static fashion, we therefore follow a
strategy using the same basic idea as for VC: For each
item h ∈ I we identify the item i ∈ Sh (if any) that is the
hardest to cover of all the vertices that are easier to
cover than h and add the respective pair inequality to
the RMP. For BPC, however, the hardness to cover an
item i depends on both its weight wi and its conflicts
N4i5. Therefore, as item i we choose one that maxi-
mizes the sum of wi/wh and �N4i5�/�N4h5�. SIs with
�S� > 1 are not used in this static approach. Strategies
dynamic and stat.dyn are analog to the other problems.
Both strategies are performed with the different sepa-
ration procedures for the SIs, as described in §4.1. The
exact separation of pair inequalities by inspection is
indicated by the suffix .pairs, whereas the suffixes .DP
and .exact refer to the DP-based and exact separation
of SIs, respectively.

As test problems, we used the benchmark instances
of Fernandes Muritiba et al. (2010). The complete set
comprises 800 instances with differing characteristics
regarding the number of items, the capacity, the item
lengths, and the number of conflicts of the items.
Similar to BP and VC, we include in our computa-
tional analysis only those 169 instances for which the
solution of the RMP took more than one second of
computation time in the standard CG. We also distin-
guish two subgroups of instances. Group 1 comprises
instances from the classes 1–4 of the benchmark set,
and Group 2 comprises instances from classes 5–8.
The latter are instances for which the item weights are
such that no three items i1 j1h with wh ≥wi +wj exist,
i.e., no SIs with �S�> 1 are possible. Furthermore, we
report separate results for the hardest instances in
terms of computation time. This includes 49 instances
for which the solution time of standard CG was more
than 10 seconds.
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Table 5 Computational Results for the Bin Packing Problem with Conflicts

Solution time # CG Iterations SP/ # Dynamic DIs Recovery
Instances Algorithm (avg./max/min) (avg./max/min) RMP (avg./max/min) (# inst./max it.)

All instances (n = 169) standard 1.00/1.00/1.00 1.00/1.00/1.00 001 — −/−
static 0.24/0.58/0.03 0.33/0.73/0.06 002 — −/−
dyn.pairs 0.30/2.71/0.07 0.13/0.59/0.02 001 12,281/162,521/328 −/−
dyn.DP 0.30/1.33/0.08 0.10/0.59/0.01 002 16,715/227,607/1,317 0/0
dyn.exact 2.00/12.13/0.48 0.16/0.60/0.05 502 2,968/15,235/494 0/0
stat+ dyn.pairs 0.17/0.63/0.02 0.12/0.55/0.02 002 3,294/23,661/35 −/−
stat+ dyn.DP 0.18/0.54/0.02 0.09/0.55/0.01 003 7,201/60,899/342 0/0
stat+ dyn.exact 1.35/11.25/0.18 0.11/0.58/0.03 1002 1,991/15,919/272 0/0

Group 1 (n = 92) standard 1.00/1.00/1.00 1.00/1.00/1.00 001 — −/−
static 0.23/0.48/0.15 0.33/0.64/0.20 001 — −/−
dyn.pairs 0.29/2.71/0.12 0.09/0.58/0.02 001 15,741/162,521/328 −/−
dyn.DP 0.29/1.33/0.15 0.05/0.58/0.01 001 23,886/227,607/1,317 0/0
dyn.exact 1.01/6.32/0.48 0.12/0.50/0.06 104 3,701/15,235/494 0/0
stat+ dyn.pairs 0.16/0.63/0.07 0.08/0.53/0.02 001 3,738/23,661/35 −/−
stat+ dyn.DP 0.16/0.53/0.07 0.05/0.47/0.01 001 10,914/60,899/342 0/0
stat+ dyn.exact 0.53/5.60/0.18 0.07/0.50/0.03 301 2,946/15,919/281 0/0

Group 2 (n = 77) standard 1.00/1.00/1.00 1.00/1.00/1.00 004 — −/−
static 0.25/0.58/0.03 0.34/0.73/0.06 008 — −/−
dyn.pairs 0.30/0.73/0.07 0.20/0.59/0.03 003 8,147/27,207/1,517 −/−
dyn.DP 0.32/0.79/0.08 0.20/0.59/0.03 004 8,147/27,207/1,517 0/0
dyn.exact 4.48/12.13/0.87 0.24/0.60/0.05 2409 2,092/4,452/663 0/0
stat+ dyn.pairs 0.19/0.56/0.02 0.19/0.55/0.02 005 2,763/10,439/589 −/−
stat+ dyn.DP 0.21/0.54/0.02 0.19/0.55/0.02 006 2,763/10,439/589 0/0
stat+ dyn.exact 4.09/11.25/0.41 0.20/0.58/0.03 4204 850/2,496/272 0/0

Hard instances (n = 49) standard 1.00/1.00/1.00 1.00/1.00/1.00 001 — −/−
static 0.15/0.38/0.03 0.23/0.56/0.06 001 — −/−
dyn.pairs 0.22/2.71/0.07 0.05/0.42/0.02 001 27,629/162,521/1,824 −/−
dyn.DP 0.20/1.33/0.08 0.03/0.36/0.01 001 37,699/227,607/2,852 0/0
dyn.exact 0.93/2.97/0.48 0.09/0.29/0.05 202 5,255/15,235/1,629 0/0
stat+ dyn.pairs 0.10/0.63/0.02 0.04/0.41/0.02 001 6,322/23,661/975 −/−
stat+ dyn.DP 0.10/0.32/0.02 0.03/0.37/0.01 002 15,838/60,899/1,497 0/0
stat+ dyn.exact 0.46/2.71/0.18 0.06/0.27/0.03 406 3,949/15,919/416 0/0

Table 5 summarizes the results for BPC. It reveals
that a significant improvement can be achieved by
using stabilized CG. A high gain is already obtained
from the static use of pair inequalities, leading to a
speedup of about factor four. The additional, dynamic
separation of violated SIs further decreases computa-
tion times, resulting in an average speedup of almost
factor six over all considered instances. The pure
dynamic generation of DIs is inferior to the other sta-
bilization strategies. Still, a speedup of approximately
factor three compared to standard CG can be achieved.
For the hard instances, stabilized CG is even more
beneficial and leads to an average speedup of factor
ten for stat + dyn.pairs and stat + dyn.DP. The results
for Group 1 are also more in favor for the stabiliza-
tion strategies than those over all instances. There,
average speedups exceed factors between four and
six for static and stat + dyn, respectively; for Group 2,
speedups reach factors four and five, respectively.
Also, Table 5 indicates that for Group 2 the separa-
tion of pair inequalities and the DP-based heuristic
dynamically generate exactly the same number of DIs.

This can be explained by the fact that no SIs other
than pair inequalities exist for these instances.

Regarding the different separation strategies for the
dynamic separation of violated DIs, the separation
of pair inequalities by inspection and the separa-
tion with the DP-based heuristic perform comparably
well. It is obvious from Table 5 that the exact sepa-
ration of violated SIs is too time consuming for BPC
and does not pay off.

As for the other problems, the results regarding the
number of iterations are similar to those for the com-
putation times: stabilized CG results in a significant
reduction of the iterations needed for the optimiza-
tion of the RMP. Moreover, the dynamic addition of
SIs yields an additional, considerable gain compared
to using DIs in a static fashion only. Table 5 also
reveals that the exact separation of violated SIs does
not result in a decrease in the number of iterations
compared to the other separation strategies. This can
be explained by the use of the KP bound (see §4.1)
in the separation and the potential miss of some SIs
with a violation of at least 25% of the most violated SI.
Indeed, preliminary tests showed that without using
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the KP bound the exact separation of violated DIs
leads to a slight decrease in the number of iterations
relative to the other separation strategies. However,
computation times increase disproportionately.

Overall, stabilization with DIs works well for our
CG approach to BPC. Although speedups can reach
a factor of 100, the most successful strategies static,
stat + dyn.pairs, and stat + dyn.DP are never slower
than standard CG. In contrast, the worst performance
of these strategies still results in a speedup of almost
factor 1.5. Finally, Table 5 indicates that all SIs that we
generated in the test problems were DDOIs, since a
recovery was never necessary for any of the instances
and strategies.

6. Conclusions
Ben Amor et al. (2006) introduced DOIs and DDOIs as
a general concept to accelerate the CG process, which
was then tested for two well-structured problems, CS
and BP. As they state, the restriction of the dual space
by DIs leads to fewer possible intermediate values
for the dual multipliers, so a dual-optimal solution is
computed faster. In this paper, we extend their results
in theory, applications, algorithms, and computational
results.

On the theoretical side, we generalize the charac-
terization of a system of DDOIs as stated in Propo-
sition 1. Moreover, we introduce several new matrix
properties referring to the coefficient matrix of the
underlying primal problem. These properties can be
checked directly for the problem under considera-
tion. One result is the new comprehensive class of
the so-called WSIs, which is shown to constitute DOIs
for any problem whose coefficient matrix fulfills the
exchange property. A direct consequence is that WSIs
also hold for VP, and they generalize the subset
inequalities prior known to be DOIs for CS. With
the help of the row replacement property, the pair
inequalities are proven to form a new class of DDOIs
for BP.

On the application side, the same pair inequalities
are also valid for VC and BPC. For these two prob-
lems, DIs have not been successfully applied before
(to the best of our knowledge). Furthermore, DOIs
and DDOIs can also be used for problems with a
general cost-minimization objective, which is only
partly covered in this paper (because of the unit-cost
assumption made starting from §3). In a companion
paper (Gschwind and Irnich 2014), we show that the
CG algorithm of Caprara et al. (2013) for the tempo-
ral knapsack problem benefits from the integration of
DOIs. We agree with Bianchessi et al. (2014) that the
split commodities mixed routing problem is an excel-
lent candidate to apply DIs for a vehicle routing prob-
lem. We suspect that an observable acceleration of the
branch-and-price algorithm can be gained.

We see the most important algorithmic innovation
in the dynamic generation of DIs. This strategy can
either replace or complement the integration of DIs in
the form of additional primal columns into the initial
RMP. Several exact and heuristic algorithms for the
dynamic generation (=separation) of DIs have been
presented. The additional effort for the implementa-
tion of separation procedures is small, as shown for
CS, BP, and VC. In fact, the most violated WSI in CS
and BP are an algorithmic byproduct, since they result
from intermediate solutions that must be computed
when the knapsack-type pricing problem is solved by
DP (currently the best known approach in this case).
Even some tailored separation heuristics like the ones
proposed for BPC are relatively simple to implement.

The possible overstabilization of the CG process
with potential DDOIs is another new idea first coined
and analyzed in this paper. The idea goes hand in
hand with the dynamic generation of DIs because
WSIs form an exponential class of DIs and can there-
fore not entirely be added to the initial RMP. On the
downside, the dynamic addition of non-DDOIs, i.e.,
DIs that may cut off the entire dual-optimal poly-
hedron, requires the use of a recovery algorithm,
as the one presented in §4.2. The required iterative
application of the recovery algorithm may lead to
many additional CG iterations. Fortunately, this never
happened in our computational studies. It is indeed
reverse; only in rare cases was more than one recov-
ery needed, and most of the time none was required
at all. Overall, overstabilization turns out to be advan-
tageous on average for BP, VC, and BPC. For BP, we
show that much larger speedups can result when DIs
are added dynamically.

The extensive computational tests on many known
and some additional harder benchmark problems
allow some clear statements: for all problems ana-
lyzed (CS, BP, VC, and BPC), the newly identified
and potential DDOIs together reduce the number of
CG iterations when added before proving optimal-
ity of the RMP, sometimes significantly. Since the LP-
reoptimization of the RMP becomes slightly more
time consuming with additional DI columns, the over-
all reduction in computation time is generally smaller
than the reduction in CG iterations. However, for all
studied problems the average computation times are
reduced compared to state-of-the-art CG algorithms.
For the BP example, we compare with an implemen-
tation already using constraint aggregation as sug-
gested by Ben Amor et al. (2006). Here we are able to
confirm their substantial and impressive speedups of
factors between two and three for many BP instances.
With a mix of statically and dynamically added DIs
together with over-stabilization we gain another fac-
tor of approximately 2.5 for the extensive benchmark
set of Sim and Hart (2013) and a factor of 3.5 for
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the widely used benchmark by Scholl et al. (1997).
Notably, although for this strategy (stat + dyn) the
maximum slowdown was by factor 1.3, the maximum
speedup was more than factor ten on some instances.
Thus, the use of DIs seldom and only gently ham-
pers the CG process, but very often accelerates it. For
future applications we expect the dynamic addition
of DIs to work best for those problems in which the
solution of the pricing almost completely occupies the
overall computation time: any reduction in the num-
ber of CG iterations should linearly contribute to a
reduction in the solution time.

The results presented in this paper all refer to the
solution of the linear relaxation of the extensive for-
mulation. Clearly, the same techniques should also be
tested when CG is used in branch-and-price. Such a
comparison is, however, a nontrivial task: the overall
computation times very much depend on the branch-
ing scheme applied, which because of the degeneracy
of the primal solution may make completely different
decisions for the alternative DI strategies, leading to
actually incomparable search trees. Even more severe
is the fact that some branching decisions are incom-
patible with some DIs; see, e.g., the branch-and-price
algorithm of Alves and Valério de Carvalho (2008) for
the multiple length CS. Generic strategies to integrate
DIs and branching constitute an interesting avenue
for future research.
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