# Bounds and relaxations

#### Giovanni Righini

Università degli Studi di Milano

**Operations Research Complements** 



Università degli Studi di Milano

#### **Discrete optimization**

Discrete optimization problems are in general very hard to solve, because:

- the number of solutions grows exponentially with the number of variables;
- mathematical tools such as derivatives (useful to characterize optima) are not available.

Owing to the *combinatorial explosion* in the number of solutions, explicit enumeration is not an option in general.

However, implicit enumeration algorithms can be used:

- branch-and-bound;
- dynamic programming.

# Optimality

Given a discrete optimization problem P

$$z^* = \max\{z(x) : x \in \mathcal{X} \subseteq \mathcal{Z}^n\}$$

we prove optimality by computing an *upper bound*  $\overline{z}$  and a *lower bound*  $\underline{z}$ , s.t.

$$\underline{z} \leq z^* \leq \overline{z}.$$

- If *P* is a minimization problem, *z* is a primal bound and *z* is a dual bound.
- If P is a maximization problem, <u>z</u> is a primal bound and <u>z</u> is a dual bound.

The difference  $\overline{z} - \underline{z}$  is the *optimality gap*. When  $\overline{z} - \underline{z} = 0$  we have an *optimality guarantee*.

#### **Primal bounds**

A primal bound  $\overline{z}$  is given by the value of the objective function z(x) in any feasible solution  $\overline{x} \in \mathcal{X}$ .

$$\overline{z} = z(\overline{x}) \ \overline{x} \in \mathcal{X}.$$

Primal bounds can be computed in many different ways:

- with heuristic and meta-heuristic algorithms (local search, GRASP,...);
- with approximation algorithms: in this case the algorithms provide both a primal and a dual bound.

For some discrete optimization problems it is computationally difficult to find a feasible solution (i.e. to compute primal bounds).

### **Dual bounds**

A dual bound is given by the value of the objective function z(x) in a super-optimal solution  $\overline{x}$ . Therefore in general  $\overline{x}$  is not feasible.

There two main techniques to compute dual bounds for a problem P:

- to solve a relaxation R of P to optimality;
- to find a feasible solution to the dual *D* of *P*.

#### Relaxations

Given a problem

$$P = \min\{z_P(x) : x \in X(P)\}$$

a problem

$$R = \min\{z_R(x) : x \in X(R)\}$$

is a relaxation of P if the following two conditions hold:

• 
$$X(P) \subseteq X(R)$$

• 
$$z_R(x) \leq z_P(x) \quad \forall x \in X(P).$$

[In case of maximization, all inequalities must be reversed.]

**Corollary:**  $z_R^* \leq z_P^*$ .

There are many different types of relaxations.

A relaxation is better (tighter) than another when its optimal value is closer to  $z_P^*$ .

When *P* is a discrete optimization problem

```
P)\min\{z(x): x \in X, x \in \mathbb{Z}_+^n\},\
```

its *continuous relaxation CR* is obtained from *P* by disregarding the integrality conditions:

CR) min{ $z(x) : x \in X, x \in \Re_+^n$ }.

When P is a discrete linear optimization problem

$$P)\min\{cx: Ax \leq b, x \in \mathbb{Z}_+^n\},\$$

its continuous relaxation

$$CR$$
) min{ $cx : Ax \leq b, x \in \Re_+^n$ }

is a linear programming problem (that can be solved very effectively).

If 
$$x_{CR}^* \in \mathcal{Z}_+^n$$
, then  $x_P^* = x_{CR}^*$ .

### Combinatorial relaxation

The combinatorial relaxation C of a combinatorial optimization problem P is still a combinatorial optimization problem, but typically much easier to solve.

Example 1:

- *P*: the asymmetric TSP;
- C: the min cost bipartite matching problem.

Example 2:

- *P*: the symmetric TSP;
- C: the min cost spanning 1-tree problem.

#### Lagrangean relaxation

The Lagrangean relaxation LR of a (discrete linear) optimization problem P is obtained by removing some constraints and adding penalties for their violations to the objective function.

$$P) \min\{z(x) : Ax \le b, x \in X \subseteq \mathbb{Z}^n_+\}$$

$$LR$$
) min $\{z_{LR}(x,\lambda) = z(x) + \lambda(Ax - b) : x \in X \subseteq \mathbb{Z}^n_+\}$ 

with  $\lambda \geq 0$ .

It satisfies the two conditions for being a relaxation:

- Condition on the constraints:  $\{x : Ax \le b, x \in X\} \subseteq \{x : x \in X\}$
- Condition on the obj. function:
  - $Ax b \le 0$  for all feasible solutions of *P*;
  - $\lambda(Ax b) \leq 0$  for all feasible solutions of *P*;
  - $z_{LR}(x, \lambda) = z(x) + \lambda(Ax b) \le z(x)$  for all feasible solutions of *P*.

#### Surrogate relaxation

The surrogate relaxation S of a (discrete linear) optimization problem P is obtained by replacing a set of constraints with their convex combination.

$$P) \min\{z(x) : Ax \le b, x \in X \subseteq \mathbb{Z}_+^n\}$$
$$S) \min\{z(x) : \lambda^T Ax \le \lambda^T b, x \in X \subseteq \mathbb{Z}_+^n\}$$

with  $\lambda \geq 0$ .

It satisfies the two conditions for being a relaxation:

- Condition on the constraints: Ax ≤ b implies λ<sup>T</sup>Ax ≤ λ<sup>T</sup>b but not viceversa.
- Condition on the obj. function: trivial, because it is the same.

## Comparison

Linear, Lagrangean and surrogate relaxation can provide different bounds. Assuming minimization, the following relation holds:

$$\mathsf{z}_{\mathsf{CR}}^* \leq \mathsf{z}_{\mathsf{LR}}^*(\lambda^*) \leq \mathsf{z}_{\mathsf{S}}^*(\lambda^*) \leq \mathsf{z}^*$$

Lagrangean and surrogate relaxation may provide tighter dual bounds than linear programming, provided that a suitable vector of multipliers  $\lambda^*$  is computed.

### Duality

The second technique to obtain dual bounds is to find feasible solutions to the dual problem of P or the dual of a relaxation of P.

Linear dual problem:

$$P)z^* = \min\{cx : Ax \ge b, x \in \mathcal{Z}^n_+\}$$

$$(D)w^* = \max\{yb: yA \leq c, y \in \Re^m_+\}$$

form a weak primal-dual pair.

Combinatorial dual problem:

The maximum matching problem and minimum vertex cover problem

$$oldsymbol{P}oldsymbol{z}^* = ext{max}\{oldsymbol{1}oldsymbol{x}:oldsymbol{A}oldsymbol{x} \leq oldsymbol{1},oldsymbol{x} \in \mathcal{B}_+^{|oldsymbol{E}|}\}$$

$$D)w^* = \min\{1y : yA \ge 1, y \in \mathcal{B}_+^{|V|}\}$$

where A is the incidence matrix of a graph G = (V, E), form a weak primal-dual pair.

### Example



