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Discrete optimization

Discrete optimization problems are in general very hard to solve,
because:
• the number of solutions grows exponentially with the number of

variables;
• mathematical tools such as derivatives (useful to characterize

optima) are not available.

Owing to the combinatorial explosion in the number of solutions,
explicit enumeration is not an option in general.

However, implicit enumeration algorithms can be used:
• branch-and-bound;
• dynamic programming.



Optimality

Given a discrete optimization problem P

z∗ = max{z(x) : x ∈ X ⊆ Zn}

we prove optimality by computing an upper bound z and a lower
bound z, s.t.

z ≤ z∗ ≤ z.

• If P is a minimization problem, z is a primal bound and z is a
dual bound.

• If P is a maximization problem, z is a primal bound and z is a
dual bound.

The difference z − z is the optimality gap. When z − z = 0 we have
an optimality guarantee.



Primal bounds

A primal bound z is given by the value of the objective function z(x)
in any feasible solution x ∈ X .

z = z(x) x ∈ X .

Primal bounds can be computed in many different ways:

• with heuristic and meta-heuristic algorithms (local search,
GRASP,...);

• with approximation algorithms: in this case the algorithms
provide both a primal and a dual bound.

For some discrete optimization problems it is computationally difficult
to find a feasible solution (i.e. to compute primal bounds).



Dual bounds

A dual bound is given by the value of the objective function z(x) in a
super-optimal solution x . Therefore in general x is not feasible.

There two main techniques to compute dual bounds for a problem P:
• to solve a relaxation R of P to optimality;
• to find a feasible solution to the dual D of P.



Relaxations

Given a problem
P = min{zP(x) : x ∈ X(P)}

a problem
R = min{zR(x) : x ∈ X(R)}

is a relaxation of P if the following two conditions hold:
• X(P) ⊆ X(R)

• zR(x) ≤ zP(x) ∀x ∈ X(P).

[In case of maximization, all inequalities must be reversed.]

Corollary: z∗
R ≤ z∗

P .

There are many different types of relaxations.
A relaxation is better (tighter) than another when its optimal value is
closer to z∗

P .



Continuous relaxation

When P is a discrete optimization problem

P)min{z(x) : x ∈ X , x ∈ Zn
+
},

its continuous relaxation CR is obtained from P by disregarding the
integrality conditions:

CR)min{z(x) : x ∈ X , x ∈ ℜn
+}.

When P is a discrete linear optimization problem

P)min{cx : Ax ≤ b, x ∈ Zn
+},

its continuous relaxation

CR)min{cx : Ax ≤ b, x ∈ ℜn
+
}

is a linear programming problem (that can be solved very effectively).

If x∗
CR ∈ Zn

+, then x∗
P = x∗

CR.



Combinatorial relaxation

The combinatorial relaxation C of a combinatorial optimization
problem P is still a combinatorial optimization problem, but typically
much easier to solve.

Example 1:
• P: the asymmetric TSP;
• C: the min cost bipartite matching problem.

Example 2:
• P: the symmetric TSP;
• C: the min cost spanning 1-tree problem.



Lagrangean relaxation

The Lagrangean relaxation LR of a (discrete linear) optimization
problem P is obtained by removing some constraints and adding
penalties for their violations to the objective function.

P) min{z(x) : Ax ≤ b, x ∈ X ⊆ Zn
+
}

LR) min{zLR(x , λ) = z(x) + λ(Ax − b) : x ∈ X ⊆ Zn
+}

with λ ≥ 0.

It satisfies the two conditions for being a relaxation:
• Condition on the constraints: {x : Ax ≤ b, x ∈ X} ⊆ {x : x ∈ X}

• Condition on the obj. function:
• Ax − b ≤ 0 for all feasible solutions of P;
• λ(Ax − b) ≤ 0 for all feasible solutions of P;
• zLR(x , λ) = z(x) + λ(Ax − b) ≤ z(x) for all feasible solutions of P.



Surrogate relaxation

The surrogate relaxation S of a (discrete linear) optimization problem
P is obtained by replacing a set of constraints with their convex
combination.

P) min{z(x) : Ax ≤ b, x ∈ X ⊆ Zn
+
}

S) min{z(x) : λT Ax ≤ λT b, x ∈ X ⊆ Zn
+
}

with λ ≥ 0.

It satisfies the two conditions for being a relaxation:
• Condition on the constraints: Ax ≤ b implies λT Ax ≤ λT b but not

viceversa.
• Condition on the obj. function: trivial, because it is the same.



Comparison

Linear, Lagrangean and surrogate relaxation can provide different
bounds. Assuming minimization, the following relation holds:

z∗
CR ≤ z∗

LR(λ
∗) ≤ z∗

S(λ
∗) ≤ z∗

Lagrangean and surrogate relaxation may provide tighter dual
bounds than linear programming, provided that a suitable vector of
multipliers λ∗ is computed.



Duality

The second technique to obtain dual bounds is to find feasible
solutions to the dual problem of P or the dual of a relaxation of P.

Linear dual problem:

P)z∗ = min{cx : Ax ≥ b, x ∈ Zn
+}

D)w∗ = max{yb : yA ≤ c, y ∈ ℜm
+
}

form a weak primal-dual pair.

Combinatorial dual problem:
The maximum matching problem and minimum vertex cover problem

P)z∗ = max{1x : Ax ≤ 1, x ∈ B
|E |
+ }

D)w∗ = min{1y : yA ≥ 1, y ∈ B
|V |
+ }

where A is the incidence matrix of a graph G = (V ,E), form a weak
primal-dual pair.



Example
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