
Dynamic programming
for a scheduling problem

Giovanni Righini

O.R. Complements

 



Motivation

In industrial production plants, the production lots (jobs) must typically
traverse several working phases and it may be convenient or
necessary to reorganize their sequence.

Problems:
• find the optimal set of changes of a given sequence in output

from phase 1, to produce a feasible sequence in input to phase 2;
• find a feasible set of changes of a given sequence in output from

phase 1, to optimize the outcome of phase 2.

Our setting: jobs extracted from the initial sequence are kept in a
stack of finite capacity until they are re-inserted.



Model: data and variables

Data:
• a sequence N of jobs, numbered from 1 to n;
[i, . . . , j] indicates a generic subsequence in it;
• a processing time pi for each job i ∈ N;
• a due date di for each job i ∈ N;
• a weight wi for each job i ∈ N;
• the capacity of the stack, S.

Definition. A move (i, j) consists of deleting job i ∈ N and reinserting
it just after all jobs of the subsequence [i, . . . , j].

Variables.
xij ∈ {0, 1} ∀i < j ∈ N: xij = 1⇔ move (i, j) is done.



Model: constraints

Constraints:
• LIFO constraints and no multiple moves:

xij + xkh ≤ 1 ∀i, j, k , h ∈ N : ((i = k) ∧ (j 6= h)) ∨ (i < k ≤ j < h).

• Stack capacity constraints:
∑

i,j∈N:i≤k ,j>k

xij ≤ S ∀k = 1, . . . , n − 1.

Only sequential moves and nested moves are allowed.

Proposition 1. Necessary and sufficient condition for two sequential
moves (i, j) and (k , h) to be compatible is that i < j < k < h (or
viceversa k < h < i < j).

Proposition 2. Necessary and sufficient condition for two nested
moves (i, j) and (k , h) to be compatible is that i < k < h ≤ j (or
viceversa k < i < j ≤ h).



Sequential and nested moves

… i i+1 … j i … k k+1 … h k … 

 

/ / 

… i i+1 … k k+1 … h k … j i … 

 

/ / 

… i i+1 … k k+1 … j i … h k … 

 

/ / 

Figura: Sequential, nested and incompatible moves (i , j) and (k , h).



Model: objectives

• minimum total weighted completion time,
• minimum maximum lateness,
• minimum number of late jobs,
• minimum weighted number of late jobs.

Lateness (delay with respect to the due date):

Li = ci − di ∀i ∈ N,

where ci is the completion time of job i ∈ N.



Notation

Start time and completion time in the initial sequence:

si =

i−1
∑

k=1

pk ei =

i
∑

k=1

pk ∀i ∈ N.

All start and completion times can be computed in O(n) time.

The duration δij of each subsequence [i, . . . , j] can be computed in
O(n2) time: δij = ej − si .

Levels of nested moves:
• a move that does not contain nested moves is at level 1;
• a move containing moves at level up to ℓ− 1 is a move at level ℓ.

Triple (i, j, ℓ): move on [i, . . . , j] at level ℓ.

Stack capacity: ℓ ∈ [1, . . . ,S].



Total weighted completion time

Observation 1. The completion time of each job preceding i and
following j in the initial sequence is not affected by the move (i, j, ℓ).

Observation 2. The cost variation m(i, j) due to moving job i after job
j is

m(i, j) = wi

j
∑

k=i+1

pk − pi

j
∑

k=i+1

wk ∀i < j ∈ N.

First term: increase of the weighted completion time of job i;
Second term: total decrease of the weighted completion times of the
jobs in [i + 1, j].

Observation 3. The effect of a move (i, j, ℓ) at any level ℓ > 1 does
not depend on the order of the jobs in [i + 1, j].

The objective variation due to move (i, j, ℓ) is m(i, j) independently on
ℓ.



Dynamic programming: state

Property. The cost of sequential moves and nested moves is
additive.

Sequence : optimally rearrange all subsequences [i, j] using ℓ levels,
from ℓ = 1 to ℓ = S.

State: (i, j, ℓ).

Each state has an associated cost µ∗(i, j, ℓ): minimum cost (i.e.
increase of the objective function) obtained by rearranging jobs in [i, j]
using up to ℓ levels.

Define c(i, j, ℓ): optimal cost of move (i, j, ℓ).






c(i, j, 1) = m(i, j) ∀i < j ∈ N
c(i, i, ℓ) = 0 ∀i ∈ N, ∀ℓ = 1, . . . ,S
c(i, j, ℓ) = m(i, j) + µ∗(i + 1, j, ℓ − 1) ∀i < j ∈ N, ∀ℓ = 2, . . . ,S.



Dynamic programming: extension function

Extension function for each level ℓ = 1, . . . ,S:






µ∗(i, i, ℓ) = 0 ∀i ∈ N
µ∗(i, j, ℓ) =
= min{mink∈[i,j−1]{c(i, k , ℓ) + µ∗(k + 1, j, ℓ)}, c(i, j, ℓ)} ∀i < j ∈ N.

Optimal final value : µ∗(1, n,S).

Computational complexity :
• computing m(i, j) takes O(n2),
• computing c(i, j, ℓ) takes O(1) for each (i, j, ℓ),
• computing µ∗(i, j, ℓ) takes O(n) for each (i, j, ℓ),
• the number of states (i, j, ℓ) is O(n2S).

Hence the time complexity is O(n3S) (bounded by O(n4)).



Maximum lateness

Notation:
• L(i): lateness of job i in the input sequence.
• L(i, j): max lateness of the jobs in [i, j] in the input sequence.

Observation 1. The completion time (and the lateness) of each job
preceding i and following j in the initial sequence is not affected by
the move (i, j, ℓ).

Hence, even in this case, moves involving disjoint subsequences can
be evaluated independently.

However, the effect of a move (i, j, ℓ) depends on the arrangement of
the jobs in [i + 1, j]:

u(i, j) = max

{

L(i) +
j

∑

k=i+1

pk , L(i + 1, j)− pi

}

∀i < j ∈ N.



Dynamic programming: state

Sequence : optimally rearrange all subsequences [i, j] using ℓ levels,
from ℓ = 1 to ℓ = S.

State: (i, j, ℓ).

Each state has an associated cost λ∗(i, j, ℓ): minimum max lateness
of a rearrangement of jobs in [i, j] using up to ℓ levels.

Define g(i, j, ℓ): min max lateness obtained by rearranging [i, j] at
level ℓ.






g(i, i, 1) = L(i) ∀i
g(i, j, 1) = u(i, j) ∀i < j
g(i, j, ℓ) = max{L(i) +

∑j
k=i+1 pk , λ

∗(i + 1, j, ℓ − 1)− pi} ∀i < j, ∀ℓ ≥ 2.



Dynamic programming: extension function

Extension function for each level ℓ = 1, . . . ,S:






λ∗(i, i, ℓ) = L(i) ∀i ∈ N
λ∗(i, j, ℓ) =
= min

{

mink∈[i,j−1] {max{g(i, k , ℓ), λ∗(k + 1, j, ℓ)}} , g(i, j, ℓ)
}

∀i < j ∈ N.

Optimal final value : λ∗(1, n,S).

Computational complexity :
• computing u(i, j) takes O(n2),
• computing g(i, j, ℓ) takes O(1) for each (i, j, ℓ),
• computing λ∗(i, j, ℓ) takes O(n) for each (i, j, ℓ),
• the number of states (i, j, ℓ) is O(n2S).

Hence the time complexity is O(n3S) (bounded by O(n4)).



Number of late jobs

Observation 1. In general, given a subsequence [i, j], the number of
late jobs in it depends not only on their processing times and due
dates, but also on start time of the subsequence.

Also the rearrangement of a subsequence that minimizes the number
of late jobs depends on the start time of the subsequence.

Example. Sequence [1, 2, 3] with pT = [7 10 10] and dT = [27 25 15].

Consider the subsequence [2, 3]:
• if the subsequence starts at t = 7 (i.e. job 1 is not moved), then

• [2, 3] has CT = [7 17 27] with one late job
• [3, 2] has CT = [7 27 17] with two late jobs

• if the subsequence starts at t = 0 (i.e. job 1 is moved), then
• [2, 3] has CT = [27 10 20] with one late job
• [3, 2] has CT = [27 20 10] with no late jobs.



Number of late jobs

Observation 2. The arrangement of a subsequence [i, j] that
minimizes the q-th largest lateness value, with q ∈ {1, . . . , j − i + 1},
does not depend on the start time of the subsequence.

In general, the arrangements minimizing the q-th largest lateness
value are different for different q.

However, when a subsequence is moved forward or delayed, all
lateness values decrease or increase by the same amount and hence
their order remains unchanged.

Idea: enumerate the number of late jobs in each subsequence.



Dynamic programming

Observation 3. The number of late jobs in a subsequence can only
decrease, when the start time of the subsequence is decreased.

Observation 4. To have m late jobs in a subsequence [i, j], its start
time must be decreased by at least max

(m+1)
k∈[i,j]{Lk}.

The case m = j − i + 1 (all jobs are late) is not meaningful.

Definition. ℓ-rearrangement: a feasible rearrangement of a
subsequence that can be obtained by moves up to level ℓ.



State and dominance

State. For each subsequence [i, j], for each ℓ = 0, . . . ,S and for each
m = 0, . . . , j − i, s(i, j,m, ℓ) is the minimum reduction of the starting
time that is needed to have m late jobs in [i, j], when [i, j] can be
rearranged with moves up to level ℓ.

Dominance. All ℓ-rearrangements of a subsequence [i, j] that allow
to obtain m late jobs in it when the subsequence is moved forward by
s′ are dominated by the ℓ-rearrangement of [i, j] that allows to obtain
the same number m of late jobs in it when the subsequence is moved
forward by s′′ < s′.

This dominance relation between rearrangements allows to avoid the
combinatorial explosion implied by the binary programming
formulation of the problem.



The sequence

For each subsequence [i, j] and for each level ℓ = 1, . . . ,S we
enumerate all feasible ℓ-rearrangements of [i, j].

The enumeration of all feasible ℓ-rearrangements of [i, j] is done by
enumerating all possible moves (i, k , ℓ) with k = i, . . . , j, after having
enumerated all feasible ℓ-rearrangements of [k + 1, j], which is not
affected by the move.

Therefore, the value of s(i, j,m, ℓ) requires the values of s
• for all subsequences [i + 1, k ] and level ℓ− 1;
• for all subsequences [k + 1, j] and level ℓ.

The sequence to follow to compute the states is given by considering
• increasing ℓ from 0 to S;
• for each given ℓ, decreasing j from n to 1;
• for each given ℓ and j, decreasing i from j to 1;
• for each given ℓ and [i, j], decreasing m from j − 1 to 0.



The extension rule

For a given quadruple (i, j,m, ℓ), the best ℓ-rearrangement of [i, j] to
have m late jobs in it is obtained by comparing the effect of all
possible moves (i, k , ℓ) for k = i, . . . , j (where k = i represents “no
move”).

For each k = i, . . . , j the resulting number of late jobs is given by
three terms:
• m1 ∈ {0, . . . , k − i} late jobs from subsequence [i + 1, k ] moved

forward by pi ;
• m2 ∈ {0, . . . , j − k} late jobs from subsequence [k + 1, j] with the

same start time;
• m3 ∈ {0, 1} late jobs from job i delayed by δ(i + 1, k).



Initialization

At level ℓ = 0, the values s(i, j,m, 0) are evaluated on the initial
sequence using the lateness values of the jobs in it.

For each subsequence [i, j], max
(m)
k∈[i,j]{Lk} indicates the m-th largest

value among the lateness values of the jobs in the subsequence
(m-lateness, for short).

Initialization.

s(i, j,m, 0) =
(m+1)
max
k∈[i,j]

{Lk} ∀ i ≤ j, ∀m = 0, . . . , j − i.



Recursion

For each ℓ-rearrangement, we consider the ordered sequence of
lateness values in it and for each number m − 1 of late jobs, we keep
the corresponding minimum m-lateness.

When move (i, k , ℓ) is done, the multiset of lateness values produced
is given by

R(i, j, k , ℓ) =
k−i−1
⋃

u=0

{s(i+1, k , u, ℓ−1)−pi}∪

j−k−1
⋃

u=0

{s(k+1, j, u, ℓ)}∪{Ck−di}.

By Observation 2, the optimal (ℓ− 1)-rearrangement of subsequence
[i + 1, k ] does not change when the subsequence is moved forward
by pi .

The value of the new state is computed as follows:

s(i, j,m, ℓ) = min
k∈[i,j]

{

(m+1)
max R(i, j, k , ℓ)

}

.

The final optimal value is given by min{m : s(1, n,m,S) ≤ 0}.



//Initialization//
for i = 1, . . . , n do

for j = i, . . . , n do
for m = 0, . . . , j − i do

s(i, j,m, 0)← max(m+1){Li , . . . , Lj}
//Recursion//
for ℓ = 1, . . . ,S do

for j = 1, . . . , n do
for i = j, . . . , 1 do

for k = i, . . . , j do
Rk ← {}
for u = 0, . . . , k − i − 1 do

SortedInsert (Rk , s(i + 1, k , u, ℓ− 1)− pi)
for u = 0, . . . , j − k − 1 do

SortedInsert (Rk , s(k + 1, j, u, ℓ))
SortedInsert (Rk ,Ck − di)

for m = 0, . . . , j − i do
s(i, j,m, ℓ)← mink=i,...,j{max(m+1)Rk}

Return(min{m : s(1, n,m,S) ≤ 0}



Complexity

The worst-case computational complexity of the initialization is O(n3)
(not the bottleneck).

In the recursion there are five nested loops, yielding an overall
worst-case time complexity of O(n4S), which is bounded by O(n5)
(strongly polynomial).

The implementation (not the complexity) can be improved (see
Nicosia et al., 2021).



Weighted number of late jobs

In its weighted version (a weight wj is associated with each job j) the
problem is NP-hard.

Assume weights are integers. Then, instead of enumerating the
number of late jobs, we enumerate the weighted number of late jobs.

The same algorithm still works, but its computational complexity is
now O(n4W ), with W =

∑

j wj (pseudo-polynomial complexity).

For large weights, it is possible to prove that the complexity can be
bounded by B instead of W , where B =

∑S
q=1 max

(q)
j {pj} (see

Pferschy et al., 2022).


