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D.P. for NP-hard problems

Many interesting and relevant discrete optimization problems are
NP-hard: unless P = NP, there is no hope of designing a
polynomial-time exact optimization algorithm.

It makes sense to design heuristics, but one should not dismiss exact
optization.

Often, the best heuristic is a suitably modified exact optimization
algorithm (matheuristics).
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Strong and weak NP-hardness

Strongly NP-hard problems⇔ Exponential-time algorithms.

Weakly NP-hard problems⇔ Pseudo-polynomial-time algorithms.

Pseudo-polynomial complexity depends on the numeric value of
some input datum (not only on the size of the instance).

Very useful for problems with a known limit on the range of some
input values.
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Approximation

NP-hard problems can also be approximated.

• K -approximation:
z − z∗

z∗
bounded by a costant factor;

• g(n)-approximation:
z − z∗

z∗
bounded by a function of n;

• ǫ-approximation:
z − z∗

z∗
bounded by an arbitrarily small factor.

We are interested in polynomial-time approximation algorithms.

FPTAS: the computational complexity polynomially depends on 1/ǫ.
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The binary knapsack problem

Data
• an indexed set N of n items,
• a value cj for each item j ∈ N ,
• a weight aj for each item j ∈ N ,
• a capacity b of a container (knapsack).

Find a maximum value subset of items such that their total weight
does not exceed the capacity.

max z =
∑

j∈N

cjxj

s.t.
∑

j∈N

ajxj ≤ b

xj ∈ {0, 1} ∀j ∈ N .
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Complexity

The number of possible solutions is 2n and, even worse, the problem
is NP-hard.

Assume that all data are integer.

The problem is weakly NP-hard and D.P. allows to design exact
optimization algorithms with pseudo-polynomial complexity.

This is obtained, for instance, by enumeration of all feasible values for
the capacity consumption.
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A D.P. algorithm

• Policy: sort the items (the variables) from x1 to xn.
• State:

• Feasibility depends on the residual capacity;
• Cost does not depend on previous decisions.

Hence the state is given by the last item considered (j) and the
capacity used so far (u).
• Resource Extension Function:

• Initialization: z(0, 0) = 0;
• Extension: z(j , u) = max{z(j − 1,u), z(j − 1,u − aj) + cj}.
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The state-transition graph

i-1, u 
Xi=0 

Xi=1 

i, u+ai 

i, u 

The state graph has a layer for each item (variable) i ∈ N and b + 1
nodes per layer.

Complexity: The graph has O(nb) nodes and each of them has only
two predecessors. Then the D.P. algorithm has complexity O(nb),
which is pseudo-polynomial.
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Approximating the KP

The binary knapsack problem can also be solved to optimality with a
D.P. algorithm based on the following recursion:
{

u(j, 0) = 0
u(j, z) = min{u(j − 1, z − cj) + aj , u(j − 1, z)} ∀z = 1, . . . , z∗

where u(j, z) is the minimum capacity needed to achieve profit z
using the first j elements of N .

This algorithm takes O(nz∗) time.
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Bounds on z∗

Observation. Denoting the largest value of the profit vector c by
c = maxj∈N {cj}, we have:

c ≤ z∗ ≤ nc.

The first inequality is true under the obvious assumption that all
solutions with only one item are feasible (items with aj > b can be
identified and discarded at pre-processing time in O(n)).

The second inequality is true because

z∗ =
∑

j∈N

cjx∗
j ≤

∑

j∈N

cj ≤
∑

j∈N

c = nc.
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Scaling

Select a scale factor k and define modified costs c′
j = ⌊

cj

k ⌋.
The scaled problem is

KP′) maximize z ′ =
∑

j∈N

c′
j xj

s.t.
∑

j∈N

ajxj ≤ b

x ∈ Bn

This is still a binary knapsack problem and it can be solved to
optimality with the same D.P. algorithm in O(nz∗′

) time.

Define c′ = maxj∈N {c′
j }. Then c′ ≤ z

′∗ ≤ nc′.

Therefore the time complexity for solving KP′ is O(n2 c
k ).
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Relationship between z∗ and z∗
′

Let X∗′

be the set of items with x = 1 in the optimal solution of KP′.
Let X∗ be the set of items with x = 1 in the optimal solution of KP.

We can now establish a relationship between z(X∗) and z(X∗′

).

z(X∗′

) =
∑

j∈X∗
′

cj ≥
∑

j∈X∗
′

k
⌊cj

k

⌋

≥
∑

j∈X∗

k
⌊cj

k

⌋

≥
∑

j∈X∗

(cj − k) =
∑

j∈X∗

cj − k |X∗| ≥ z(X∗)− kn

The absolute error is bounded by kn.
The relative error is bounded by kn

z(X∗) , i.e. by kn
c .
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Relationship between z∗ and z∗
′

So, if we solve the scaled problem KP′ instead of the original problem
KP,
• we need O(n2 c

k ) computing time;

• we achieve an approximation factor ǫ = kn
c .

Therefore the computational complexity of the approximation
algorithm is

O
(

n3

ǫ

)

.

This provides a fully polynomial time approximation scheme (FPTAS)
for problem KP.
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Label setting algorithm (part 1)

/* Inizialize */
for u = 0, . . . , b do

z[0, u]← 0;
/* Compute all states */
for j = 1, . . . , n do

for u = 0, . . . , aj − 1 do
z[j, u]← z[j − 1, u];
pred [j, u]← 0;

for u = aj , . . . , b do
if (z[j − 1, u − aj ] + cj > z[j − 1, u]) then

z[j, u]← z[j − 1, u − aj ] + cj ;
pred [j, u]← 1;

else
z[j, u]← z[j − 1, u];
pred [j, u]← 0;

/* Find the optimal value */
/* Reconstruct the optimal solution */
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Label setting algorithm (part 2)

/* Inizialize */
/* Compute all states */
/* Find the optimal value */
z∗ ← 0;
for u = 0, . . . , b do

if (z[n, u] > z∗) then
z∗ ← z[n, u];
u∗ ← u;

/* Reconstruct the optimal solution */
for j = n, . . . , 1 do

x∗[j]← pred [j, u∗];
if (pred [j, u∗] = 1) then

u∗ ← u∗ − aj ;
Return(z∗, x∗)
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Label correcting

In this label setting implementation many iterations are wasted,
because not all entries of the matrix z are needed.

A possibly more effective implementation is based on pointers, where
every row of the matrix z is implemented as a linked list.

The algorithm starts from a single state of value 0 on row 0 and only
existing states in row i generate successor states in row i + 1.

Advantage. Sparsity of the data-structure: each linked list is likely to
contain fewer states than a complete row of the matrix z, especially in
the earliest iterations.

Drawback. Every time a state (j, u) is generated with value z ′(j, u), it
is necessary to check whether another state (j, u) already exists with
value z ′′(j, u), to check for dominance.
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KP: an example

i ci ai

1 45 4
2 55 5
3 42 4
4 62 6
5 61 6
6 80 8
7 69 7

Capacity: b = 16.
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Label setting vs. label correcting

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 0 0 0 45 45 45 45 45 45 45 45 45 45 45 45 45
2 0 0 0 0 45 55 55 55 55 100 100 100 100 100 100 100 100
3 0 0 0 0 45 55 55 55 87 100 100 100 100 142 142 142 142
4 0 0 0 0 45 55 62 62 87 100 107 117 117 142 149 162 162
5 0 0 0 0 45 55 62 62 87 100 107 117 123 142 149 162 168
6 0 0 0 0 45 55 62 62 87 100 107 117 125 142 149 162 168
7 0 0 0 0 45 55 62 69 87 100 107 117 125 142 149 162 169

Label setting.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 45
2 0 45 55 100
3 0 45 55 87 100 142
4 0 45 55 62 87 100 107 117 142 149 162
5 0 45 55 62 87 100 107 117 123 142 149 162 168
6 0 45 55 62 87 100 107 117 125 142 149 162 168
7 0 45 55 62 69 87 100 107 117 125 142 149 162 169

Label correcting.
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The (Elementary) Resource Constrained Shortest Path Problem

Find a shortest path by car from Milan to Rome with a budget of 15 C.

It is an instance of an NP-hard problem!

Find the elementary shortest path from s to t in a weighted directed
cyclic graph with general arc costs.

 

s 

2 

1 

t 

1 

-1 

1 

-1 

Negative cost cycles⇒ elementarity constraint.
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RCESPP from VRP pricing

Branch-and-price is the most effective technique to solve vehicle
routing problems.

A set of n customers (nodes of a graph) must be visited by a fleet of
V vehicles, starting from a depot and going back to it.

Vehicle routes must typically comply with some constraints on limited
resources (capacity, time, fuel,...).
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Branch-and-price

A branch-and-price algorithm is a branch-and-bound algorithm,
where dual bounds are obtained from the linear relaxation of an
extended formulation (restricted master problem) of the VRP.

minimize z =
∑

k∈K

ckθk

s.t.
∑

k∈K

yikθk ≥ 1 ∀i ∈ N [λi ]

∑

k∈K

θk ≤ V [µ]

θk ∈ {0, 1} ∀k ∈ K

where
• K is the subset of available routes;
• θk indicates whether route k is selected;
• yik indicates whether route k visits node i.
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Column generation

The route subset K is restricted, because the cardinality of the whole
route set is exponential in n.

Column generation: additional routes are generated and inserted in
the route subset, if they have negative reduced cost.
Then the master problem is re-optimized.

Reduced cost:
ck −

∑

i∈N

λi yik + µ.
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Pricing problem

Pricing problem: find a minimum reduced cost feasible route.

minimize r =
∑

(i,j)∈A

cijxij −
∑

i∈N

λiyi

s.t. 0 ≤
∑

j∈N

xij = yi =
∑

j∈N

xji ≤ 1 ∀i ∈ N

y0 = 1

resource constraints

xij ∈ {0, 1} ∀(i, j) ∈ A.

Find a min cost path from the depot (0) to the depot, with
• costs c on the arcs,
• rewards λ on the nodes.
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RCESPP for pricing

Rewards λ are assigned to the arcs, decreasing their cost:

c′
ij = cij −

λi

2
−

λj

2
.

Negative cost arcs and cycles can be produced.

The pricing problem turns out to be a RCESPP.

The most common technique to solve it is dynamic programming:
• heuristic pricing (approximation)
• exact pricing (optimization)
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Example 1: Capacitated VRP

Each vehicle has a given capacity Q.
Each node i ∈ N has a given demand di .

Capacity constraint:
∑

i∈N

diyi ≤ Q.

Dynamic programming uses a resource (capacity) consumption q.

Extension along (i, j) from (q′, i) to (q′′, j):

q′′ = q′ + dj

Feasibility: q′′ ≤ Q.
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Example 2: VRP with distribution and collection (VRPDC)

∀i ∈ N, pi and di are the amounts to be picked-up and delivered.
Each vehicle has a positive integer capacity Q.

Two resources: the amounts of load that the vehicle can
pick-up/deliver after node i.

The two resources interact: the maximum amount the vehicle can
deliver after visiting i cannot be greater than the maximum amount it
can pick-up after visiting i.

Initialization: π = δ = 0.
Extension along (i, j) from (π′, δ′, i) to (π′′, δ′′, j):

π′′ = π′ + pj δ′′ = max{δ′ + dj , π
′ + pj}.

Feasibility: (π′′ ≤ Q) ∧ (δ′′ ≤ Q) (the latter one implies the former
one).
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Example 3: VRP with time windows (VRPTW)

A time window [ai , bi ] is associated with each node i ∈ N.
If the vehicle arrives at i before ai , it waits.
The travel time along (i, j) is tij .

One resource: τi , time elapsed up to start time of service at i.

Initialization: τi = 0.
Extension along (i, j) from (τ ′, i) to (τ ′′, j):

τ ′′ = max{τ ′ + tij , aj}.

Feasibility: τ ′′ ≤ bj .
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Elementarity constraints

The graph can contain negative cost cycles but the route must be
elementary (a reward λi cannot be counted more than once).

A suitable binary vector S of resources indicates which nodes have
already been visited.
• State: (i,S) (visited subset, last reached node);
• Initialization: c({s}, s) = 0;
• Extension: c(j,S) = mini∈S\{j}{c(i,S\{j}) + cij} ∀j 6= 0.
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Dominance

L′ = (i ′, q′,S′) dominates L′′ = (i ′′, q′′,S′′) only if:
• i ′ = i ′′

• q′ ≤ q′′

• S′ ⊆ S′′

• c(L′) ≤ c(L′′) (assuming minimization).

Complexity: the n. of states grows exponentially with the size of the
graph.

Continuous resources prevent from label setting.

Some resources can be renewable.
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Unreachable nodes (Feillet et al., 2004)

A node j is unreachable from a state (i, q,S) when
dk

ij + dk
j0 > Qk − qk for some resource k , where

• dij is the minimum resource consumption for reaching j from i;
• Qk is the total amount of available resource k ;
• qk is the consumption of resource k in state (i, q,S).

. Non-visited unreachable nodes U can be considered as if they had
already been visited: (i, q′,S′,U ′) dominates (i, q′′,S′′,U ′′) if

(q′ ≤ q′′) ∧ (S′ ∪ U ′ ⊆ S′′ ∪ U ′′) ∧ (c(i, q′,S′,U ′) ≤ c(i, q′′,S′′,U ′′))
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Dynamic programming for NP-hard problems

• Exponential growth in the number of labels
• Exponential number of possible states, if the path must be

elementary
• Non-enumerable states, if there are continuous resources
• Need for quick but good heuristic solutions (heuristic pricing,

primal bounding)
• Need for quick but good relaxations (dual bounding)

Good algorithmic ideas are needed!
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Bi-directional extension (Righini and Salani, 2006)

Bi-directional D.P.: labels are extended both forward from vertex s to
its successors and backward from vertex t to its predecessors.

Backward states, extension functions and dominance rules are
symmetrical.

A path from s to t is detected each time
• a forward state reaching i and a backward state reaching j can

be feasibly joined through arc (i, j) (join on arcs);
• a forward and a backward state reaching i can be feasibly joined

in node i (join in nodes).
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Join

Let Lfw = (Sfw , qfw , i) be a forward path and Lbw = (Sbw , qbw , j) be a
backward path.

Join on arcs (i 6= j).

Feasibility conditions:
• Sfw ∩ Sbw = ∅

• qfw + qbw ≤ Q

Cost: c(Lfw ) + cij + c(Lbw ).

Join on nodes (i = j).

Feasibility conditions:
• Sfw ∩ Sbw = {i}
• qfw + qbw − qi ≤ Q

Cost: c(Lfw ) + c(Lbw ).
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Example 1: CVRP

Backward state: (j, qbw ).
• Node j: last node reached by backward extensions from the final

depot.
• Backward resource consumption qbw : amount of capacity

consumed by nodes between j (included) and the final depot.

Backward extension from (j, qbw ′

) to (i, qbw ′′

) along (i, j):

qbw ′′

= qbw ′

+ di .

Feasible join between (i, qfw ) and (j, qbw ):

qfw + qbw ≤ Q.
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Example 2: VRPDC

Backward state: (j, πbw , δbw ).
• Node j: last node reached by backward extensions from the final

depot.
• Backward resource consumption:

• δbw : amount of load delivered between j and the final depot;
• πbw : maximum total load on board between j and the final depot.

Backward extension from (j, πbw ′

, δbw ′

) to (i, πbw ′′

, δbw ′′

) along (i, j):

δbw ′′

= δbw ′

+ di πbw ′′

= max{δbw ′

+ di , π
bw ′

+ pi}.

Feasible join between (i, πfw , δfw ) and (j, πbw , δbw ):

(πfw + πbw ≤ Q) ∧ (δfw + δbw ≤ Q).
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Example 3: VRPTW

Define T = maxi∈N{bi + ti0}.

Backward state: (j, τbw ).
• Node j: last node reached by backward extensions from the final

depot.
• Backward resource consumption τbw : time elapsed between the

departure from j and time T .

Backward extension from (j, τbw ′

) to (i, τbw ′′

) along (i, j):

τbw ′′

= max{τbw ′

+ tij ,T − bi}.

Feasible join between (i, τ fw ) and (j, τbw ):

τ fw + tij + τbw ≤ T .
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Stopping at a half-way point

Extensions in one direction are stopped, when there is the guarantee
that the remaining part of the path is generated in the other direction
and therefore no optimal solution is lost.

Possible stop criteria:
• stop when n/2 extensions have been done;
• stop when half the overall available amount of a non-renewable

critical resource has been consumed:
• CVRP: do not extend (i , q) if q ≥ Q.
• VRPDC: do not extend (i , π, δ) if π + δ ≥ Q.
• VRPTW: do not extend (i , τ ) if τ ≥ T/2.

A suitable combination of resources can be used as a critical
resource.
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Guessing the critical resource (Bezzi et al., 2020)

When several resources are used, a correct guess of the critical
resource has a huge impact on the number of states.

In general, the ”best” critical resource is the most binding one.

Sometimes it can be guessed from the input data (supervised
learning).

Sometimes it can be estimated from the states generated in the early
iterations (predictive heuristics).
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Supervised learning

Assumption: there are features of the instance that are predictive of
the best critical resource.

• Generate many problem instances.
• For each instance create a data object, measuring and recording

several features.
• Solve each instance once for every choice of critical resource

and record the CPU time.
• Label each data object with the corresponding best critical

resource for that instance.
• Use the labelled data objects to train classification models,

mapping pricing instance features to critical resource labels.

The classification model can then be invoked to predict the best
critical resource for any new instance.
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Heuristics: partial inspection

Assumption: the number of labels produced by extensions is a good
proxy for the overall CPU time required by the D.P. algorithm.

• The extension of a label is stopped when half of any resource
has been consumed.
• Extensions are stopped when a certain number L of labels have

been generated.
• When all extensions have been stopped, the best critical

resource is guessed to be the one stopping the largest number of
extensions.
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Heuristics: partial inspection

for each resource r do
K r ← 0

t ← 0
Queue← {initial state}
while t < L do
L ← Queue[t ]
if L is an open label then

for Each node i reachable from L do
Try to extend L to i creatingM
for each resource r do

ifM blocked by resource r then
K r ← K r + 1

ifM is not blocked then
AddM to Queue
Check dominance

t ← t + 1
Return argmaxr{K r}
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Solution uniqueness (Righini and Salani, 2006)

Goal: avoid generating the same path more than once.

Accept a path only when it is produced by the join of a forward state
and a backward state for which the forward and backward
consumptions of the critical resource are as close as possible to half
the overall consumption along the path.

Let ρfw and ρbw be the critical resource consumptions in forward and
backward paths.

We require |ρfw?ρbw | to be ≤ to its value in the next and the previous
position along the path.

The test can be done in constant time.
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Bi-directional D.P. for the KP

Forward states with items 1, . . . , 3.
Backward states with items 4, . . . , 7.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 45
2 0 45 55 100
3 0 45 55 87 100 142

4 0 62 69 80 123 131 142 149
5 0 61 69 80 130 141 149
6 0 69 80 149
7 0 69

The two sparse sub-matrices in the bi-directional implementation:
about 75% of the states are not generated.

Each forward state with capacity consumption q is joined with the
backward state with maximum consumption not larger than b − q.

For instance, qfw = 5 and z fw = 55 is matched with qbw = 8 and
zbw = 80.

Join complexity: O(n).
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Bounding for fathoming states

Bounding is used as in branch-and-bound algorithms, to detect states
that are not worth extending, because they cannot lead to optimal
solutions.

Given a state L = (S, q, i), compute a lower bound LB(L) (completion
bound) on the cost for completing the path with the residual amount
Q − q of resources.

minimize LB =
∑

j∈N\S

bjyj

subject to
∑

j∈N\S

djyj ≤ Q − q

yj ∈ {0, 1} ∀j ∈ N\S

where
• bj is a lower bound on the (possibly ≤ 0) cost of visiting j 6∈ S;
• dj is the minimum resource consumption for visiting j.

If c(L) + LB ≥ UB, then fathom L (UB is an upper bound).
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State space relaxation (Christofides et al., 1981)

The state space S explored by the D.P. algorithm is projected onto a
lower dimensional space T , so that each state in T retains the
minimum cost among those of its corresponding states in S
(assuming minimization).

SSR : S 7→ T such that c(t) = mins∈S:SSR(s)=t{c(s)}.

In this way:
• the number of states to be explored is drastically reduced;
• some infeasible states s in S can be projected onto a state t

corresponding to a feasible solution in T .

The D.P. algorithm exploring T instead of S is faster and it does not
guarantee to find an optimal solution, but rather a dual bound.
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SSR of the set of visited nodes

We map each state (S, q, i) onto a new state (σ, q, i), where σ = |S|
represents the number of nodes visited (excluding s).

Dominance condition S′ ⊆ S′′ is replaced by σ′ ≤ σ′′.

Since σ ≤ N the D.P. has pseudo-polynomial time complexity.

Since the state does no longer keep information about the set of
already visited vertices, cycles are no longer forbidden; the solution
• is guaranteed to be feasible with respect to the resource

constraints;
• is not guaranteed to be elementary.

This technique can also be applied to bi-directional search.
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Decremental state space relaxation (Righini and Salani, 2006)

Decremental SSR allows to tune a trade-off between D.P. with SSR
(using σ) and exact D.P. (using S):
• a set V ⊆ N of critical nodes is defined;
• S is now a subset of V ;
• σ counts the overall number of visited nodes.
• For V = N , DSSR is equivalent to exact D.P..
• For V = ∅, DSSR is equivalent to D.P. with SSR.

The algorithm is executed multiple times and after each iteration
some nodes visited more than once are inserted into V .

The algorithm ends when the optimal solution is also feasible (the
path is elementary). An increasingly better lower bound is produced
at each iteration.

Computational experiments show that in many cases a critical set
containing about 15% of the nodes is enough (!).
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Critical set

Policies to update V (Boland et al., 2006):
• insert one node among those visited the maximum number of

times;
• insert all nodes visited the maximum number of times;
• insert all nodes visited more than once.

Policies to initialize V , based on the ”cycling attractiveness” (CA) of a
node (Righini and Salani, 2009):

fij = λi/(tij + tji)

Sort the nodes by
• Highest CA: maxj∈N\{i}{fij}
• Total CA: maxj∈N\{i}{fij}
• Other criteria depending, for instance, on time windows width.

Initialize V with the first k nodes in the ordering.
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ng-routes relaxation (Baldacci et al., 2011)

With each node i ∈ N a neighborhood Ni is associated, such that
i ∈ Ni .
Consider a path P = (P1,P2, . . . ,Pl) with Pk ∈ N ∀k = 1, . . . , l.
Its critical set is

ΠP = {Pk ∈ P : Pk ∈
l
⋂

h=k+1

NPh} ∪ {Pl}.

This set contains all nodes visited by P that are “close to” all nodes
visited after them.

A forward ng-path (NG, i) is a path that
• ends at node i
• has NG = ΠP with i 6∈ P′, where P′ is P without the last arc.

The extension of a path P to any node in ΠP is forbidden, because it
would produce a cycle.
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ng-routes relaxation

A different state is kept for each subset NG and each i.
The number of states can grow expnentially with the size of the
neighborhoods N.

Extension rule:

z(NG, i) = min
(NG′

,j)∈P
{z(NG′, j) + cji}

z(∅, 0) = 0

Rule of thumb: each Ni contains 15 nearest neighbors of each node

i.
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Example

Each neighborhood is initialized with the 4 nearest neighbors.

The solution contains a cycle, with C1 = 4.
Node 4 does not belong to N7, N8 and N9.
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Example

Node 4 has been inserted in N7, N8 and N9.

The solution contains a cycle, with C1 = 4.
Node 4 does not belong to N2.
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Example

Node 4 has been inserted in N2.

The solution contains a cycle, with C1 = 5.
Node 5 does not belong to N2, N7, N8 and N9.
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Example

Node 5 has been inserted into N2, N7, N8 and N9.

The solution is cycle-free and hence optimal.
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Dynamic ng-routes relaxation (Roberti and Mingozzi, 2014)

The size of the neighborhoods is initially set to ∆′ and it is iteratively
enlarged (up to a maximum size ∆′′) according to the cycles
detected.

Every time a lower bound is computed, a minimum cardinality cycle
C = (C1,C2, . . . ,Cl ,C1) is searched such that

|NCk
| < ∆′′ ∀Ck : C1 6∈ NCk

If no such cycle exists, then the algorithm stops.
Otherwise C1 is inserted into the neighborhoods NCk

not including it
and a new iteration is executed.
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Heuristic D.P.

From exact to heuristic D.P. by relaxing the dominance test.

For instance, in the RCESPP replace

i ′ = i ′′

S ′ ⊆ S ′′

r ′ ≤ r ′′

C(i, r ′,S ′) ≤ C(i, r ′′,S ′′)

with

i ′ = i ′′

|S ′| ≤ |S ′′|

r ′ ≤ r ′′

C(i, r ′,S ′) ≤ C(i, r ′′,S ′′)

still keeping the constraint j 6∈ S when extending (i,S, r) along (i, j).

The final solution will be feasible, but not necessarily optimal.
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Continuous resources: the VRPSTW

VRP with Soft Time Windows:
• a graph G = (V ,A), with n customers and a depot,
• a demand qi for each node i ∈ N,
• V identical vehicles of capacity Q,
• non-negative weights tij (time) and cij (cost) ∀(i, j) ∈ A,
• a service time θi ≥ 0 and a time window [ai , bi ] ∀i ∈ N.

If the service at i ∈ N starts before ai or after bi , a linear penalty is
paid, through non-negative coefficients αi (advance) and βi (delay).

Indicating with Ti the starting time of service at i ∈ N, the penalty
term πi (Ti) is:

πi(Ti) =







αi(ai − Ti) if Ti < ai

0 if ai ≤ Ti ≤ bi

βi(Ti − bi) if Ti > bi .

Vehicles are allowed to wait at no cost.
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Soft time windows

 

Time window 
Ti 

�i 

ai bi 

A soft time window at node i ∈ N : a linear penalty πi is incurred
depending on the service start time Ti .
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States and labels

When a vehicle reaches a node i ∈ N before ai , it can start the
service immediately or it can wait and start the service at a later time,
in order to reduce the penalty.

Therefore, from each feasible state an infinite set of feasible states is
generated.

The dynamic programming algorithm must take into account an
infinite set of non-dominated states: this is done by grouping them
into labels.

Each label corresponds to an infinite set of states associated with the
same path.
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States and labels

A label associated with node i ∈ N is a tuple Li = (S, i, r ,C(Ti )),
where
• S is a binary vector indicating the nodes visited along the path,
• i is the last reached node,
• r is the amount of capacity consumed up to i,
• C is the cost of the path,
• Ti is the time at which the service at node i starts.

In each label the continuous function C(Ti) describes the trade-off
between cost and time.

This function is piecewise linear and convex, because it is the sum of
piecewise linear and convex functions.
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Extension

When (S, i, r ,C(Ti )) is extended along (i, j) generating
(S′, j, r ′,C′(Tj)),

S′
k =

{

Sk + 1 k = j
Sk k 6= j

r ′ = r + qj

C′(Tj) = C(Tj − (θi + tij))− λi/2 + cij − λj/2 + πj (Tj),

where λ0 = −µ (dual variable of the convexity constraint).

Feasibility: (Sk ≤ 1 ∀k ∈ N ) ∧ (r ≤ Q).

The cost function C of the predecessor is evaluated at
Ti = Tj − (θi + tij), which is the latest point in time at which the service
at node i can start, to allow starting the service at node j at time Tj .



NP-hard pr. KP RCESPP Bi-directional D.P. Bounding SSR Heur. D.P. Cont. res.

 

C 

aj          bj T 

Figura: Forward extension from node i to node j . The C′(Tj) function is the
sum of the C(Ti) function suitably right-and-up-shifted and the penalty
function πj(Tj).
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Dominance 1

Since waiting at no cost is allowed, if state with cost C and time T is
feasible, all states with the same cost C and time larger than T are
also reachable.

 
Ti 

C(Ti) 

Figura: States on the ascending part of the piecewise linear function are
dominated: the same value in time can be reached at a smaller cost.
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Dominance 2

Dominance test.

Let (S′, i, r ′,C′,T ′
i ) and (S′′, i, r ′′,C′′,T ′′

i ) be two states belonging to
two labels L′ and L′′.

Then the former dominates the latter only if

S′ ≤ S′′

r ′ ≤ r ′′

C′ ≤ C′′

T ′
i ≤ T ′′

i

and at least one of the inequalities is strict.

The effect is to delete some parts of the piecewise linear functions.
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Ti 

C(Ti) 

Gap 

Concavity 

Non-dominated states (strong lines).

The resulting piecewise linear functions may have gaps and are not
convex in general,
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Dominance

Comparing a new generated label L′ with an existing one L′′:

if S′ = S′′, i ′ = i ′′ and r ′ = r ′′, then the two labels are merged;

otherwise, some states in one of the two piecewise linear functions
can be dominated; hence, the resulting piecewise linear function can
have also horizontal gaps.
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Join

Forward label: Lfw = (Sfw , i, r fw ,C fw(Ti )).
Backward label: Lbw = (Sbw , j, rbw ,Cbw (Tj)).

Feasibility test:
Sfw

k + Sbw
k ≤ 1 ∀k ∈ N .

r fw + rbw ≤ Q.

Cost:

C(T ) = C fw (T )− λi/2 + cij − λj/2 + Cbw (T + θi + tij).

This function may have several local minima.
Finding the global minimum takes time linear in the number of
discontinuity points of the two piecewise linear functions (merge two
sorted lists).
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Join

 
T 

C 

0 

Blue: forward cost. Red: backward cost. Green: total cost.
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