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Column generation convergence

Column generation guarantees a valid dual bound only at the end of
the algorithm, when the optimal solution of the master problem has

been found (no negative reduced cost columns exist).

Convergence is typically very slow: many iterations with little or no
improvement of the optimal value may be required to prove optimality.

The reason is primal degeneracy, that implies multiple dual optima.

Dual variables oscillate instead of converging to the optimal values.



Stabilization techniques

Boxstep method (Marsten et al, 1975). At each iteration the dual
variables are constrained to lie in a box centered in the previous dual

solution.

Du Merle, Villeneuve, Desrosiers and Hansen (1999): dual
stabilization method specifically devised for column generation.

Key observations:

• The columns of the optimal solution are often generated in the

last iterations, when the dual variables are near-optimal.

• Initially, wild oscillations of dual variables tend to produce

“extreme columns”, that are not part of any optimal solution.

So, one should try to generate columns using dual variables near a
stability center, i.e. the current best guess for the optimal dual values.



Stabilization techniques

Stabilizing function: it penalizes dual solutions far from the stability
center.

The stability center is iteratively updated, until it converges to an

optimal dual solution.

The stabilizing function is iteratively updated, tending to zero.

This requires to introduce additional bounded variables in the
restricted linear master problem.



Stabilization techniques

minimize z =cT x

s.t. Ax = b

x ≥ 0

maximize w =bTλ

s.t. ATλ ≤ c

Stabilized master problem:

minimize z =cx − d1y1 + d2y2

s.t. Ax − y1 + y2 = b

y1 ≤ ǫ1

y2 ≤ ǫ2

x , y1, y2 ≥ 0

maximize w =bTλ− ω1ǫ1 − ω2ǫ2

s.t. ATλ ≤ c

d1 − ω1 ≤ λ ≤ d2 + ω2

ω1, ω2 ≥ 0



Stabilized master problem
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The current interval is always centered around the stability center λ.

• If λ falls out of the interval [d1, d2], enlarge the interval.

• If λ falls within the interval [d1, d2], restrict the interval and

decrease the penalties.

Drawbacks: this method enlarges the LP and requires parameter

tuning.



Single parameter stabilization

A different technique (Pessoa, Uchoa and Poggi, 2008) uses a single
parameter.

Key idea: the dual values λ used to solve the pricing problem are not

the current optimal dual values λ∗, but a convex combination between
λ∗ and the current stability center λ:

λ = αλ+ (1− α)λ∗,

with 0 ≤ α ≤ 1.

If the solution of the pricing problem with λ does not yield a column

whose reduced cost is negative with respect to λ∗, then

z∗

LR(λ) ≥ z∗

LR(λ) + α(z∗

LRMP − z∗

LR(λ)).

Mis-pricing is not wasted time: the lower bound improves.

The method converges in a finite number of iterations.



Single parameter stabilization

Input: α, ǫ.

λ← 0

repeat

Solve LRMP → λ∗, z∗

LRMP

λ← αλ+ (1− α)λ∗

Solve pricing problem with λ→ column Aj

if z∗

LR(λ) > z∗

LR(λ) then

λ← λ

end if

if c j(λ
∗) < 0 then

Insert Aj in the LRMP

end if

until z∗

LRMP − z∗

LR(λ) ≤ ǫ



λ

w

z∗

LRMP

λ∗

Iteration 1 (master): dummy initial basis.
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Iteration 1 (pricing): new column generated. A valid Lagrangean

lower bound is obtained.
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Iteration 2 (master): a large change of λ∗ occurs.
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Iteration 2 (pricing): The Lagrangean lower bound is worse.
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Iteration 3 (master): z∗

LRMP keeps decreasing monotonically.
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Iteration 3 (pricing): z∗

LR(λ
∗) remains below the current best LB.
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Iteration 4 (master): the change of λ is larger than the previous one.
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Iteration 4 (pricing): still no improvement of the best current LB.
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Iteration 5 (master): the master is more and more relaxed; its dual is

more and more constrained.
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Iteration 5 (pricing): improvement of the current best LB (finally!).
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Iteration 6 (master): we have the optimal solution but not the

optimality guarantee.
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Iteration 6 (pricing): No improving columns. Optimality is proven.

LB = z∗

LRMP .
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Iteration 1 (master): dummy initial basis. Assume λ = 0, α = 0.3.
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Iteration 1 (pricing): the first iteration is the same as before.
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Iteration 2 (master): the iteration is again the same as before.
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Iteration 2 (pricing): a convex combination of λ and λ∗ is used.
Misprice: the LB improves by at least α(z∗

LRMP − z∗

LR(λ)).
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Iteration 2b (pricing): the stability is center is updated. A new column

is found.
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Iteration 3 (master): optimal solution found, but with no guarantee yet.
Stop when z∗

LRMP − z∗

LR(λ) < ǫ.


