
Column generation stabilization: dual cuts
Operational Research Complements

Giovanni Righini

Università degli Studi di Milano

Based on: T. Gschwind, S. Irnich, Dual inequalities for stabilized column generation

revisited, INFORMS Journal on Computing 28, 1 (2016) 175-194

A primal-dual master problem

Consider an extended formulation and its dual:

P) zP =min cTλ

s.t. Aλ = b

λ ≥ 0

D) zD =maxbTπ

s.t. ATπ ≤ c

Pricing: find column aj s.t. cj − πT aj < 0.

Stabilized formulation

Dual cuts (Valério de Carvalho (2005), Ben Amor et al. (2006),
Gschwind and Irnich (2016)): add valid cuts to the dual problem D, to
avoid wild oscillations of variables π.

P̃) zP =min cTλ+ eT y

s.t. Aλ + Ey = b

λ ≥ 0, y ≥ 0

D̃) zD =maxbTπ

s.t. ATπ ≤ c

ETπ ≤ e

D̃ is a restriction if D; P̃ is a relaxation of P.

Dual optimal inequalities

Inequalities ETπ ≤ e are called dual inequalitiees (DI).

Let D∗ be the set of optimal dual solutions of D.

A dual inequality is a dual optimal inequality (DOI) if all π ∈ D∗ satisfy
it.

A set of dual inequalities are deep dual optimal inequalities (DDOIs) if
at least one solution π ∈ D∗ satisfies them.

Equivalence

The following statements are equivalent:

1. {ETπ ≤ e} are DDOIs.

2. ∃π∗ ∈ D∗ which is feasible (and therefore optimal) also for D̃.

3. z∗

D = z∗

D̃
.

4. z∗

P = z∗

P̃
.

5. ∀(λ̃, y) feasible for P̃, ∃λ feasible for P, with cTλ ≤ cT λ̃+ et y .

6. ∃(λ∗, y∗) optimal for P̃ with Ey∗ = 0 and λ∗ is optimal for P.

7. Every π∗ optimal for D̃ is also optimal for D.

Exchange property

Consider
• a constraint matrix A ≥ 0 with integer coefficients, row set I and

column set J ;
• an integer positive rhs vector b;
• a unit cost c for all columns.

Consider two column vectors r ≥ 0 and t ≥ 0.

A matrix A ∈ Z I×J
+ has the (r , t) exchange property if

(aj ∈ A) ∧ (aj ≥ r)⇒ aj − r + t ∈ A.

Every column aj ≥ r of A can be transformed into another column of
A, replacing r with t.

Remark. The exchange property is asymmetric: the (r , t) exchange
property does not imply the (t , r) exchange property, in general.

Exchange property

If A has the (r , t) exchange property and (λ∗, π∗) is a pair of optimal
solutions of P and D, then

∑

i∈I

riπ
∗

i ≥
∑

i∈I

tiπ∗

i

or
λ∗

k = 0 ∀k ∈ J : ak ≥ r .

Exchange property and DOIs

Consider a column vector uh such that uh = 1 and ui = 0 ∀i 6= h.

If A has the (r , t) exchange property when r = uh, then we indicate
this as the (h, t) exchange property: entries on row h can be feasibly
replaced by entries in a subset of other rows.

If A has the (h, t) exchange property, then

∀π∗ ∈ D∗, π∗

h ≥
∑

i∈I

tiπ∗

i .

This result can be used to obtain DOIs.

The cutting stock problem

The CSP: find cutting patterns for cutting rolls of given width L into
items i ∈ I of prescribed width wi ≤ L, such that the total number of
rolls is minimized and given demands bi ∀i ∈ I are fulfilled.

Compact formulation.

minimize z =
∑

v∈V

yv

s.t.
∑

i∈I

wiaij ≤ Lyv ∀v ∈ V

∑

v∈V

aij = b ∀i ∈ I

a ∈ Z I×V
+

y ∈ BV .

The cutting stock problem

In the extended formulation each column j ∈ J corresponds to a
cutting pattern containing aij items of type i ∈ I. Each column variable
λ ∈ ZJ

+ indicates how many patterns of type j ∈ J must be cut.

Demand constraints→ master; capacity constraints→ pricing.

The pricing sub-problem is an integer knapsack problem.

min z =
∑

j∈J

λj

s.t.
∑

j∈J

aijλj ≥ bi ∀i ∈ I

λ ∈ ZJ
+

min c =1−
∑

i∈I

aiπi

s.t.
∑

i∈I

wiai ≤ L

a ∈ Z I
+

The cutting stock problem

Assume that an instance of the CSP contains an item h ∈ I and a
subset S ⊆ I\{h} such that wh ≥

∑

s∈S ws. Then

πh ≥
∑

s∈S

πs

is a DOI (subset inequality).

In general, given a coefficient vector t ∈ ZS
>0 such that

wh ≥
∑

s∈S tsws,

πh ≥
∑

s∈S

tsπs

is a DOI (weighted subset inequality).

The cutting stock problem

The corresponding column in the primal master problem has

Eik =







ti i ∈ S
−1 i = h
0 otherwise

If it is more difficult to insert h than S is a feasible solution, then the
reward for inserting h must be not smaller than the total reward for S.

The presence of the additional column accounts for the possible
replacement of h with s in any column of the RMP: it implicitly
corresponds to inserting in the RMP all columns that could be
obtained from the columns already in the RMP by replacing h with S.

Covering property

If a matrix A ∈ Z I×J
+ has the (h, 0) exchange property for every row

h ∈ I, then

1. ∀λ : Aλ ≥ b, λ ≥ 0, ∃λ′ : Aλ′ = b, λ′ ≥ 0 with
∑

j∈J λj =
∑

j∈J λ
′

j ;

2. π∗

h ≥ 0 ∀π∗ ∈ D∗.

When A has the covering property, positive entries on every row h
can be decreased, still preserving feasibility.

• Cutting stock problem: deleting an item from a feasible pattern
yields a feasible pattern;
• Bin packing problem: removing an item from a feasible bin

subset yields a feasible bin subset;
• Vertex coloring problem: removing a vertex from an independent

set yields an independent set.

This motivates the preference for set covering formulations of the
master problem, instead of set partitioning.

Row interchange property

Consider a master problem where A ∈ BI×J , bi = 1 ∀i ∈ I,
cj = 1 ∀j ∈ J .

Given two rows h ∈ I and i ∈ I, the matrix A has the (h, i) row
interchange property if

(aj ∈ A) ∧ (ahj ≥ 1) ∧ (aij = 0)⇒ aj − uh + ui ∈ A.

We say that (h, i) is a valid replacement for A.

The set of inequalities πi − πh ≤ 0 for all valid replacements is a set of
DDOIs.
• Bin packing problem: pairs of items with wh ≥ wi ;
• Vertex coloring problem: pairs of vertices with N(h) ∪ {h} ⊇ N(i)

(where N(i) indicates the neighborhood of any vertex i).

Constraint aggregation

In a BPP with identical items (i.e. such that wi = wh for two items
i 6= h ∈ I), the corresponding rows can be aggregated, summing up
their entries for each column and in the rhs. The pricing problem
becomes a Bounded Integer Knapsack Problem.

The same can happen in the Cutting Stock Problem and in the Vertex
Coloring Problem.

The set of equalities πi = πh ∀i, h ∈ I : wi = wh is a set of DDOIs for
the Bin Packing Problem.

Constraint aggregation

Let α ∈ ℜ and let h ∈ I and i ∈ I two row indices. Let ai and ah the
two corresponding row vectors defining the equality constraints
aiλ = bi and ahλ = bh. Then

(ah + αai)λ̃ = bh + αbi ⇔

[

ah

ai

]

λ̃+

[

α

−1

]

y =

[

bh

bi

]

, y ∈ ℜ

Aggregating the two constraints is the same as inserting a suitable
dual cut απh = πi in D̃ and the corresponding primal variable y in P̃.

Furthermore, consider an optimal dual solution π∗ ∈ D∗ s.t. απ∗

h = π∗

i .
Then P and P̃ are equivalent to an aggregated formulation P̃′ where
rows i and h are replaced by the aggregated constraint (ah + αai)λ̃.
The dual solution π∗

′

defined by

π∗
′

k =

{

π∗

k k 6= h, i
π∗

h for the aggregated row

is an optimal solution of the dual of P̃′.

Constraint elimination

The special case α = 0 leads to constraint elimination.
• Set Covering Problem: if aij ≥ ahj ∀j ∈ J , then row i is redundant;
• Vertex Coloring Problem: if N(h) ⊇ N(i), then row i is redundant.

The equalities πi = 0 for all redundant rows are DDOIs.

Separation

(Weighted) subset inequalities can be exponentially many. Instead of
generating only some of them a priori, it may be profitable to
dynamically generate them as needed, as in cutting planes
algorithms.

For each problem a tailored separation algorithm must be devised.

In general, dynamic programming works fine for problems resembling
variations of the Knapsack Problem.

In some cases it may be easier to generate violated dual inequalities
that are not DOIs or DDOIs.

This overstabilization in general leads to primal infeasibility, triggering
the need for repairing the solution.

Overstabilization: an example

Bin Packing Problem. I = {1, . . . , 4}, w = [5, 2, 2, 2], L = 10.

The MP contains the four columns









1
1
1
0









,









1
1
0
1









,









1
0
1
1









,









0
1
1
1









.

Dual constraints:














π1 + π2 + π3 ≤ 1
π1 + π2 + π4 ≤ 1
π1 + π3 + π4 ≤ 1
π2 + π3 + π4 ≤ 1

Optimal solutions: λ∗ =

[

1
3
,

1
3
,

1
3
,

1
3

]

and π∗ =

[

1
3
,

1
3
,

1
3
,

1
3

]

, z∗ =
4
3

.

Overstabilization: an example

Stabilization. Dual inequality π1 ≥ π3 + π4 (not DDOI).

New optimal dual solution: π∗ =

[

1
2
,

1
4
,

1
4
,

1
4

]

and z∗ =
5
4

.

Corresponding column in the MP:









−1
0
1
1









.

New optimal primal solution: (λ̃∗, y∗) =

([

1
2
,

1
2
,

1
4
, 0
]

,
1
4

)

, which is

infeasible.

To make it feasible, one should replace item 1 with items 3 and 4 in
one of the basic columns, which is not possible because at least one
of items 3 and 4 would occur twice.

Notation

(h← t ,S) indicates the WSI πh ≥
∑

s∈S tsπs.

K : set of column indices of E (coefficients of y variables in P̃).

The rows of ET in D̃ are the coefficients in the WSIs. The
correspondence between a WSI (h← t ,S) and its index k ∈ K is
indicated by k(h← t ,S).

Two columns j ∈ J and k ∈ K are WSI-compatible if aj − uh + t ∈ A
for h ∈ I defined by k = k(h← t ,S).

Recovery algorithm

repeat
(λ∗, y∗)← Solve LRMP
while ∃(j, k) ∈ J×K : λ∗

j > 0, y∗

k > 0 and j and k are a compatible
WSI pair do
(j, k)← SelectWSIpair
δ ← min{λ∗

j , y
∗

k }

Find j ′ ∈ J : aj′ = aj − uh + t
λ∗

j ← λ∗

j − δ; y∗

k ← y∗

k − δ; λ∗

j′ ← λ∗

j′ + δ

end while
if y∗ > 0 then

Select h ∈ I : y∗

k > 0 for h defined by k = k(h← t ,S)
Eliminate all WSIs (h ← t ′,S′) for S′ ⊆ I, t ′ ∈ Z I

>0 from the
RMP and forbid their re-generation.

end if
until y∗ = 0
return λ∗

Recovery algorithm

By definition of WSI compatible pair, δ is strictly positive.

The assigments λ∗

j ← λ∗

j − δ, y∗

k ← y∗

k − δ and λ∗

j′ ← λ∗

j′ + δ do not

affect primal feasibility of Aλ̃ + Ey = b, since aj′ = aj − uh + t,
ehk = −1 and esk = 1 ∀s ∈ S.

They do not affect the value of zP̃ because cj = cj′ = 1.

The inner loop succeeds when a feasible primal solution with y∗ = 0
is found. Otherwise, there must exist an active WSI (h← t ,S) for
which no compatible j ∈ J exists.

When this happens, all WSIs involving row h are deleted and the
master problem is reoptimized.

After at most |I| iterations of the outer loop, the recovery algorithm
terminates with an optimal solution λ∗.

