
Column generation Convexification Decomposition Algorithm implementation

Column generation
Operational Research Complements

Giovanni Righini

Università degli Studi di Milano

Column generation Convexification Decomposition Algorithm implementation

Column generation

Column generation is a technique to solve LP models with a very
large set N of columns (variables):

z = min{cx : Ax = b, x ∈ ℜ
|N|
+ }.

The main idea of column generation is to solve a restricted LP, where

only a (small) subset N ⊆ N of columns are in the tableau and can be

selected as basic:

zRM = min{cx : Ax = b, x ∈ ℜ
|N|
+ , xj = 0 ∀j ∈ N\N}.

When we find an optimal solution x∗, we also know the optimal dual

solution λ∗ and we can ask the question (pricing problem):

Is there a column j ∈ N\N not currently in the tableau, such that its

reduced cost cj in the current basic solution is negative?

Column generation Convexification Decomposition Algorithm implementation

Column generation

The answer depends on coefficients A and c (i.e. the “structure” of
the column), because

c j = cj −
m
∑

i=1

aijλi .

• If “No”: x∗ is optimal for the original LP.

• If “Yes”: insert column j into N and reoptimize (dual simplex).

The algorithm proceeds by alternating two steps:

• solution of the LP with the column subset N (restricted master
problem)

• search for negative reduced cost columns (without explicitly
enumerating all of them): integer optimization sub-problem

(pricing sub-problem).

Column generation Convexification Decomposition Algorithm implementation

Why should we use CG?

The main reasons for applying column generation to LP problems are

• the LP has a huge number of columns (variables): for instance,

when variables have many indices.

• the LP has a huge number of rows (constraints): the computing
time spent by the simplex algorithm usually depends more on the

number of constraints than on the number of variables: so, we

solve the dual.

• the LP has a block-diagonal structure, so that it can be

decomposed into independent sub-problems when linking
constraints are considered separately.

• the LP arise as the linear relaxations of an extended formulation
of a combinatorial problem, with an exponential number of

variables.

Column generation Convexification Decomposition Algorithm implementation

Minkowsky and Weil theorem

Theorem (Minkowsky and Weil). Every point x in a polytope P can
be obtained as a convex combination of its extreme points x (u).

∀x ∈ P , ∃θ ≥ 0 : x =

p
∑

u=1

θux (u),

p
∑

u=1

θu = 1.

Q

P

D

3/5

2/5

3/4

1/4
A

B

C

Q = 2
5
A + 3

5
C

P = 3
4
Q + 1

4
B = 3

4
(2

5
A + 3

5
C) + 1

4
B = 6

20
A + 5

20
B + 9

20
C.

Column generation Convexification Decomposition Algorithm implementation

Extended formulation

If P is the convex hull of a discrete set X of integer points,

∀x ∈ X , ∃θ ≥ 0 : x =

p
∑

u=1

θux (u),

p
∑

u=1

θu = 1.

In particular, this holds for the vertices of the polyhedron, i.e. the
extreme points x (u) of P = conv(X).

Finding the optimal solution of an ILP

z∗ = min
x∈Zn

+

{cx : x ∈ X} where X = {x ∈ Zn
+ : Ax ≥ b}

is equivalent to solving the LP

z∗ = min
x∈ℜn

+

{cx : x ∈ conv(X)} = min
θ∈ℜp

+

{cx : x =

p
∑

u=1

θux (u),

p
∑

u=1

θu = 1}.

Column generation Convexification Decomposition Algorithm implementation

Convexification

If an ILP problem

z∗ = min
x∈Zn

+

{cx : Ax ≥ b}

is such that the polyhedron {x ∈ ℜn
+ : Ax ≥ b} has integer extreme

points, then the problem has got the integrality property (IP) and it

can be solved as an LP problem.

When we solve an ILP without the IP to optimality, we are

convexifying it, because we are finding the optimal solution of the LP

whose polyhedron is the convex hull of the feasible integer solutions.

Given an ILP without the IP it often happens that

• we do not know how to convexify the whole ILP;

• we know how to convexify some sub-problem.

Column generation Convexification Decomposition Algorithm implementation

Linking and complicating constraints

We can rewrite an ILP

z∗ = min
x∈Zn

+

{cx : Ax ≥ b},

as

z∗ = min
x∈Zn

+

{cx : Dx ≥ e,Fx ≥ g}.

There are two reasons for this:

• we are able to convexify X = {x ∈ Zn
+ : Fx ≥ g};

in this case Dx ≥ e are complicating constraints;

• X = {x ∈ Zn
+ : Fx ≥ g} can be decomposed into independent

sub-problems; in this case Dx ≥ e are linking constraints;

• both things may occur simultaneously.

Column generation Convexification Decomposition Algorithm implementation

Complicating constraints

After removing a set of complicating constraints from an ILP, we may

be left with

• a sub-problem with the IP: nothing to convexify; the problem is

defined by its ideal formulation.
We cannot improve the dual bound given by the linear relaxation

of the ILP; however, it may be fast to solve (possibly faster than

by the simmplex algorithm).

• a sub-problem without the IP: if we can solve it to optimality, the

result is the same as if we had solved the linear relaxation of the
ideal formulation of the sub-problem.

We can improve the dual bound given by the linear relaxation of

the original ILP.

Column generation Convexification Decomposition Algorithm implementation

Complicating constraints

Example 1: the Capacitated Shortest Path Problem (CSPP).

Given a digraph G = (N ,A) with

• a cost cij ∈ ℜ+ ∀(i, j) ∈ A

• a weight wij ∈ ℜ+ ∀(i, j) ∈ A

find a directed path from a given node s ∈ N to a given node t ∈ N ,

such that

• (constraint:) its weight does not exceed a given threshold W ,

• (objective:) its cost is minimum.

Column generation Convexification Decomposition Algorithm implementation

Complicating constraints

We use arc variables xij ∈ {0, 1} ∀(i, j) ∈ A:

minimize z∗ =
∑

(i,j)∈A

cijxij

s.t.
∑

j∈N

xij =
∑

j∈N

xji ∀i ∈ N\{s, t}

∑

j∈N

xsj =
∑

i∈N

xit = 1

∑

(i,j)∈A

wijxij ≤ W

x ∈ B|A|

If the complicating constraint
∑

(i,j)∈A wijxij ≤ W is relaxed, the

remaining ILP has the IP (it can be solved as an LP).

Column generation Convexification Decomposition Algorithm implementation

Complicating constraints

Example 2: the Integer Knapsack Problem with a Demand Constraint

(KPDC).

Given

• a set N of items,

• a value vj ∀j ∈ N ,

• two weights w ′
j ,w

′′
j ∀j ∈ N ,

• two thresholds W ′ and W ′′,

select a suitable integer number of items of each type j ∈ N such that

• (capacity constraint:) their total weight according to w ′ does not
exceed W ′,

• (demand constraint:) their total weight according to w ′′ is not

smaller than W ′′,

• (objective:) their total value is maximum.

Column generation Convexification Decomposition Algorithm implementation

Complicating constraints

We use integer variables xj ∀j ∈ N :

maximize z =
∑

j∈N

vjxj

s.t.
∑

j∈N

w ′
j xj ≤ W ′

∑

j∈N

w ′′
j xj ≥ W ′′

x ∈ Z
|N |
+ .

If the complicating constraint
∑

j∈N w ′′
j xj ≥ W ′′ is relaxed, the

remaining ILP is an Integer Knapsack Problem, that does not have
the IP.

Column generation Convexification Decomposition Algorithm implementation

Convexification (1)

x2

x1

P

0 1 2 3 4

1

2

3

4

0

z

Column generation Convexification Decomposition Algorithm implementation

Convexification (2)

x2

x1

Q

0 1 2 3 4

1

2

3

4

0

z

x2

x1

R

0 1 2 3 4

1

2

3

4

0

z

Column generation Convexification Decomposition Algorithm implementation

Convexification (3)

x2

x1

Q

0 1 2 3 4

1

2

3

4

0

z

x2

x1

0 1 2 3 4

1

2

3

4

0

conv(Q)

Q

z

Column generation Convexification Decomposition Algorithm implementation

Convexification (4)

x2

x1

P

0 1 2 3 4

1

2

3

4

0

z

x2

x1

0 1 2 3 4

1

2

3

4

0

P’=conv(Q)∩R

z

Column generation Convexification Decomposition Algorithm implementation

Extended formulation

Instead of solving

z∗ = min{cx : Dx ≥ e,Fx ≥ g, x ∈ Zn
+} = min{cx : Dx ≥ e, x ∈ Q}

where Q = {x ∈ Zn
+ : Fx ≥ g}, we solve

z∗ = min{cx : Dx ≥ e, x ∈ conv(Q)}.

To obtain this, we use the extended formulation, based on the
substitution

x =

p
∑

u=1

θux (u)

where x (u) is the generic extreme point of conv(Q).

Column generation Convexification Decomposition Algorithm implementation

Extended formulation

Compact formulation:

z∗
P = min

x∈Zn
+

{

cx : Dx ≥ e, x ∈ Q} where Q = {x ∈ Zn
+ : Fx ≥ g

}

Extended formulation (master problem):

z∗
MP = min

θ∈Bp

{

p
∑

u=1

cx (u)θu :

p
∑

u=1

Dx (u)θu ≥ e,

p
∑

u=1

θu = 1

}

.

Linear relaxation of the extended formulation:

z∗
LMP = min

θ∈ℜp
+

{

p
∑

u=1

cx (u)θu :

p
∑

u=1

Dx (u)θu ≥ e,

p
∑

u=1

θu = 1

}

.

Column generation Convexification Decomposition Algorithm implementation

Extended formulation

The extended formulation of a (sub-)problem

z∗
MP = min

θ∈Bp
+

{

p
∑

u=1

cx (u)θu :

p
∑

u=1

Dx (u)θu ≥ e,

p
∑

u=1

θu = 1

}

is counter-intuitive:

• it uses a combinatorial number of variables θ, instead of a

polynomial number of variables x ;

• it is still an ILP problem, as hard as the original ILP.

However, its linear relaxation

z∗
LMP = min

θ∈ℜp
+

{

p
∑

u=1

cx (u)θu :

p
∑

u=1

Dx (u)θu ≥ e,

p
∑

u=1

θu = 1

}

can be tighter than the linear relaxation of the original problem,

because Q is replaced by conv(Q).

Column generation Convexification Decomposition Algorithm implementation

Column generation

Extended formulation ⇒ too many variables ⇒ column generation.

Linear Restricted Master Problem (LRMP). Find an optimal convex

combination of the available columns:

z∗
LRMP = min

θ∈ℜp′

+

p′

∑

u=1

cx (u)θu :

p′

∑

u=1

Dx (u)θu ≥ e,

p′

∑

u=1

θu = 1

.

Pricing sub-problem. Find a column with minimum reduced cost:

c
∗ = min

x∈Zn
+

{(c − λD)x − µ : Fx ≥ g} .

where

• λ is the vector of dual variables of the complicating constraints;

• µ is the dual variable of the convexity constraint.

Column generation Convexification Decomposition Algorithm implementation

Example (IKPDC)

Linear Restricted Master Problem (LRMP):

z∗
LRMP = max

θ∈ℜp′

+

p′

∑

u=1

∑

j∈N

vjx
(u)
j θu :

p′

∑

u=1

∑

j∈N

w ′′
j x

(u)
j θu ≥ W ′′,

p′

∑

u=1

θu = 1

.

Pricing sub-problem:

c
∗ = max

x∈Z
|N|
+

∑

j∈N

(vj − λw ′′
j)xj − µ :

∑

j∈N

w ′
j xj ≤ W ′

.

where λ is the dual variable of the complicating constraint

and µ is the dual variable of the convexity constraint.

Column generation Convexification Decomposition Algorithm implementation

CG iterations: geometric interpretation

Column generation Convexification Decomposition Algorithm implementation

Decomposition

Consider an ILP whose constraint set can be partitioned into two sets
of constraints:

z∗ = min
x∈Zn

+

{cx : Dx ≥ e,Fx ≥ g}

such that one of them has got a block-diagonal structure:

Fx ≥ g ⇔ F (k)x (k) ≥ g(k) ∀k ∈ K ,

where x (k) are the variables corresponding to the columns of block
k ∈ K .

..... L1 L2 L3 Ln

A1

A2

A3

An

.....

(�)

Column generation Convexification Decomposition Algorithm implementation

Decomposition

Now the ILP can be rewritten as:

z∗ = min
x∈Zn

+

{

cx : Dx ≥ e,F (k)x (k) ≥ g(k) ∀k ∈ K
}

.

Constraints Dx ≥ e are linking constraints.

Assume we have an algorithm A able to optimize the sub-problem

∀k ∈ K :
z∗

k = min
x(k)∈Z

|K |
+

{

cx (k) : F (k)x (k) ≥ g(k)
}

.

Then A allows us to convexify each instance of the sub-problem.

Column generation Convexification Decomposition Algorithm implementation

Decomposition

We define the set of the integer solutions

Xk =
{

x (k) ∈ Z
|K |
+ : F (k)x (k) ≥ g(k)

}

∀k ∈ K

and we can convexify the sub-problem:

z∗
k = min

x(k)∈Z
|K |
+

{

cx (k) : F (k)x (k) ≥ g(k)
}

=

= min
x(k)∈Z

|K |
+

{

cx (k) : x ∈ Xk

}

=

= min
x(k)∈ℜ

|K |
+

{

cx (k) : x ∈ conv(Xk)
}

.

Column generation Convexification Decomposition Algorithm implementation

Decomposition: the GAP

Example: the Generalized Assignment Problem (GAP).

Given

• a set J of jobs with weights wj ∀j ∈ J ,

• a set M of machines with capacities bm ∀m ∈ M,

• an assignment cost cjm for each pair,

find an assignment of jobs to machines such that

• (assignment constraint:) each job is assigned to a machine,

• (capacity constraint:) the total weight of the jobs assigned to the

same machine does not exceed the capacity of the machine,

• (objective:) the total assignment cost is minimized.

Column generation Convexification Decomposition Algorithm implementation

Decomposition: the GAP

We use assignment variables xjm ∈ {0, 1} ∀(j,m) ∈ J ×M:

minimize z∗
P =

∑

j∈J

∑

m∈M

cjmxjm

s.t.
∑

m∈M

xjm = 1 ∀j ∈ J

∑

j∈J

wjxjm ≤ bm ∀m ∈ M

x ∈ B|J |×|M|

We identify
∑

m∈M xjm = 1 ∀j ∈ J as linking constraints and we

convexify the Binary Knapsack sub-problem for each machine

z∗
m = min

x∈B|J |

∑

j∈J

cjmxjm :
∑

j∈J

wjxjm ≤ bm

.

Column generation Convexification Decomposition Algorithm implementation

Example (GAP)

Let x (um) the generic extreme point of conv(Xm),

where Xm =
{

x ∈ B|J | :
∑

j∈J wjxjm ≤ bm

}

and let pm be the number of such extreme points.

The extended formulation of the GAP is:

z∗
MP = min

θ(m)Bpm ∀m∈M
{
∑

m∈M

pm
∑

u=1

c(um)θ
(m)
u :

∑

m∈M

pm
∑

u=1

x
(um)
j θ

(m)
u = 1 ∀j ∈ J ,

pm
∑

u=1

θ
(m)
u = 1 ∀m ∈ M}.

where

• x
(um)
j indicates whether job j is assigned to machine m in the

extreme point u of machine m.

• c(um) is the cost of the extreme point u of machine m.

Column generation Convexification Decomposition Algorithm implementation

Example (GAP)

Let λj be the dual variable of each assignment constraint
∑

m∈M

∑pm

u=1 x
(um)
j θ

(m)
u = 1 ∀j ∈ J .

Let µm be the dual variable of each convexity constraint
∑pm

u=1 θ
(m)
u = 1 ∀m ∈ M.

Then the pricing sub-problem for each machine m ∈ M is:

z∗
m = min

x∈B|J |

∑

j∈J

(cjm − λj)xjm − µ :
∑

j∈J

wjxjm ≤ bm

.

Column generation Convexification Decomposition Algorithm implementation

The master problem

Primal feasibility of the RLMP must be guaranteed: dummy columns

with very high cost ensuring feasibility.

Ensuring primal boundedness is not needed: if the RLMP is

unbounded, the whole LMP also is.

As negative reduced cost columns are inserted into the RLMP, some
non-basic columns with “large” positive reduced cost can be deleted

from it.

The master problem can be further strenghened by cutting planes:
branch-and-cut-and-price.

Column generation Convexification Decomposition Algorithm implementation

The pricing problem

The pricing sub-problem is the optimization problem we are able and

willing to convexify: we need an exact optimization algorithm for it.

Keep a “pool” of known columns, where negative reduced cost

columns can be found before pricing new ones.

Generate several columns with negative reduced cost for every
pricing iteration (multiple pricing).

Generate columns with negative reduced cost in a heuristic way, as

far as possible. Only when heuristic pricing fails, resort to exact
pricing.

Column generation Convexification Decomposition Algorithm implementation

Bounding in branch-and-price

When

• the LRMP has been solved to optimality,

• the pricing algorithm states that no columns with negative

reduced cost can be produced for any sub-problem,

we have the optimality guarantee of the solution of the LMP.

Its value z∗
LMP is a valid lower bound, but it is achieved only at the end

of column generation.

However, one can use the dual values associated with the constraints

of the master problem as Lagrangean multipliers to compute a valid
lower bound at any point during column generation.

Linear programming can be seen as an alternative to the sub-gradient

algorithm to provide dual values in a Lagrangean relaxation algorithm.

Column generation Convexification Decomposition Algorithm implementation

Bounding in branch-and-price

The value of z∗
RLMP (column generation) is monotone and

z∗
RLMP ≥ z∗

LMP .

The value of z∗
LR (Lagrangean relaxation) is not monotone in general

and z∗
LR ≤ z∗

LMP .

The two values tend to coincide as far as CG goes on, but there may
be a “tailing-off” effect: many CG iterations are needed for very small

improvements of the two bounds.

It is common practice to stop CG when the gap between the two
bounds is “small”.

It is also possible to use stabilization techniques, when the master

problem is degenerate.

Column generation Convexification Decomposition Algorithm implementation

Branching in branch-and-price

The optimal solution of the LMP can be fractional.

To achieve integrality, we must branch.

Cutting planes algorithms (row generation) allow producing an integer

optimal solution without branching.

It is recommended not to branch on the binary θ variables.
It is more recommendable to branch on the original variables x .

Ad hoc branching strategies can be devised for each particular

problem. If possible, they should not change the structure of the
pricing sub-problem (robust branching).

Column generation Convexification Decomposition Algorithm implementation

Heuristic branch-and-price

The columns in the RLMP can also be used as building blocks for a
math-heuristic.

Master-problem-based heuristic n.1 (one shot):

• generate columns for some time;

• impose binary restrictions on the θ variables and solve the

resulting discrete RMP.

Master-problem-based heuristic n.2 (iterative):

• generate columns for some time;

• solve the LRMP, obtaining a fractional optimal solution;

• round up to 1 the θ variable with the largest value;

• update the right-hand-sides of the constraints and repeat until an

integer and feasible solution is obtained.

Both are easy to implement with ILP solvers.

	Column generation
	Column generation for LP

	Convexification
	Complicating constraints

	Decomposition
	Decomposition

	Algorithm implementation
	Algorithms for CG
	Algorithms for branch-and-price

