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Linear programming

Consider an optimization problem P such as

minimize {cT x : x ∈ F (P)}

where x a solution vector, c is a cost vector and F (P) indicates the
set of feasible solutions

F (P) ⊂ {x ∈ ℜn : x ≥ 0}.

Assume, for simplicity that P is bounded.
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Bounding

To solve NP-hard optimization problems, it is common to resort to
implicit enumeration techniques, which in turn rely upon relaxations,
providing valid dual bounds.

These relaxations can be defined in many different ways. For several
problems characterized by a combinatorial structure it happens that
many possible relaxations can provide a dual bound.

For instance an ATSP can be relaxed into a linear assignment
problem as well as into a shortest 1-arborescence problem.

We can choose one of the relaxations or we can solve all of them and
select the tightest lower bound we obtain. In both cases, however, the
information coming from the other relaxations is lost.
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Additive bounds

Let L(1),L(2), . . . ,L(r) be r lower bounding algorithms available for
problem P.

Assume that each L(k) for k = 1, . . . , r , when executed on an
instance of P with cost vector c, return a lower bound value δ(k) and
vector of reduced costs c(k) such that

c(k) ≥ 0

δ(k) + c(k)T x ≤ cT x

for any x ∈ F (P).

The additive bounding technique generates a sequence of instances
of P, each obtained from the previous one by considering the
corresponding reduced costs, computed each time with a different
lower bounding procedure.
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Additive bounds

Initially, procedure L(1) is executed on problem P, yielding δ(1) and
c(1).
Then we consider the problem R(1):

minimize z1 = δ(1) + c(1)T x s.t. x ∈ F (P).

Problem R(1) is a relaxation of P, because:

• the feasible region is F (P) in both cases;

• z1 = δ(1) + c(1)T x ≤ cT x ∀x ∈ F (P)

Problem R(1) is a residual instance of P.
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Additive bounds

Since the optimal value of z1 is non-negative, any lower bound of z1

can be added to δ(1) to obtain another (stronger) valid lower bound for
P.

For this purpose, we can execute L(2) to solve R(1), obtaining δ(2) and
c(2).

So we solve the problem R(1):

minimize z1 = δ(1) + c(1)T x s.t. x ∈ F (P).

A new relaxation R(2) is obtained since

z2 = δ(1) + δ(2) + c(2)T x ≤ cT x ∀x ∈ F (P).
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Additive bounds

The technique can be iterated for all the independent lower bounding
techniques that are available for P.

The lower bound monotonically improves at each iteration.

It may be useful to perform some subgradient optimization iterations
in one or more bounding procedures.
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Variable fixing

After the execution of the last lower bounding procedure L(r) we
obtain a lower bound

δ =

r∑

k=1

δ(k)

and a vector of non-negative reduced costs c(r). We know that

δ + c(r)T x ≤ z∗.

If we know a heuristic solution of P whose cost is z ≥ z∗, then

δ + c(r)T x ≤ z.

In particular, if a binary variable xj is such that δ + c(r)
j > z, then we

can fix xj to 0.
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Computing reduced costs

For this technique to work, we need lower bounding procedures that
do not compute only lower bounds but also reduced costs, that are
needed for the next iteration.

This can be obtained in several ways:

• Linear Programming relaxation

• Variable decomposition

• Disjunction

• Lagrangean relaxation
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LP relaxation

Let assume that F (P) ⊂ {x ∈ ℜn : x ≥ 0,Ax ≥ b}.
Then a relaxation of P is

minimize zLP = cT x : Ax ≥ b, x ≥ 0.

To compute the optimal value δ and the reduced costs, we solve the
dual problem

maximize wLP = uT b : c − uT A ≥ 0, u ≥ 0.

Let u∗ be an optimal dual solution, so that δ = u∗T b.
The corresponding reduced costs are given by c = c − u∗T A.

When the dual problem does not have a unique optimal solution, u∗

can be chosen in order to determine the reduced costs which allow
the next bounding procedures to be more effective.

Heuristic dual solutions can also be used; they are likely to yield
weaker lower bounds at the current step, but they can provide
reduced costs that yield stronger lower bounds in later iterations.
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Variable decomposition

Let us suppose that we can define q sets Y (1),Y (2), . . . ,Y (q) with

Y (h) ⊆ {y ∈ ℜn : y ≥ 0} ∀h = 1, . . . , q

such that each feasible solution x ∈ F (P) can be decomposed into q
column vectors y (1), y (2), . . . , y (q) as

x =

q∑

h=1

y (h)

with y (h) ∈ Y (h) ∀h = 1, . . . , q.

For instance, let F (P) the set of all Hamiltonian circuits in a digraph.
Then every feasible solution can be decomposed into q = 2 parts: a
path from s to t and a path from t to s, being s and t two distinct
nodes of the digraph. So Y (1) would be the set of all s − t paths and
Y (2) would be the set of all t − s paths.
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Variable decomposition

The initial problem P can be reformulated as

minimize z = cT
q∑

h=1

y (h) : y (h) ∈ Y (h) ∀h = 1, . . . , q,
q∑

h=1

y (h) ∈ F (P).

We can define a partial problem for each h = 1, . . . , q as

minimize zh = cT y (h) : y (h) ∈ Y (h).

This decomposition is useful when a lower bounding procedure is
available for the partial problem, producing a lower bound θ(h) and the
required reduced costs vector γ(h) ≥ 0, such that

θ(h) + γ(h)T y (h) ≤ cT y (h) ∀y (h) ∈ Y (h).
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Variable decomposition

In this case we can define the relaxed problem

minimize zER =

q∑

h=1

θ(h)+

q
min
h=1

{γ(h)T y (h)} : y (h) ∈ Y (h) ∀h = 1, . . . , q,
q∑

h=1

y (h) ∈ F (P).

This problem can be further relaxed into

minimize zR = δ+
q

min
h=1

{cT y (h)} : y (h) ∈ Y (h) ∀h = 1, . . . , q,
q∑

h=1

y (h) ∈ F (P),

where δ =
∑q

h=1 θ
(h) and c j = minh=1,...,q{γ

(h)
j } ∀j = 1, . . . , n.

Finally the relaxed problem can be restated as

minimize zR = δ + min
h=1,...,q

{cT x} : x ∈ F (P).

So, δ is a valid lower bound for the initial problem P and c is a
corresponding vector of reduced costs.
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Disjunction

Let us suppose that we can define p sets W (1),W (2), . . . ,W (p) with

W (h) ⊆ {x ∈ ℜn : x ≥ 0} ∀h = 1, . . . , p

such that

F (P) ⊆

p⋃

h=1

W (h).

This means that for every x ∈ F (P) the following disjunction holds:

(x ∈ W (1)) ∨ (x ∈ W (2)) ∨ . . . ∨ (x ∈ W (p)).
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Disjunction

We can formulate a restricted problem for each h = 1, . . . , p:

minimize zh = cT x : x ∈ F (P) ∩ W (h).

This is useful when a lower bounding procedure is available for the
reduced problem, producing a lower bound θ(h) of zh and the
corresponding reduced costs vector γ(h) ≥ 0, such that

θ(h) + γ(h)T x ≤ cT x ∀x ∈ F (P) ∩ W (h).
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Disjunction

Then a valid lower bound for P is

δ = min
h=1,...,p

{θ(h)}

and the corresponding reduced costs are given by

cj = min
h=1,...,p

{γ
(h)
j } ∀j = 1, . . . , n.

In fact, for any feasible solution x ∈ W (h) we have

δ + cT x ≤ θ(h) + γ
(h)T
j x ≤ cx .
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Lagrangean relaxation

Suppose that F (P) ⊂ {x ∈ ℜn : Ax ≥ b} with b ∈ ℜm.
Let ũ ∈ ℜm be a vector of non-negative multipliers, defining the
Lagrangean relaxation in which the cost vector is c̃ = c − ũT A.
Then

ũT b + c̃T x ≤ cT x ∀x ∈ F (P).

Now assume a lower bounding procedure is available for problem P
with cost vector c̃, providing a lower bound θ and the corresponding
reduced cost vector γ. Then

ũT b + (θ + γT x) ≤ ũT b + c̃T x ≤ cT x ∀x ∈ F (P).

Therefore δ = ũT b + θ is a valid lower bound for P defined by cost
vector c and γ is the corresponding reduced cost vector.
A convenient value for ũ can be determined by iterating the procedure
to search for a large value of δ, with subgradient optimization
techniques.
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The ATSP with Precedence Constraints

Given a digraph G = (N,A) with n nodes, a cost function c ≥ 0 on the
arcs and a set of precedence relations defined through node subsets
P2,P3, . . . ,Pn, find a minimum cost Hamiltonian circuit starting from
node 1 and visiting all nodes in Ph before node h, for each
h = 2, . . . , n.

minimize z =

n∑

i=1

n∑

j=1

cijxij

s.t.
n∑

i=1

xij = 1 ∀j = 1, . . . , n

n∑

j=1

xij = 1 ∀i = 1, . . . , n

∑

i∈N\S

∑

j∈S

xij ≥ 1 ∀S ⊂ N : 1 6∈ S,S 6= ∅

precedence constraints for node h ∀h = 2, . . . , n

xij ≥ 0, integer ∀(i, j) ∈ A
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Relaxations from LP

Any relaxation for the ATSP is also a relaxation for the ATSP with PC.
In particular:

• the Shortest Spanning 1-Arborescence Problem

• the Linear Assignment Problem (Minimum Cost Bipartite
Matching Problem)

are two combinatorial relaxations of the ATSP, which possess the
integrality property, so that they can be solved as LP problems.
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Relaxation from variable decomposition

Relaxations for the ATSP neglect precedence constraints. To take
them into account, consider a pair of distinct nodes a and b different
from 1, such that a ∈ Pb. For each node h = 2, . . . , n, define the set
Sh = {i ∈ N : h ∈ Pi} of its successors.

Every feasible solution can be decomposed into three paths:

• a path from 1 to a not visiting any node in Sa;

• a path from a to b not visiting any node in Pa ∪ Sb ∪ {1}

• a path from b to 1 not visiting any node in Pb.

This generates three partial problems, all of them being instances of
the shortest path problem on a reduced digraph.
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Relaxation from disjunction

Let a, b and r be three distinct nodes in N. In any Hamiltonian circuit
two paths exist, one from a to b and the other from b to a and one of
them does not visit r .

This generates two restricted problems (for each chosen triplet),
requiring to compute a shortest path between two nodes and not
visiting a third node.

This is equivalent to the problem with precedences where r is the
starting vertex and a must precede b or vice versa.
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Step 1: assignment

Not all nodes are reachable from node 1.
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Step 2: arborescence

Consider the triplet (6, 8, 9). Any feasible solution must contain either
a path from 6 to 8 or a path from 8 to 6 not visiting 9.
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Step 3: disjunction

A Hamiltonian tour now exists but 3 is visited before 8.
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Step 4: variable decomposition

Assume we have precedence constraints such that:
P8 = {5, 7}, S8 = {3, 10, 12}.
P3 = {5, 7, 8}, S3 = {10}.
Every feasible solution can be decomposed into three paths:

• a path from 1 to 8 not visiting any node in S8 (i.e. not visiting
{3, 10, 12});

• a path from 8 to 3 not visiting any node in P8 ∪ S3 ∪ {1} (i.e. not
visiting {1, 5, 7, 10});

• a path from 3 to 1 not visiting any node in P3 (i.e. not visiting
{5, 7, 8}).
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Step 4: variable decomposition
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