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The TSP

The Traveling Salesman Problem (TSP) is the problem of finding the

minimum cost Hamiltonian cycle in an edge-weighted undirected
graph.

Data. A graph G = (V ,E) and a weight function c : E 7→ ℜ (wlog we

can assume c ≥ 0).

Variables. A binary variable xe for each edge e ∈ E .

Objective. Minimize the total cost of the selected edges:
∑

e∈E cexe.



The TSP

The constraints can be stated in several forms, providing different
lower bounds when the continuous linear relaxation is solved.

A possibility is to impose:

• Degree constraints: every vertex must have degree equal to 2.

∑

e∈δ(i)

xe = 2 ∀i ∈ V

where δ(i) indicates the subset of edges with an endpoint in

vertex i ∈ V .

• Connectivity constraints: no subtours are allowed.

∑

e∈E(S)

xe ≤ |S| − 1 ∀S ⊆ V\{r},S 6= ∅

where E(S) indicates the subset of edges in the subgraph

induced by S and vertex r ∈ V is chosen arbitrarily.



Lower bounding the TSP

The TSP is NP-hard.

Even its linear relaxation can be hard to compute, because of the

exponential number of subtour elimination constraints

∑

e∈E(S)

xe ≤ |S| − 1 ∀S ⊆ V\{r},S 6= ∅

that are needed to impose the connectivity of the solution.

Held and Karp (1970): procedure to compute the same lower bound

that could be achieved from the linear relaxation, without the need of
solving an LP with an exponential number of constraints.

Idea: solve a suitable Lagrangean relaxation of the TSP, such that the

subproblem requires to compute an optimal connected subset of
edges that can be found with little computational effort: a 1-tree.



Degree constraints

The degree constraints
∑

e∈δ(i) xe = 2 ∀i ∈ V can be replaced by an

equivalent reformulation

{ ∑

e∈δ(i) xe = 2 ∀i ∈ V\{r}
∑

e∈V xe = n

where r ∈ V is arbitrarily selected.

Proof. The degree constraints are explicitly imposed ∀i 6= r . We must

prove that the reformulation implies
∑

e∈δ(i) xe = 2 also for i = r .

∑

e∈E

xe =
1

2

∑

i∈V

∑

e∈δ(i)

xe =
1

2

∑

i∈V\{r}

∑

e∈δ(i)

xe+
1

2

∑

e∈δ(r)

xe = (n−1)+
1

2

∑

e∈δ(r)

xe.

Hence
∑

e∈E xe = n implies
∑

e∈δ(r) xe = 2. �



The reformulated TSP

We obtain the following reformulation for the TSP.

minimize z =
∑

e∈E

cexe

s.t.
∑

e∈δ(i)

xe = 2 ∀i ∈ V\{r}

∑

e∈E

xe = n

∑

e∈E(S)

xe ≤ |S| − 1 ∀S ⊆ V\{r},S 6= ∅

xe ∈ {0, 1} ∀e ∈ E

Now we can compute the Lagrangean relaxation of the degree

constraints for all vertices but one.



The Lagrangean relaxation

The Lagrangean relaxation is the following problem.

minimize zLR(x , λ) =
∑

e∈E

cexe +
∑

i∈V\{r}

λi (
∑

e∈δ(i)

xe − 2)

s.t.
∑

e∈V

xe = n (1)

∑

e∈E(S)

xe ≤ |S| − 1 ∀S ⊆ V\{r},S 6= ∅ (2)

xe ∈ {0, 1} ∀e ∈ E (3)

Multipliers λ are unrestricted in sign.

Constraints (1)-(3) define spanning 1-trees.

Constraints (3) can be relaxed (integrality property).



The Lagrangean objective function

In the Lagrangean subproblem the objective is:

minimize zLR(x , λ)) =
∑

e∈E

cexe +
∑

i∈V\{r}

λi(
∑

e∈δ(i)

xe − 2)

Introducing λr = 0 for ease of notation, the Lagrangean objective

function can be rewritten as

minimize zLR(x , λ)) =
∑

[i,j]∈E

(cij + λi + λj)xij − 2
∑

i∈V

λi

The Lagrangean sub-problem can be restated on a graph G′(λ) with

modified costs c′
ij = cij + λi + λj ∀[i, j] ∈ E :

minimize zLR(x , λ)) =
∑

[i,j]∈E

c′
ijxij − 2

∑

i∈V

λi .



The modified costs graph

In graph G′(λ) the cost of all Hamiltonian tours is increased by the
same constant term 2

∑

i∈V λi .

Therefore their ranking remains unchanged.

In graph G′(λ) the cost T (x) of any spanning 1-tree is modified as

follows:

T ′(x , λ) = T (x) +
∑

i∈V

di(x)λi − 2
∑

i∈V

λi ,

where di (x) indicates the degree of each vertex i ∈ V .



The Lagrangean lower bound

In G′(λ)

• the optimal tour of cost C∗ remains optimal with cost

C′∗(λ) = C∗ + 2
∑

i∈V

λi

• the minimum cost spanning 1-tree provides a valid lower bound
to the cost of the optimal Hamiltonian cycle:

T ′∗(λ) ≤ C′∗(λ).

Therefore

C∗ = C′∗(λ)− 2
∑

i∈V

λi ≥ T ′∗(λ)− 2
∑

i∈V

λi = min
x
{zLR(x , λ)} = z∗

LR(λ).



Integrality gap

In general the gap between C∗ and z∗
LR(λ) cannot be closed.

Since the Lagrangean subproblem has the integrality property, the
best lower bound achievable in this way is the same lower bound that

would be obtained from linear relaxation, but it is obtained in a more

practical way, especially for large graphs.



Example
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A convex combination of these two 1-trees gives LB = 3, but C∗ = 4.



Computing a minimum cost spanning 1-tree

A spanning 1-tree is made by [two equivalent definitions]

• a tree spanning V and an additional edge;

• a tree spanning V\{r} and two additional edges incident to

vertex r for some arbitrary choice of r ∈ V .

Held and Karp used the second definition, with r = 1.

A minimum cost spanning tree can be computed in polynomial time

and so is a minimum cost spanning 1-tree.



The Lagrangean dual problem

For any choice of λ, z∗
LR(λ) is a valid lower bound of C∗.

To use the lower bound within a branch-and-bound algorithm, we are

interested in its tighest (i.e. maximum) value.

The Lagrangean dual problem is to maximize z∗
LR(λ) with a suitable

choice of λ.

For this purpose it is possible to use subgradient optimization (Held
and Karp (1970, 1971), Held, Wolfe and Crowder (1974)) with

improvements suggested by Helbig Hansen and Krarup (1974), Smith
and Thompson (1977), Jonker and Volgenant (1982).



Subgradient optimization

The multipliers λ are iteratively updated according to the following
rule:

λ
(k+1)
i ← λ

(k)
i + t(k)(d (k)(i) − 2) ∀i ∈ V ,

where d (k)(i) is the degree of vertex i ∈ V in the minimum cost 1-tree
computed at each iteration k .

If d (k)(i) > 2, the potential of vertex i is increased;
if d (k)(i) < 2, the potential of vertex i is decreased;

if d (k)(i) = 2, the potential of vertex i is left unchanged.

The step t is updated with the heuristic rule:

t(k) ←
π(k)(UB − z∗

LR(λ
(k)))

∑

i∈V (d
(k)(i)− 2)2

,

where UB is an upper bound and π(k) is a scalar decreasing with k .



Lower bound 1

Lower bound 1. A minimum cost 1-tree is a valid lower bound.

It is made by

• the minimum spanning tree T ∗;

• the minimum cost edge among those not in T ∗.

However, this is not the largest valid lower bound that can be
achieved from 1-trees.



Lower bounds 2 and 3

Lower bound 2 (Held and Karp, 1970). A valid lower bound can be
obtained by

• the minimum spanning tree T ∗
r computed after the deletion of

vertex r ;

• the two minimum cost edges with an endpoint in r .

It holds LB2 ≥ LB1 because LB2 is the cost of a 1-tree, while LB1 is
the cost of a minimum cost 1-tree.

Lower bound 3 (Helsgaun). A valid lower bound can be obtained by

• the minimum spanning tree T ∗;

• the minimum cost edge [i, j] incident to a leaf i of T ∗ and not in

T ∗.

It holds LB3 ≥ LB1 because LB3 is the cost of a 1-tree, while LB1 is

the cost of a minimum cost 1-tree.



Lower bounds 2 and 3

Both LB2 and LB3 depend on the selection of a vertex:

• LB2 depends on the vertex r which is selected not to be included

in the spanning tree;

• LB3 depends on the leaf i of T ∗ which is selected.

Then, both LB2 and LB3 can be maximized by selecting r or i in an

optimal way.

Let LB2∗ = maxr∈V{LB2(r)} and LB3∗ = maxi∈Leafs(T∗){LB3(i)}.

There is no guaranteed dominance between LB2∗ and LB3∗.


