A branch-and-bound algorithm for the optimization of satellite observations

Roberto Cordone

Federico Gandellini

Giovanni Righini

DTI - Università degli Studi di Milano (cordone,righini@dti.unimi.it)

An overview

- Nadir observations and Polar Operational Environmental Satellites (POES)
- The Swath-Segment Selection Problem (SSSP)
- An IP formulation
- Lagrangean bounding procedures:
- Subgradient ascent
- Lagrangean heuristic
- A branch-and-bound algorithm
- Experimental results (random instances)
- Small instances (branching performed)
\therefore Large instances (gap at the root node)

Satellite observations

Satellites observations have several applications

- Leading methereological observations (MetOp and COSMOSkyMed)
- Studying the Earth gravitational field and the geoid morphology (GOCE)
- Building extremely detailed maps (GLOBCOVER)

Satellite observations

Satellites observations have several applications

- Leading methereological observations (MetOp and COSMOSkyMed)
- Studying the Earth gravitational field and the geoid morphology (GOCE)
- Building extremely detailed maps (GLOBCOVER)

Satellite observations

Satellites observations have several applications

- Leading methereological observations (MetOp and COSMOSkyMed)
- Studying the Earth gravitational field and the geoid morphology (GOCE)
- Building extremely detailed maps (GLOBCOVER)

Satellite observations

Satellites observations have several applications

- Leading methereological observations (MetOp and COSMOSkyMed)
- Studying the Earth gravitational field and the geoid morphology (GOCE)
- Building extremely detailed maps (GLOBCOVER)

Nadir observations

Nadir is the point on the ground below the satellite

Nadir satellites

They are equipped with a fixed instrumentation nadir-oriented (pointing downwards)

- global coverage of the planet
- low-altitude transits
\Rightarrow neat and detailed images

POE satellites

POES: Polar Operational Environmental Satellites
The orbit is quasi-polar
Since the Earth rotates, the tracks of the transits cross each other forming a grid

The satellite transits in two directions

- descending \because ascending

Definitions (1)

Each satellite transit determines a strip named swath

Due to the intersections, each swath is divided into areas named segments

Definitions (2)

Each portion of land which must be acquired is named target.

The intersection between a segment and a target is named shard.

The Swath Segment Selection Problem

Define for each shard (i, j)

- a reward $r_{i j}$
- a horizontal $a_{i j}^{(h)}$ and a vertical $a_{i j}^{(v)}$ area

Objective function

- Acquire the most rewarding subset of images

Constraints

- Downlink capacities $d_{i}^{(h)}$ and $d_{j}^{(v)}$
- Acquire each shard at most once

References

There is almost no literature on the subject.

- Greedy algorithm

Muraoka H., Cohen R.H., Ohno T., Doi N.
ASTER observation scheduling algorithm SpaceOps 98, Tokio 1998

- Branch-and-bound based on linear relaxation, solved by max-flow (requires $a_{i j}^{(h)}=a_{i j}^{(v)} \propto r_{i j}$!)

Knight R., Smith B.
Optimal nadir observation scheduling
Fourth International Workshop on Planning and Scheduling for Space, Darmstadt 2004

An IP formulation for the SSSP

$$
\begin{array}{ll}
\max & z=\sum_{i=1}^{m} \sum_{j=1}^{n} r_{i j}\left(x_{i j}^{(h)}+x_{i j}^{(v)}\right) \\
& \sum_{j=1}^{n} a_{i j}^{(h)} x_{i j}^{(h)} \leq d_{i}^{(h)} \quad i=1, \ldots, m \\
& \sum_{i=1}^{m} a_{i j}^{(v)} x_{i j}^{(v)} \leq d_{j}^{(v)} \\
& j=1, \ldots, n \\
x_{i j}^{(h)}+x_{i j}^{(v)} \leq 1 & i=1, \ldots, m \\
& x_{i j}^{(h)}, x_{i j}^{(v)} \in\{0,1\} \quad i=1, \ldots, n \\
& i=1, \ldots, m
\end{array} \quad j=1, \ldots, n
$$

- $\quad x_{i j}^{(h)}=1$ if shard (i, j) is acquired along a horizontal transit
$x_{i j}^{(v)}=1$ if shard (i, j) is acquired along a vertical transit

Lagrangean relaxation

$$
\left.\left.\begin{array}{rl}
\max \quad & z=\sum_{i=1}^{m} \sum_{j=1}^{n} r_{i j}\left(x_{i j}^{(h)}+x_{i j}^{(v)}\right) \\
& \sum_{j=1}^{n} a_{i j}^{(h)} x_{i j}^{(h)} \leq d_{i}^{(h)} \quad i=1, \ldots, m \\
& \sum_{i=1}^{m} a_{i j}^{(v)} x_{i j}^{(v)} \leq d_{j}^{(v)} \\
& j=1, \ldots, n \\
& x_{i j}^{(h)}+x_{i j}^{(v)} \leq 1 \\
& x_{i j}^{(h)}, x_{i j}^{(v)} \in\{0,1\}
\end{array} \quad i=1, \ldots, m \quad j=1, \ldots, n\right\} m, m=1, \ldots, n\right\}
$$

Lagrangean relaxation

$$
\begin{array}{ll}
\max \quad z=\sum_{i=1}^{m} \sum_{j=1}^{n} r_{i j}\left(x_{i j}^{(h)}+x_{i j}^{(v)}\right)-\sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{i j} \underbrace{\left(x_{i j}^{(h)}+x_{i j}^{(v)}-1\right)} \\
\sum_{j=1}^{n} a_{i j}^{(h)} x_{i j}^{(h)} \leq d_{i}^{(h)} \quad i=1, \ldots, m \\
& \sum_{i=1}^{m} a_{i j}^{(v)} x_{i j}^{(v)} \leq d_{j}^{(v)} \quad j=1, \ldots, n \\
& x_{i j}^{(h)} \mid x_{i j}^{(v)} \leq 1 \\
& i=1, \ldots, m \quad j=1, \ldots, n
\end{array}
$$

The Lagrangean subproblem (1)

$$
\begin{aligned}
& L R: \max z=\sum_{i=1}^{m} \begin{cases}\max & \xi_{i}^{(\lambda)}=\sum_{j=1}^{n} r_{i j}^{(\lambda)} x_{i j}^{(h)} \\
\text { s.t. } \quad \begin{array}{l}
\sum_{j=1}^{n} a_{i j}^{(h)} x_{i j}^{(h)} \leq d_{i}^{(h)} \\
\\
x_{i j}^{(h)} \in\{0,1\} \quad j=1, \ldots, n
\end{array}\end{cases} \\
& +\sum_{j=1}^{n} \begin{cases}\max & \phi_{j}^{(\lambda)}=\sum_{i=1}^{m} r_{i j}^{(\lambda)} x_{i j}^{(v)} \\
\text { s.t. } & \begin{array}{l}
\sum_{i=1}^{m} a_{i j}^{(v)} x_{i j}^{(v)} \leq d_{j}^{(v)} \\
\\
x_{i j}^{(v)} \in\{0,1\} \quad i=1, \ldots, m
\end{array}\end{cases} \\
& +\sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{i j} \\
& \text { where } r_{i j}^{(\lambda)}=r_{i j}-\lambda_{i j}
\end{aligned}
$$

The Lagrangean subproblem (2)

$$
L R: \max z=\sum_{i=1}^{m} \xi_{i}^{*(\lambda)}+\sum_{j=1}^{n} \phi_{j}^{*(\lambda)}+\sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{i j}
$$

where

- $\xi_{i}^{*(\lambda)}$: optimum of a knapsack problem on horizontal swath i
- $\phi_{j}^{*(\lambda)}$: optimum of a knapsack problem for vertical swath j
- $\sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{i j}$ is constant (for a given multiplier matrix λ)

Lagrangean heuristic (1)

- Horizontal heuristic:

1. solve the "horizontal" knapsack problems to get $x_{i j}^{(h)}$
2. set $a_{i j}^{(v)}=+\infty$ to remove all shards acquired $\left(x_{i j}^{(h)}=1\right)$
3. solve the "vertical" knapsack problems to get $x_{i j}^{(v)}$

- Vertical heuristic:

1. solve the "vertical" knapsack problems to get $x_{i j}^{(v)}$
2. set $a_{i j}^{(h)}=+\infty$ to remove all shards acquired $\left(x_{i j}^{(v)}=1\right)$
3. solve the "horizontal" knapsack problems to get $x_{i j}^{(h)}$

- Choose the best among the two solutions

Lagrangean heuristic (2)

If $\lambda \neq 0$

- fix the shards acquired once in the Lagrangean solution
- reduce the downlink capacities
- solve the knapsack sub-problems considering
the shards acquired twice and those not acquired
- use Lagrangean rewards $r_{i j}^{(\lambda)}$ instead of $r_{i j}$

Real-valued rewards \Rightarrow Pisinger-Ceselli code

Subgradient ascent

Given a heuristic solution $x_{L B}$ of reward $z_{L B}$

1. Solve the Lagrangean subproblem $\Rightarrow x_{U B}$ (reward $\left.z_{U B}\right)$
2. Compute the current violation of the relaxed constraints

$$
s=x_{U B}^{(h)}+x_{U B}^{(v)}-1
$$

3. Compute the update step $T=t \frac{z_{U B}-L B}{| | s| |^{2}}$
4. Update the multipliers

$$
\lambda_{i j}^{\prime}=\left\{\begin{array}{clr}
0 & \text { if } & \lambda_{i j}+T s_{i j}<0 \\
\lambda_{i j}+T s_{i j} & \text { if } 0 \leq \lambda_{i j}+T s_{i j} \leq r_{i j} \\
r_{i j} & \text { if } & \lambda_{i j}+T s_{i j}>r_{i j}
\end{array}\right.
$$

The branching strategy

The branching shard (i, j) is the one with maximum $\lambda_{i j}$
(a) acquired in both directions in the Lagrangean solution

$$
\left(x_{L B_{i j}}^{(h)}=x_{L B_{i j}}^{(v)}=1\right)
$$

(b) not acquired in the Lagrangean solution $\left(x_{L B_{i j}}^{(h)}=x_{L B_{i j}}^{(v)}=0\right)$

Three subproblems

1. Horizontal acquisition: set $x_{i j}^{(h)}=1$ and $x_{i j}^{(v)}=0$
2. Vertical acquisition: set $x_{i j}^{(h)}=0$ and $x_{i j}^{(v)}=1$
3. No acquisition: set $x_{i j}^{(h)}=0$ and $x_{i j}^{(v)}=0$

The visit strategy is best-bound-first

The benchmark problems

Two size classes

- 10 small sizes (100 to 10000 shards)
- 4 large sizes (from 40000 to 250000 shards)

3 capacities
Three downlink capacities

- 20% or 30% or 40% of the total reward

Two ranges for rewards and areas:

- small (S): values in $[1 ; 100]$
- large (L): values in $[51 ; 100]$
$\left(a_{i j}^{(h)}=a_{i j}^{(v)}\right.$ or not)

8 areas
and rewards

336
instances

Experimental results (1)

Gap achieved in 30 minutes by CPLEX 8.0 and SSSP solver on small instances

Experimental results (2)

Gap achieved at the root node by CPLEX 8.0 and SSSP solver on large instances

Experimental results (3)

- SSSP solver
- required from 1 to 6 minutes on the SS instances
- was stopped after 30 minutes on the LL instances
- CPLEX 8.0
- always required more than 30 minutes
- could not solve the root node in 60 minutes on the 500 LL instances

Conclusions

- The problem is hard, even for rather small sizes
- Hardness increases from SS to SL, to LS and to LL instances (smaller range)
- The algorithm yields tighter bounds than CPLEX (both better heuristic solutions and better upper bounds)
- The Lagrangean relaxation is tighter than the linear one (though enhanced by general-purpose cuts)
- The branching proposed improves the bounds, while CPLEX branching most of the time does not

More on this...

...can be found in:
R. Cordone, F. Gandellini, G. Righini

Solving the swath segment selection problem through Lagrangean relaxation
Computers and O.R., to appear.

