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Relaxations

Given a problem P , such as:

minimize zP(x)

s.t. x ∈ XP

a problem R, such as:

minimize zR(x)

s.t. x ∈ XR

is a relaxation of P if and only if these two conditions hold:
• XP ⊆ XR

• zR(x) ≤ zP(x) ∀x ∈ XP .

As a consequence

z∗
R = zR(x∗

R) ≤ zR(x∗
P) ≤ zP(x∗

P) ≤ z∗
P .

The optimal value of the relaxation is not worse than the optimal
value of the original problem.



Lagrangean relaxation

Consider this problem P :

P) minimize zP(x) = cT x

s.t. A1x ≥ b1

A2x ≥ b2

x ≥ 0 integer

A Lagrangean relaxation of P is:

LR) minimize zLR(x , λ) =cT x + λT (b1 − A1x)

s.t. A2x ≥ b2

x ≥ 0 integer

Violations of the relaxed constraints are penalized in the objective
function by means of Lagrangean multipliers λ ≥ 0.



Is it a relaxation?

P) min zP(x) =cT x

s.t. A1x ≥ b1

A2x ≥ b2

x ≥ 0 integer

LR) min zLR(x , λ) =cT x + λT (b1 − A1x)

s.t. A2x ≥ b2

x ≥ 0 integer

1. Feasible region:

XP ⊆ XLR

because constraints A1x ≥ b1 have been relaxed.

2. Objective function:

∀x ∈ XP ⇒ A1x ≥ b1

∀λ ≥ 0

}

⇒ λT (b1 − A1x) ≤ 0 ⇒ zLR(x , λ) ≤ zP(x).



Variations

Lagrangean relaxation can also be applied to equality constraints. In
this case λ is unrestricted in sign.

Lagrangean relaxation can also be applied to non-linear constraints.



Lagrangean dual problem

For each choice of the Lagrangean multipliers λ ≥ 0 we obtain a
different instance, providing a different dual bound.

Example (Set Covering).

The Lagrangean dual problem asks for the optimal Lagrangean
multipliers λ∗:

LD) z∗
LD = max

λ≥0
{z∗

LR(λ) = min
x∈Q

{zLR(x , λ) = cT x + λT (b1 − A1x)}}.

This provides the best dual bound that can be obtained from the
Lagrangean relaxation of constraints A1x ≥ b1. But a duality gap may
still exist between z∗

LD and z∗
P .



Complementary slackness

If the optimal solution x∗ for problem LR is also feasible for P , this
does not guarantee that x∗ is optimal for P . This is true only if the
penalty terms are null.

Primal optimality requires both:
• feasibility: x∗ ∈ XP , i.e. A1x∗ ≥ b1

• complementarity: λ∗T (b1 − A1x∗) = 0.

When equality constraints are relaxed, the two conditions coincide.



Geometrical interpretation (1)

P)max zP(x) =7x1 + 2x2

s.t. −x1 + 2x2 ≤ 4

5x1 + x2 ≤ 20

− 2x1 − 2x2 ≤ −7

− x1 ≤ −2

x2 ≤ 4

x ∈ Z2
+

x2 

x1 

Q’ 

conv(Q) 

conv(X) 

X 



Geometrical interpretation (2)

LR)max zLR(x , λ) =

=(7+λ)x1 + (2−2λ)x2+4λ

s.t. 5x1 + x2 ≤ 20

− 2x1 − 2x2 ≤ −7

− x1 ≤ −2

x2 ≤ 4

x ∈ Z2
+

Q = {(2, 2), . . . , (4, 0)}.

Q′ is the polyhedron
defined by the linear
constraints of LR.

x2 

x1 

Q’ 

conv(Q) 

conv(X) 

X 



Primal viewpoint

The objective function zLR(x , λ) can be seen as...
• a function of x for λ fixed;
• a function of λ for x fixed.

Primal viewpoint.

For each given λ ≥ 0 we have

z∗
LR(λ) = max{zLR(x , λ) : x ∈ Q}.

Since constraints and objectives are linear:

z∗
LR(λ) = max{zLR(x , λ) : x ∈ conv(Q)}.

This is a linear programming problem, where the orientation of the
objective function depends on λ.



Primal viewpoint (example).

For 0 ≤ λ ≤ 1
9 →

→ z∗
LR(λ) = z((3, 4), λ) =

29 − λ.

For λ ≥ 1
9 →

→ z∗
LR(λ) = z((4, 0), λ) =

28 + 8λ.

Hence
z∗
LD = min

λ≥0{z∗
LR(λ)} =

z∗
LR( 1

9 ) = zLR((3, 4), 1
9 ) =

zLR((4, 0), 1
9 ) = 28 + 8

9 .
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Dual viewpoint

For each given x i ∈ Q, zLR(x i , λ) is an affine function of λ.
Hence z∗

LR(λ) = max{zLR(x i , λ) : x i ∈ Q, λ ≥ 0} is piecewise linear
and convex.

z∗
LR(λ) = zLR((3, 4), λ)

for 0 ≤ λ ≤ 1
9

z∗
LR(λ) = zLR((4, 0), λ)

for λ ≥ 1
9 .

Then

z∗
LD = min{z∗

LR(λ) : λ ≥ 0} =

= z∗
LR(

1
9
) = 28 +

8
9
.
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In our example when λ = 1
9 we have z∗

LR(λ) = 28 + 8
9 .

Consider the point x∗ = 8
9 (3, 4) +

1
9 (4, 0), which is a convex

combination of two integer points of Q. Point x∗ is the intersection
point between the segment joining the two integer points and the
relaxed constraint.

28 +
8
9
= zLR((3, 4),

1
9
) = zLR((4, 0),

1
9
) = zLR(x∗,

1
9
) =

= cT x∗ +
1
9
(4 − (−x∗

1 + 2x∗
2 )) = cT x∗.

In general:

z∗
LD = max{cT x : A1x ≤ b1, x ∈ conv(Q)}.

There exists a convex combination x∗ of points of Q, which satisfies
the relaxed constraints and such that the value of the objective
function in x∗ is equal to z∗

LD. Finding this convex combination which
satisfies the relaxed constraints and maximizes the original objective
function is a linear problem and it is the dual of the Lagrangean dual.



How good is Lagrangean relaxation?

Let define R = {x ∈ ℜn
+ : A1x ≤ b1}.

conv(XP) = conv(Q∩R) ⊆ conv(Q) ∩R

Hence: z∗
P = max{cT x : x ∈ XP} = max{cT x : x ∈ conv(XP)} =

max{cT x : x ∈ conv(Q∩R)} ≤ max{cT x : x ∈ conv(Q) ∩R} = z∗
LD.

The duality gap z∗
LD − z∗

P depends on the relationship between XP

and Q (and then R) and from the coefficients c.

z∗
LD = z∗

P ∀c if and only if conv(Q∩R) = conv(Q) ∩R.

In our example they do not coincide: z∗
LD = 28 + 8

9 and z∗
P = 28.



Lagrangean vs. linear relaxation

When the relaxed problem is a discrete one, it is interesting to
compare the dual bound z∗

LD that can be obtained from Lagrangean
relaxation with the dual bound z∗

LP which is (easily) obtained from
linear relaxation.

z∗
LD = z∗

LP ∀c

if all extreme points of the polyhedron {x ∈ ℜn
+ : A2x ≤ b2} are

integer, i.e. {x ∈ ℜn
+ : A2x ≤ b2} = conv(Q).

In our example this does not occur and we have

z∗
LP = 30 +

2
11

> z∗
LD = 28 +

8
9
.

If we relaxed all constraints but the last two, we would obtain a
feasible region {x ∈ ℜn

+ : A2x ≤ b2} with integer extreme points. In
that case we would have z∗

LP = z∗
LD = 30 + 2

11 .



Lagrangean vs. linear relaxation

Summing up:

conv(XP) ⊆ conv(Q) ∩R ⊆ {x ∈ ℜn
+ : Ax ≤ b}

and then
z∗
P ≤ z∗

LD ≤ z∗
LP .

In general the best dual bound given by Lagrangean relaxation is
tighter than the dual bound given by linear relaxation. They are
equivalent when the relaxed problem has the integrality property (all
integral extreme points).



Special cases

For some particular
orientation of the objective
function the bounds can be
the same even if the
general conditions for
equivalence are not
satisfied.

With c1: z∗
P = z∗

LD = z∗
LP .

With c2: z∗
P < z∗

LD = z∗
LP .

With c3: z∗
P < z∗

LD < z∗
LP .

With c4: z∗
P = z∗

LD < z∗
LP .
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Observations

• In linear relaxation the objective function and the constraints
remain unchanged; in Lagrangean relaxation they are modified.

• In linear relaxation the integrality restrictions are dropped; in
Lagrangean relaxation they are kept.

• If the optimal solution of a linear relaxation is integer, then it is
optimal for the original problem; if the optimal solution of a
Lagrangean relaxation satisfies the relaxed constraints, this does
not guarantee that it is optimal for the original problem.

• The linear relaxation of a problem is unique; Lagrangean
relaxation can be defined relaxing different constraints.

• The value of a solution x in a linear relaxation only depends on
x ; the value of a solution x in a Lagrangean relaxation depends
on λ, too.



Approximation properties

z∗
LD − z∗

P ≤ ǫ ⇔ ∃λ ≥ 0, x ∈ XP :

• λ
T
(b1 − A1x) ≤ δ1

• z∗
LR(λ)− zLR(x , λ) ≤ δ2

• δ1 + δ2 ≤ ǫ.

Therefore we can have z∗
LD = z∗

P only if there exist λ ≥ 0 and x ∈ XP

such that these two conditions hold:
• Optimality: z∗

LR(λ) = zLR(x , λ)

• Complementarity: λ
T
(b1 − A1overlinex) = 0.

We can evaluate the distance from optimality if we know
• δ1: the error due to the choice of x in the LR;
• δ2: the error due to the choice of λ in the Lagrangean dual

problem.



Lagrangean relaxation and problem decomposition (1)

A typical application of Lagrangean relaxation is to relax coupling
constraints: this allows to decompose the problem into independent
sub-problems.

Example: Uncapacitated facility location problem.

min zP(x , y) =
M
∑

i=1

N
∑

j=1

cijxij +

N
∑

j=1

fj yj

s.t.
N
∑

j=1

xij = (≥)1 ∀i = 1, . . . ,M

xij ≤ yj ∀i = 1, . . . ,M ∀j = 1, . . . ,N

y ∈ Bn



Lagrangean relaxation and problem decomposition (2)

Relaxing the first set of constraints we have penalties of the form
∑M

i=1 λi (1 −
∑N

j=1 xij):

min zLR(x , y , λ) =
M
∑

i=1

N
∑

j=1

(cij−λi)xij +

N
∑

j=1

fjyj+

M
∑

i=1

λi

s.t. xij ≤ yj ∀i = 1, . . . ,M ∀j = 1, . . . ,N

y ∈ Bn

This can be decomposed into N independent subproblems:

min zj(x , y , λ) =
M
∑

i=1

(cij − λi)xij + fjyj

s.t. xij ≤ yj ∀i = 1, . . . ,M

xij ≥ 0 ∀i = 1, . . . ,M

yj ∈ {0, 1}

that can be easily solved.



Which relaxation should we choose?

There is a trade-off between three criteria:
• How many constraints do we relax? (n. of Lagrangean

multipliers)
• How difficult the relaxed problem is? (computing time)
• Does the relaxed problem have the integrality property?

(tightness of the dual bound)



An example

Consider for instance the Generalized Assignment Problem.

min zP(x) =
M
∑

i=1

N
∑

j=1

cijxij

s.t.
N
∑

j=1

xij = (≥)1 ∀i = 1, . . . ,M

M
∑

i=1

aijxij ≤ bj ∀j = 1, . . . ,N

x ∈ BM×N

We can relax the assignnment constraints, the capacity constraints or
both: we get three different relaxations.



Lagrangean relaxation 1

Penalty terms of constraints
∑N

j=1 xij = (≥)1 ∀i = 1, . . . ,M have the

form
∑M

i=1 λi(1 −
∑N

j=1 xij). Then we obtain:

min z1
LR(x , λ) =

M
∑

i=1

N
∑

j=1

(cij−λi)xij+
M
∑

i=1

λi

s.t.
M
∑

i=1

aijxij ≤ bj ∀j = 1, . . . ,N

x ∈ BM×N

This relaxation:
• requires M multipliers,
• implies solving N knapsack problem instances,
• does not have the integrality property.



Lagrangean relaxation 2

Penalty terms of constraints
∑M

i=1 aijxij ≤ bj ∀j = 1, . . . ,N have the
form:

∑N
j=1 µj(

∑M
i=1 aijxij − bj). Then we obtain:

min z2
LR(x , µ) =

M
∑

i=1

N
∑

j=1

(cij+aijµj)xij−

N
∑

j=1

µjbj

s.t.
N
∑

j=1

xij = (≥)1 ∀i = 1, . . . ,M

x ∈ BM×N

This relaxation:
• requires N multipliers,
• implies solving M trivial problem instances,
• does have the integrality property.



Lagrangean relaxation 3

Relaxing both sets of constraints, we obtain:

min z3
LR(x , λ, µ) =

M
∑

i=1

N
∑

j=1

(cij−λi+aijµj)xij+

M
∑

i=1

λi−

N
∑

j=1

µj bj

s.t. x ∈ BM×N

This relaxation:
• requires M + N multipliers,
• implies solving M × N trivial problem instances,
• does have the integrality property.



How do we solve the Lagrangean dual problem?

The Lagrangean dual problem consists of minimizing a piecewise
linear and convex function in a space with as many dimensions as the
number of Lagrangean multipliers.
• Convexity: good news. There are no sub-optimal local minima.
• Piecewise linearity: bad news. First order partial derivatives

(gradient vector) are not continuous everywhere.

It is a linear programming problem with as many constraints as the
number of integer points in Q.

To solve this problem we can use one of several approximation
methods:
• sub-gradient optimization,
• multiplier adjustment,
• dual ascent.



Sub-gradient optimization (1)

It is a local search algorithm that iteratively moves from a current
point λ(k) to a next point λ(k+1) with a step of length σ(k) in the
direction opposite of the sub-gradient b − Ax∗(λ(k)).

Begin
Inizialize λ(0); k :=0;
while not EndTest do

Solve max zLR(x , λ(k)) = cT x + λ(k)T (b − Ax) s.t. x ∈ Q;
Obtain x∗(λ(k));
Choose σ(k);
λ(k+1) := max{λ(k) − σ(k)(b − Ax∗(λ(k))), 0};
k := k + 1;

end while
End

The sub-gradient algorithm is not monotonic: it is necessary to save
the best value encountered so far.



Sub-gradient optimization (2)

• Initialization is usually not important. The algorithm is not
sensitive to it.

• The end test succeeds when no improvements are observed
after a given number of iterations.

• The step can be chosen with some heuristic rule.

Rule of thumb (a). If

• limk→∞

∑k
i=1 σ

(i) = ∞ and
• limk→∞ σ(k) = 0,

then the sub-gradient algorithm converges to the optimal value of the
Lagrangean dual.

Rule of thumb (b). If σ(k) = σ(0)ρk with ρ < 1, then it converges to
optimality provided that µ(0) and ρ are large enough.



Sub-gradient optimization (3)

Beasley’s rules of thumb:
• Normalize the right hand sides of the relaxed constraints to 1;
• Choose 0 < π ≤ 2;
• Choose λ(0) arbitrarily;

• Define a scalar step σ =
π|z−z∗

LR
(λ(0),x∗)|∑

i max{Gi ,0}2 , where
• z is the value of a feasible solution (possibly increased by a small

percentage);
• x∗ is the optimal solution of LR(λ(0));
• z∗

LR(λ(0), x∗) is the corresponding optimal value;
• i is the index spanning all relaxed constraints;
• Gi = bi −

∑n
j=1 aij x∗

j is the sub-gradient of constraint i evaluated in
x∗;

• Update λi := max{0, λi + σGi};
• Halve π when the best value does not improve for a certain

number of iterations;
• Stop after a prescribed number of iterations of when π becomes

”small enough”.



Algorithmic improvements

Lagrangean heuristics.

The information provided by the optimal solution of the Lagrangean
relaxation (corresponding to a dual bound), is used to build a primal
feasible solution.

Lagrangean heuristics must be tailored to each specific problem and
relaxation.
This allows to compute primal bounds every time dual bounds are
computed in a branch-and-bound algorithm.

Variable fixing.

After solving a Lagrangean relaxation, we have:
• a reduced cost for each variable,
• a gap between a primal and a dual bound.

If the reduced cost is larger than the gap, the current value of the
variable can be fixed.



Lagrangean decomposition (1)

Given a problem

min cT x

s.t. A1x ≥ b1

A2x ≥ b2

x ∈ Bn

we can transform it into the equivalent problem

min c′T x + (c − c′)T y

s.t. A1x ≥ b1

A2y ≥ b2

x = y

x , y ∈ Bn

Now we can relax the coupling constraint x = y and decompose.



Lagrangean decomposition (2)

From the Lagrangean relaxation of the coupling constraints
(equalities) we have:

min c′T x + (c − c′)T y + λT (x − y)

s.t. A1x ≥ b1

A2y ≥ b2

x , y ∈ Bn

which decomposes into

min (c′ + λ)T x

s.t. A1x ≥ b1

x ∈ Bn

min (c − c′ − λ)T y

s.t. A2y ≥ b2

y ∈ Bn


