
Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Branch-and-cut algorithms
for the TSP and the ATSP
Operational Research Complements

Giovanni Righini

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

References

Based on:

J.E. Mitchell, Branch-and-cut algorithms for combinatorial
optimization problems, in Handbook of applied optimization, P.M.
Pardalos and M.G.C. Resende eds., Oxford University Press, 2000.

M. Fischetti, A. Lodi, P. Toth, Exact methods for the asymmetric
traveling salesman problem, in The traveling salesman problem and
its variations, G. Gutin and A. Punnen eds., Kluwer, 2002.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Branch-and-cut

Branch-and-cut algorithms arise from the combination of two main
ideas:
• implicit enumeration through branch-and-bound;
• iterative improvement of the linear relaxation, through cutting

planes.

Branch-and-cut algorithms provide the best known results for a large
number of NP-hard discrete optimization problems, including the
symmetric and the asymmetric traveling salesman problem (TSP and
ATSP).

State-of-the-art MILP solvers (e.g. CPLEX, GuRoBi,. . .) are
branch-and-cut algorithms.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Designing a branch-and-cut algorithm

Main questions in branch-and-bound algorithms design:
• How to branch?
• How to explore the branch-and-bound tree?
• How to produce primal bounds?
• How to produce dual bounds? By solving the linear relaxation

(LP).

Main questions in cutting planes algorithms design:
• Which cutting planes should be used (general or

problem-specific)?
• How many cuts should be generated at each round?
• Exact or heuristic separation?

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Designing a branch-and-cut algorithm

Additional questions in branch-and-cut algorithms design:
• Branching or cutting?
• Which cuts should be kept in the LP at each node?
• How to make cuts valid for sub-problems different from the one

where they have been generated? Lifting!

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Implementation

Several techniques can improve the performance of a branch-and-cut
algorithm:
• fixing variables by reduced costs
• column generation
• primal bounds by heuristics
• pre-processing
• balancing cutting and branching
• lifting valid inequalities
• interior point algorithms to solve the LP

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Variable fixing

Given a relaxed binary variable xj , assume it is non-basic with
reduced cost c∗

j ≥ 0 in the optimal solution of the linear relaxation,
x∗, whose minimum value is z∗.

Then any solution with xj = 1 would have a cost not smaller than
z∗ + c∗

j .

Hence, if z∗ + c∗
j ≥ z, where z is the best incumbent upper bound,

then xj can be fixed to 0.

In turn, this may trigger further variable fixing.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Column generation

Instead of working with all the variables, one can select some of them
(the most promising ones, according to some criterion: the shortest
edges in a graph...).

When such a restricted LP problem has been optimized, in order to
verify optimality for the original problem it is necessary to check that
none of the neglected edges have negative reduced cost.

The reduced cost of all neglected columns (variables) can be
computed from the values of the dual variables.

If some column with negative reduced cost is found, it is inserted in
the restricted problem and the procedure is iterated.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Primal bounds

Since branch-and-bound explores different regions of the feasible set,
and for each sub-problem we obtain an optimal (but fractional)
solution of the linear relaxation, all these fractional solutions are a
good starting set for a heuristic exploration.

One needs a fast repair heuristic, that is a heuristic that takes in input
an infeasible (fractional) solution and quickly outputs a “similar” but
feasible integer solution.

This heuristic is executed at each node of the branch-and-bound tree
(especially coupled with best-first-search) to possibly update the best
incumbent primal bound in order to discover the optimal solution
early, although it may take an additional lot of time to guarantee its
optimality.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Branching vs cutting

As far as a cutting planes algorithm proceeds,
• improvements become smaller and smaller from one iteration to

the next one;
• the difficulty of finding further violated inequalities increases (and

the computing time, too).

Common practice: search for cuts only at some nodes or at some
levels of the tree.

In some implementations, a fixed number of cutting planes iterations
is performed at each node, with more iterations at the root node and
fewer in the other nodes.

Special case: cut-and-branch. Cutting planes (many of them!) are
generated only at the root node.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Local and global cuts

A cut generated at a sub-problem P in the branch-and-bound tree is
valid only in P and its descendants: it is a local cut.

A global cut, valid throughout the tree, can be obtained by lifting the
variables that have been fixed by branching between the root and P.

The time taken by lifting must be balanced against the advantage of
saving memory space:
• local cuts must be stored separately for each sub-problem;
• global cuts need to be stored only once.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Cut pool

Some cuts may become redundant in some sub-problems.

Instead of deleting these cuts, that may become useful again in
different branches of the branch-and-bound tree, they are put in a
data-structure, called cut pool.

When the current sub-problem is not the successor of the last
examined problem, the cut pool is (efficiently) scanned in search for
violated cuts before separation algorithms are run.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Interior point methods

For very large problems, even solving the LP relaxation can be a hard
task.

Interior point methods may be superior to simplex methods for LPs
with thousands of variables.

So, the LP relaxation at the root node of the tree can be solved with
an interior point method.

Sometimes IP methods can be used throughout the
branch-and-bound tree.
• Pro: IP methods handle degeneracy better than the simplex

method.
• Con: Restarting is harder with an IP method.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

The TSP

Given a graph G = (V ,E) and a cost function c : E 7→ ℜ, the
Traveling Salesman Problem (TSP) is:

minimize z =
∑

e∈E

cexe

s.t.
∑

e∈δ(i)

xe = 2 ∀i ∈ V

S.E .C (1)

xe ∈ {0, 1} ∀e ∈ E

Constraints (1) are called subtour elimination constraints.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Subtour elimination constraints
∑

e∈δ(S)

xe ≥ 2 ∀S ⊂ V : 3 ≤ |S| ≤ |V |/2 (2)

∑

e∈E(S)

xe ≤ |S| − 1 ∀S ⊂ V : 3 ≤ |S| ≤ |V |/2 (3)

where δ(i) is the subset of edges with an endpoint in i ∈ V ,
δ(S) is the subset of edges with an endpoint in S ⊆ V ,
E(S) is the edge set of the subgraph induced by S ⊆ V .

S

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Linear relaxation

The linear relaxation of the TSP is

minimize z =
∑

e∈E

cexe

s.t.
∑

e∈δ(i)

xe = 2 ∀i ∈ V (4)

S.E .C. ∀S ⊂ V : 2 ≤ |S| ≤ |V |/2 (5)

xe ≥ 0 ∀e ∈ E (6)

Constraints xe ≤ 1 ∀e ∈ E are equivalent to S.E.C. for |S| = 2.

The linear relaxation still contains an exponential number of
constraints.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

A further relaxation

We also relax the S.E.C.. The relaxation is:

minimize z =
∑

e∈E

cexe

s.t.
∑

e∈δ(i)

xe = 2 ∀i ∈ V

0 ≤ xe ≤ 1 ∀e ∈ E

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

The TSP polyhedron

Unfortunately, the degree constraints (4), the S.E.C. (5) and the
bounds (6) are not enough to fully describe the TSP polyhedron.

1

2

3

4

5

6

2

2

2

2

2

2

1

1

1

This fractional solution (blue edges: x∗ = 0.5, red edges: x∗ = 1)
complies with constraints (4), (5) and (6).

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

2-matching inequalities

1

2

3

4

5

6

2

2

2

2

2

2

1

1

1

Such an infeasible (fractional) solution is cut off by a 2-matching
inequality.

x12 + x13 + x23 + x14 + x25 + x36 ≤ 4.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

2-matching inequalities

S

In general 2-matching inequalities (Edmonds, 1965) are
facet-defining and have the following form:

∑

e∈E(S)

xe +
∑

e∈T

xe ≤ |S|+

⌊

|T |

2

⌋

where S ⊂ V : |S| ≥ 3 and T is an odd subset of disjoint edges with
one endpoint in S.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Comb inequalities
They have been generalized to comb inequalities (Groetschel and
Padberg, 1979), which are also facet-defining.

H

T1 T2 T3

A comb is made by a handle H ⊂ V and an odd number p of teeth
T1, . . . ,Tp ⊂ V such that:
• Ti ∩ Tj = ∅ ∀i, j = 1, . . . , p i 6= j;
• H ∩ Tj 6= ∅ ∀j = 1, . . . , p;
• Tj\H 6= ∅ ∀j = 1, . . . , p.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Comb inequalities

H

T1 T2 T3

A comb inequality is:

∑

e∈E(H)

xe +

p
∑

j=1

∑

e∈E(Tj)

xe ≤ |H|+

p
∑

j=1

|Tj | −

⌈

3p
2

⌉

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Other inequalities

Other comb inequalities:
• Chvátal comb inequalities are such that |H ∩ Tj | = 1 ∀j = 1, . . . , p

(Chvátal, 1973).
• Simple comb inequalities are such that
(|H ∩ Tj | = 1) ∨ (|Tj\H| = 1) ∀j = 1, . . . , p (Letchford and Lodi,
2002).

Other inequalities have a similar structure (handle and teeth):
• Clique-tree inequalities (Groetschel and Pulleyblank, 1986)
• Path inequalities (Cornuéjols, Fonlupt and Naddef, 1985)
• Star inequalities (Fleischmann, 1988)
• Hyperstar inequalities (Fleischmann, unpublished)
• Bipartition inequalities (Boyd and Cunningham, 1991)
• Bi-nested inequalities (Naddef, 1992)

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

More valid inequalities

Many other families of valid inequalities have been discovered:
• Hypohamiltonian (Groetschel, 1980),
• Chain (Padberg and Hong, 1980),
• Blossom (Padberg and Rao, 1982),
• 2-handled clique tree (Padberg and Rinaldi, 1991),
• Crown (Naddef and Rinaldi, 1992),
• Ladder (Boyd et al., 1995).

This allows to solve TSP instances with thousand nodes to optimality
(Padberg and Rinaldi, 1991; Groetschel and Holland, 1991;
Applegate et al. 1994).

The state-of-the-art solver for the TSP is Concorde, based on
Applegate et al. 1994.
Remark: it requires integer arc costs.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Separation

Polynomial-time algorithms for exact separation are known only for
some types of inequalities:
• SECs (Crowder and Padberg, 1980)
• 2-matching inequalities (Padberg and Rao, 1982)
• clique tree inequalities with a fixed number of handles and teeth

(Carr, 1997)
• certain inequalities defined by lifting (Carr, 1996, 1997).

Heuristic separation always remains an option: it does not guarantee
• to find the most violated inequality of a certain type;
• to find a violated inequality of a certain type every time one

exists.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Separation of S.E.C.

Given an optimal solution x∗ of the relaxation, we must check
whether any S.E.C. is violated.
• Consider the graph G = (V ,E) as a flow network;
• Assign each edge e a capacity x∗

e ;
• Replace each edge with a pair of opposite arcs with the same

capacity;
• Find the all-pairs min-cut.

A cut of capacity less than 2 corresponds to a violated S.E.C.

The all-pairs min-cut can be found in polynomial time (Gomory-Hu,
Padberg-Rinaldi, Hao-Orlin, . . .).

The algorithm by Nagamochi, Ono and Ibaraki (1994) does it in
O(nm + n2 log n).

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Separation of 2-matching inequalities

∑

e∈E(S)

xe +
∑

e∈T

xe ≤ |S|+

⌊

|T |

2

⌋

can be rewritten (Padberg and Rao, 1982) as
∑

e∈δ(S)\T

xe +
∑

e∈T

(1 − xe) ≥ 1.

S

Letchford, Reinelt and Theis (2003) showed how to separate these
cuts with n − 1 max-flows computations, leading to an exact
separation algorithm with O(n2m log (n2/m)) time complexity.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

(0, 1
2)-cuts

Given an integer program with constraints set Ax ≤ b, where
A ∈ ℜm×n and b ∈ ℜm, mod − k cuts are valid inequalities with the
form

λT Ax ≤ ⌊λT b⌋

with λ ∈

{

0,
1
k
, . . . ,

k − 1
k

}m

such that λT A is integer.

In particular, for k = 2, Caprara, Fischetti, Letchford and Lodi found
polynomial-time algorithms for exact separation of violated (0, 1

2)-cuts.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

The ATSP

Given a digraph D = (N,A) and a cost function c : A 7→ ℜ, the
Asymmetric Traveling Salesman Problem is:

minimize z =
∑

(i,j)∈A

cijxij

s.t.
∑

j∈N

xij = 1 ∀i ∈ N

∑

i∈N

xij = 1 ∀j ∈ N

∑

i∈S

∑

j∈S

xij ≥ 1 ∀S ⊂ N : S 6= ∅ (7)

xij ∈ {0, 1} ∀(i, j) ∈ A

Constraints (7) are called subtour elimination constraints.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Subtour elimination constraints

Alternative subtour elimination constraints:
∑

i∈S

∑

j∈S

xij ≤ |S| − 1 ∀S ⊂ N : S 6= ∅.

They remain exponentially many, although their number can be
halved in the form

∑

i∈S

∑

j∈S

xij ≥ 1 ∀S ⊂ N : r ∈ S

∑

i∈S

∑

j∈S

xij ≤ |S| − 1 ∀S ⊂ N : S 6= ∅, r 6∈ S

for an arbitrary chosen node r ∈ N.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Transforming an ATSP into a TSP instance

3-node transformation (Karp, 1972).

A complete undirected graph with 3n vertices is obtained from the
original complete digraph with n nodes:
• add two copies, n + i and 2n + i, of each vertex i ∈ N;
• set to 0 the cost of the edges [i, n + i] and [n + i, 2n + i] for each

i ∈ N;
• set to cij the cost of edge [2n + i, j] forall i, j ∈ N;
• set to ∞ the cost of all the remaining edges, including [i, 2n + i]

forall i ∈ N.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Transforming an ATSP into a TSP instance

2-node transformation (Jonker and Volgenant, 1983).

A complete undirected graph with 2n vertices is obtained from the
original complete directed one:
• add a copy n + i of each vertex i ∈ N;
• set to 0 the cost of edge [i, n + i] for each i ∈ N;
• set to cij + M the cost of edge [n + i, j] for each i, j ∈ N, where

M > 0 is a “large enough” constant;
• set to ∞ the costs of all the remaining edges;
• an amount nM must be subtracted from the TSP cost to obtain

the ATSP cost.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Symmetric inequalities

Symmetric inequality: αx ≤ α0 with αij = αji ∀(i, j) ∈ A.

If ye indicates the binary variable of edge e = [i, j] in the TSP graph,
the variable substitution ye = xij + xji transforms any valid inequality
for the TSP into a symmetric valid inequality for the ATSP.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

D+
k inequalities (Groetschel and Padberg, 1985)

Consider any sequence µ1, . . . , µk of 3 ≤ k ≤ n − 1 nodes.

xµ1µk +
k

∑

h=2

xµhµh−1 + 2
k−1
∑

h=2

xµ1µh +
k−1
∑

h=3

h−1
∑

p=2

xµpµh ≤ k − 1.

µ1 µ2 µ3 µk−1 µk

For k = 2 they degenerate into xij + xji ≤ 1.
For k = 1 they degenerate into xii ≤ 0.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

D+
k inequalities

D+
k inequalities are facet-inducing; they can be obtained by suitably

lifting the S.E.C.
∑

i∈S

∑

j∈S xij ≤ |S| − 1 ∀S ⊂ N : S 6= ∅.

The separation problem requires to find the most violated D+
k

inequality and it can be solved by implicit enumeration, owing to an
effective and easy-to-compute bounding rule, when all SEC are
satisfied.

The separation algorithm devised by Fischetti and Toth (1997) was
later proven to have polynomial-time complexity.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

D−
k inequalities

D−
k inequalities are a symmetric counterpart of D+

k inequalities:

xµkµ1 +
k

∑

h=2

xµh−1µh + 2
k−1
∑

h=2

xµhµ1 +
k−1
∑

h=3

h−1
∑

p=2

xµhµp ≤ k − 1.

D−
k inequalities are facet-inducing; they can be obtained by suitably

lifting the S.E.C..

D−
k inequalities are obtained from D+

k inequalities by transposition,
which is valid in general.

Defining αT so that αT
ij = αji , every inequality αT x ≤ α0 is valid for the

ATSP polyhedron if and only if αx ≤ α0 is.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Odd Closed Alternating Trails (CAT) cuts

Two distinct arcs (i, j) and (u, v) are incompatible if

(i = u) ∨ (j = v) ∨ ((j = u) ∧ (i = v))

and compatible otherwise.

A Closed Alternating Trail (Balas, 1989) is a cyclic sequence of t
distinct arcs T = (a1, a2, . . . , at) such that each arc in T is
incompatible with the two adjacent arcs and compatible with all the
others.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Odd Closed Alternating Trails (CAT) cuts

Indicating with δ−(i) the in-star and with δ+(i) the out-star of each
node i ∈ N,
• a node i ∈ N is a source (i ∈ T+), if |δ+(i) ∩ T | = 2;
• a node i ∈ N is a sink (i ∈ T−), if |δ−(i) ∩ T | = 2.

Remark. A node can be both a source and a sink.

Let Q = {(i, j) ∈ A\T : i ∈ T+, j ∈ T−}. [dashed arcs]

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Odd Closed Alternating Trails (CAT) cuts

For any CAT of odd length t , the odd CAT inequality

∑

(i,j)∈T∪Q

xij ≤
|T | − 1

2

is facet-defining for the ATSP polytope.

Separation: search for odd simple cycles in a suitable incompatibility
graph G = (V , E):
• G is undirected and weighted;
• V has a vertex for each arc (i, j) such that x∗

ij > 0;
• E has an edge e = [a, b] linking each pair of incompatible arcs

a ∈ A and b ∈ A;
• the weight of each edge is we = 1 − x∗

a − x∗
b . If x∗ satisfies all

degree constraints and the trivial S.E.C. constraints xij + xji ≤ 1,
then we ≥ 0 ∀e ∈ E .

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Odd Closed Alternating Trails (CAT) cuts

Let δ(v) be the edge set incident to v ∈ V .

A cycle in G is subset C ⊆ E such that |C ∩ δ(v)| is even for all v ∈ V .

A cycle C is odd if |C| is odd.

A cycle C is simple if |C ∩ δ(v)| ∈ {0, 2} ∀v ∈ V .

A cycle C is chordless if there are no edges linking its vertices
besides those in C.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Odd Closed Alternating Trails (CAT) cuts
By construction an odd, simple and chordless cycle C in G
corresponds to an odd CAT in the ATSP digraph.

1 2

34

5

6

(1, 2)

(3, 2)(1, 4)

(3, 5)(4, 5)

(6, 5)(5, 6)

(3, 4)

(5, 2)(1, 5)

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Odd Closed Alternating Trails (CAT) cuts

The weight of C is

w(C) =
∑

e∈C

we =
∑

[a,b]∈C

(1 − x∗
a − x∗

b) = |T | − 2
∑

a∈T

x∗
a

The violation of the odd CAT inequality is

Φ(T) =
∑

(i,j)∈T∪Q

x∗
ij −

|T | − 1
2

.

Then, the following relations hold:

Φ(T) =
2
∑

(i,j)∈T∪Q x∗
ij − (|T | − 1)

2
≥

≥
2
∑

(i,j)∈T x∗
ij − |T |+ 1

2
=

1 − w(C)

2
.

Fischetti and Toth (1997) developed a heuristic separation algorithm
that finds a minimum weight odd cycle through each edge e ∈ E .

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Clique lifting

Given any valid inequality βy ≤ β0 for the ATSP digraph D′ = (N ′,A′),
let define for each node k ∈ N ′

βkk = max{βik + βkj − βij : i, j ∈ N ′\{k}, i 6= j}.

Define a digraph D = (N,A) in which each node k ∈ N ′ is replaced by
a clique Sk containing one or more nodes in N; assign weight βkk to
all arcs inside the clique Sk corresponding to node k ∈ N ′; assign
weight βij to all arcs of A from Si to Sj .

Then the clique lifted inequality αy ≤ α0 with

α0 = β0 +
∑

k∈N′

βkk (|Sk | − 1)

and αuv = βij ∀u ∈ Si , v ∈ Sj is valid for the ATSP defined on digraph
D (Balas and Fischetti, 1993).

Furthermore, if βy ≤ β0 is facet-defining for D′, then αx ≤ α0 is
facet-defining for D.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Clique lifting and shrinking

Clique lifting is a powerful tool for extending known inequalities.

It may also simplify separation, owing to the shrinking operation, that
is the opposite of lifting.

Let S ⊂ N, with 2 ≤ |S| ≤ |N| − 2 and such that
∑

a∈A(S) xa = |S| − 1,
where A(S) is the arc set of the subdigraph induced by S.

Replace S with a single node σ, updating x∗ into y∗ accordingly.

Every valid inequality βy ≤ β0 violated by y∗ in the shrunken digraph
corresponds to a valid inequality αx ≤ α0 violated by x∗ in the original
digraph and αx ≤ α0 can be obtained by clique lifting from βy ≤ β0 by
replacing back σ with S.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Shrinking

It is not guaranteed that a violated inequality is detected if one exists:
it is possible that shrinking produce a solution y∗ that does not violate
any inequality even if x∗ does.

1 2

34

2 1 3

Assuming x∗ = 0.5 for all arcs indicated on the left, x∗ violates the
D+

3 inequality shown on the right:

x12 + x23 + x31 + 2x21 ≤ 2.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Shrinking

Shrinking the saturated subset {1, 2} the digraph on the right is
obtained. For all arcs a on the right, y∗

a = 0.5.

1 2

34

σ

34

The fractional solution on the right is a convex combination of two
integer solutions; therefore it cannot be cut-off by any valid inequality.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Shrinking

In some cases it is guaranteed that a violated inequality βy ≤ β0

exists in the shrunken digraph every time a violated inequality
αx ≤ α0 exists in the original digraph.

The simplest of these cases is when an arc (i, j) with x∗
ij = 1 is

shrunken.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Pricing

The LP relaxation to be iteratively solved is

z = min{cx : Dx = 1,Fx ≤ g, x ∈ ℜ
|A|
+ },

where constraints Dx = 1 are 2n degree constraints and Fx ≤ g are
possible additional valid inequalities.

The number of non-negative variables x is the number of arcs in the
digraph, which grows quadratically with the number of nodes.

In order to keep the size of the LP problem limited, a restricted LP is
considered, by selecting a suitable subset A ⊆ A of the variables.

All variables in A\A are fixed to 0, which means that the
corresponding are disregarded.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Pricing

Assuming the restricted problem

zR = min{cx : Dx = 1,Fx ≤ g, x ∈ ℜ
|A|
+ },

is feasible, let x∗ and u∗ the primal and the dual optimal solutions,
respectively.

Then the reduced cost of each arc (i, j) ∈ A is

c ij = cij −
∑

r∈RD

Dr ,(i,j)u
∗
r −

∑

r∈RF

Fr ,(i,j)u
∗
r ,

where RD and RF are the row sets of D and F .

If c ij ≥ 0 ∀(i, j) ∈ A, then x∗ is optimal also for the unrestricted
problem.
Otherwise, variables with negative reduced cost are inserted in A and
the procedure is iterated.

Pricing: finding columns with negative reduced cost.

Branch-and-cut algorithms Branch-and-cut for the TSP Branch-and-cut for the ATSP

Pricing

A sensible initialization for A is to select k arcs with minimum cost
incident to each node (e.g. k = 15).

At each pricing iteration of arbitrarily selecting arcs with negative
reduced cost, one can exploit the degree constraints, solving a linear
assignment problem on the ATSP digraph weighted with the reduced
costs.

If the optimal assignment has zero cost, then the algorithm stops and
x∗ is optimal.
Otherwise the arcs in the optimal assignment are inserted in A and
the procedure is iterated.

	Branch-and-cut algorithms
	Branch-and-cut

	Branch-and-cut for the TSP
	Formulation
	Cutting planes
	Separation

	Branch-and-cut for the ATSP
	Formulation
	Valid inequalities

