
ECMI Summer School Aug 29 - Sep 05, 2010 - Milan (Italy)

Introduction to Local and Global Optimization for
NLP

Marco Trubian

Dipartimento di Scienze dell’Informazione (DSI)
Università degli Studi di Milano

1 / 22

Calculating Derivatives
On Global Optimization

Forward-difference
Central-difference formula
Approximating the hessian

Calculating Derivatives

Most algorithms for nonlinear optimization and nonlinear equations
require knowledge of derivatives.

Sometimes the derivatives are easy to calculate by hand, and it is
reasonable to expect the user to provide code to compute them
In other cases, the functions are too complicated or they are given as
Black Boxes, so we look for ways to calculate or approximate the
derivatives automatically
A number of interesting approaches are available, of which the most
important are probably Finite Differencing

2 / 22

Calculating Derivatives
On Global Optimization

Forward-difference
Central-difference formula
Approximating the hessian

Forward-difference

A popular formula for approximating the partial derivative ∂f
∂xi

of a smooth
function f at a given point x is the forward-difference, or one-sided-difference,
approximation, defined as

∂f
∂xi

(x) ≈
f (x + εei)− f (x)

ε

where ε is a small positive scalar and ei is the i-th unit vector

This process requires evaluation of f at the point x as well as the n perturbed
points x + εei , i = 1, 2, . . . , n: a total of (n + 1) points.

the introduced error is O(ε)

when the ratio of function values to second derivative values does not exceed a
modest size, the following choice of ε is fairly close to optimal:

ε =
√

u

where u is a bound on the relative error that is introduced whenever an
arithmetic operation is performed on two floating-point numbers (u is about
1.1× 10−16 in doubleprecision IEEE floating-point arithmetic.)

3 / 22

Calculating Derivatives
On Global Optimization

Forward-difference
Central-difference formula
Approximating the hessian

Central-difference formula

A more accurate approximation to the derivative can be obtained by
using the central-difference formula

∂f
∂xi

(x) ≈ f (x + εei)− f (x − εei)

2ε

This process requires evaluation of f at the point x as well as the 2n
perturbed points x ± εei , i = 1, 2, . . . , n: a total of 2n + 1 points.
the introduced error is O(ε2)

when the ratio of function values to second derivative values does
not exceed a modest size, the following choice of ε is fairly close to
optimal:

ε = u1/3

4 / 22

Calculating Derivatives
On Global Optimization

Forward-difference
Central-difference formula
Approximating the hessian

Approximating the hessian

We can obtain the Hessian by applying the techniques described
above to the gradient ∇f . This approach ignores symmetry of the
Hessian. We can recover symmetry by adding the approximation to
its transpose and dividing the result by 2
For the case in which gradients are not available, we can derive
formulae for approximating the Hessian that use only function values

∂2f
∂xi∂xj

(x) ≈ f (x + εei + εej)− f (x + εei)− f (x + εej) + f (x)

ε2

If we wished to approximate every element of the Hessian with this
formula, then we would need to evaluate f at x + ε(ei + ej) for all
possible i and j (a total of n(n + 1)/2 points) as well as at the n
points x + εei , i = 1, 2, . . . , n.

Other techniques: Automatic differentiation

5 / 22

Calculating Derivatives
On Global Optimization

Two-phases algorithms
Difference of convex functions
Multistart
Variable Neighbourhood Search
Spatial Branch-and-Bound

Global Optimization

The object of Global Optimization (GO) is to find a solution of a given
non-convex mathematical programming problem.

By solution we mean here a global solution, as opposed to a local
solution; i.e., a point where the objective function attains the
optimal value with respect to the whole search domain.
We require the objective function and/or the feasible region to be
nonconvex because in convex mathematical programming problems
every local optimum is also a global one. Consequently, any method
solving a convex problem locally also solves it globally.

6 / 22

Calculating Derivatives
On Global Optimization

Two-phases algorithms
Difference of convex functions
Multistart
Variable Neighbourhood Search
Spatial Branch-and-Bound

Example

Minimum energy configuration for compex molecules.

The Lennard-Jones model for clusters of Argon, Krypton, Nickel,
Gold.
The energy of a couple of athoms in position x1, x2 ∈ R3, at a r
distance from each other, is given by the difference of two
components:

v(r) =
1

r12 −
2
r6

The energy of a clauster of N athoms in positions x1, . . . , xN ∈ R3,
is given by

min f (x) =
∑N

i=1

∑i−1

j=1

(
1

‖x i − x j‖12 −
2

‖x i − x j‖6

)

The number of local (not global) optima has an exponential growth
with N.

7 / 22

Calculating Derivatives
On Global Optimization

Two-phases algorithms
Difference of convex functions
Multistart
Variable Neighbourhood Search
Spatial Branch-and-Bound

Global Optimization

Most GO algorithms are two-phases.

The solution space S is explored exhaustively in the global phase,
which iteratively identifies a promising starting point x .
In the local phase, a local optimum x∗ is found starting from each
x . The local phase usually consists of a deterministic local descent
algorithm which the global phase calls as a black-box function.
The global phase can be stochastic or deterministic.

Algorithms with a stochastic global phase are usually heuristic
algorithms,
whereas deterministic global phases often provide a certificate of
optimality, making the algorithm precise.

8 / 22

Calculating Derivatives
On Global Optimization

Two-phases algorithms
Difference of convex functions
Multistart
Variable Neighbourhood Search
Spatial Branch-and-Bound

Stochastic global phases

Stochastic global phases identify the starting points x

either by some kind of sampling in S (sampling approach), or
by trying to escape from the basin of attraction of the local minima
x∗ found previously (escaping approach), or
by implementing a blend of these two approaches.

Stochastic global phases do not offer certificates of optimality of the
global optima they find, and they usually only converge to the global
optimum with probability 1 in infinite time.
In practice, though, these algorithms are very efficient, and are the only
viable choice for solving reasonably large-scale NLPs.
The efficiency of stochastic GO algorithms usually depends on the proper
fine-tuning of the algorithmic parameters controlling intensification of
sampling, extent of escaping and verification of termination conditions.

9 / 22

Calculating Derivatives
On Global Optimization

Two-phases algorithms
Difference of convex functions
Multistart
Variable Neighbourhood Search
Spatial Branch-and-Bound

Deterministic global phases

Deterministic global phases usually work by partitioning S into smaller sets
S1, . . . ,Sp . The problem is then solved globally in each of the subsets Sj .
The global solution of each restriction of the problem to Sj is reached by
recursively applying the global phase to each Sj until a certificate of optimality
can be obtained for each Sj .
The certificate of optimality is obtained by computing upper and lower bounds,
ub, lb, to the objective function value.
A local optimum x∗ in Sj is considered global when |ub− lb| < ε, where ε > 0 is
a (small) constant.
The certificate of optimality for the global optimum of the problem with respect
to the whole solution space S is therefore really a certificate of ε-global
optimality.
Such global phases are called Branch-and-Select

the partitioning of the sets Sj is called branching;
the algorithm relies on selection of the most promising Sj for the
computation of bounds.

Deterministic algorithms perform well on small and medium-scale problems.
Their efficiency seems to depend strongly on the particular instance of the
problem at hand, and on the algebraic formulation of the problem.

10 / 22

Calculating Derivatives
On Global Optimization

Two-phases algorithms
Difference of convex functions
Multistart
Variable Neighbourhood Search
Spatial Branch-and-Bound

The presence of Global Information

min f (x) =
∑N

i=1

∑i−1

j=1

(
1

‖x i − x j‖12 −
2

‖x i − x j‖6

)
This problem has a strong structure.
The function

f (r12, r13, . . . , rN−1,N)→
∑ 1

r6
ij
− 2

∑ 1
r3
ij

is the difference of two convex function: d.c. programming

11 / 22

Calculating Derivatives
On Global Optimization

Two-phases algorithms
Difference of convex functions
Multistart
Variable Neighbourhood Search
Spatial Branch-and-Bound

Reformulation of d.c. problems

The unconstrained d.c. problem can be transformed in an equivalent
problem with a linear objective function and two constraints:

min g(x)− h(x)

with g , h convex, is equivalent to

min z
s.t. g(x)− h(x) ≤ z

which is equivalent to

min z
s.t. g(x) ≤ w

h(x) + z ≥ w

For the last model there are suitable cutting plane techniques
12 / 22

Calculating Derivatives
On Global Optimization

Two-phases algorithms
Difference of convex functions
Multistart
Variable Neighbourhood Search
Spatial Branch-and-Bound

Multistart

Multistart (MS) algorithms are conceptually the most elementary GO
algorithms: many local descents are performed from different starting
points.

Starting points are sampled with a rule that is guaranteed to explore
the solution space exhaustively (in infinite time)
the local minimum with the best objective function value is
considered the global optimum.
MS algorithms are stochastic GO algorithms with a sampling
approach.

Main problem: the same local optimum is identified many times when
the sampling rule picks starting points in the basin of attraction of the
same local optimum.

13 / 22

Calculating Derivatives
On Global Optimization

Two-phases algorithms
Difference of convex functions
Multistart
Variable Neighbourhood Search
Spatial Branch-and-Bound

Multi Level Single Linkage
Clustering: to inhibit multiple local descents to start in the same basin of attraction.

Sampled starting points are grouped together in clusters of nearby points, and
only one local descent is performed in each cluster
In the Multi Level Single Linkage (MLSL) method: a point x is clustered
together with a point y if x

is not too far from y and
f (y) < f (x).

The clusters are then represented by a directed tree, the root of which is the
designated starting point
As the number of problem variables increases, the sampled points are further
apart and cannot be clustered together so easily.

MS algorithms for GO usually perform rather well on medium to large scale problems.
MS with random and quasi-random sampling is, to date, the most promising approach
to solving the Lennard-Jones potential energy problem

14 / 22

Calculating Derivatives
On Global Optimization

Two-phases algorithms
Difference of convex functions
Multistart
Variable Neighbourhood Search
Spatial Branch-and-Bound

MS and Sobol sequences I

A deterministic sampling rule employs Low-Discrepancy Sequences
(LDSs) of starting points called Sobol’ sequences whose distributions in
Euclidean space have very desirable uniformity properties.

Uniform random distributions where each point is generated in a
time interval are guaranteed to be uniformly distributed in space in
infinite time with probability 1.
Sobol’ sequences are guaranteed to be distributed in space as
uniformly as possible even in finite time.
For any integer N > 0, the first N terms of a Sobol’ sequence do a
very good job of filling the space evenly.
Any projection on any coordinate hyperplane of the Euclidean space
Rn containing N n-dimensional points from a Sobol’ sequence will
still contain N projected (n − 1)-dimensional Sobol’ points.

15 / 22

Calculating Derivatives
On Global Optimization

Two-phases algorithms
Difference of convex functions
Multistart
Variable Neighbourhood Search
Spatial Branch-and-Bound

MS and Sobol sequences II

Sobol’ sequences has been used by GO methods to successfully solve the
Kissing Number Problem (KNP - determining the maximum number of
non- overlapping spheres of radius 1 that can be arranged adjacent to a
central sphere of radius 1) up to 4 dimensions.

16 / 22

Calculating Derivatives
On Global Optimization

Two-phases algorithms
Difference of convex functions
Multistart
Variable Neighbourhood Search
Spatial Branch-and-Bound

Variable Neighbourhood Search

VNS escapes from the current local minimum x∗ by initiating other local
searches from starting points sampled from a neighbourhood of x∗ which
increases its size iteratively until a local minimum better than the current
one is found.

VNS for box-constrained NLPs: the neighbourhoods arise naturally as
hyperrectangles of growing size centered at the current local minimum
x∗.

k = 1, choose random point xk , perform local descent to find a local minimum
x∗

while k < kmax

define a neighbourhood Nk(x∗);
sample a random point x from Nk(x∗);
perform local descent from x to find a local minimum x ′;
if f (x ′) < f (x∗) x∗ = x ′ and k = 0;
k = k + 1;

If Nk(x) is taken to be a hyperrectangle H(x) of size k centered at x we
take Nk(x) = Hk(x)\Hk−1(x). 17 / 22

Calculating Derivatives
On Global Optimization

Two-phases algorithms
Difference of convex functions
Multistart
Variable Neighbourhood Search
Spatial Branch-and-Bound

Spatial Branch-and-Bound

Spatial Branch-and-Bound (sBB) algorithms are the extension of
traditional Branch-and-Bound (BB) algorithms to continuous solution
spaces.

They are termed spatial because they successively partition the Euclidean
space where the problem is defined into smaller and smaller regions where
the problem is solved recursively by generating converging sequences of
upper and lower bounds to the objective function value.

18 / 22

Calculating Derivatives
On Global Optimization

Two-phases algorithms
Difference of convex functions
Multistart
Variable Neighbourhood Search
Spatial Branch-and-Bound

Spatial Branch-and-Bound

1 (Initialization) Initialize a list L = {R} where R comprises the entire set of
variable ranges. Set U :=∞; x∗ = ∅;

2 (Choice of Region) If L = ∅ then Stop; else remove the region R with lowest
associated lower bound from L.

3 (Lower Bound) Generate a convex relaxation of the original problem in the
selected region R and solve it to obtain an underestimation lbR of the objective
function with corresponding solution x . If lb > U or the relaxed problem is
infeasible, go back to step 2.

4 (Upper Bound) Solve the original problem in R with a local minimization
algorithm to obtain a locally optimal solution x ′ with u = f (x ′).

5 (Pruning) If U > u then x∗ = x ′; U := u. Delete all regions R′ in L which have
lbR′ > U.

6 (Check Region) If u − lbR < ε, accept u as the global minimum for R and return
to step 2;

7 (Branching) Apply a branching rule to R to split it into sub-regions. Add these
to L, assigning to them an (initial) lower bound. Go back to step 2.

19 / 22

Calculating Derivatives
On Global Optimization

Two-phases algorithms
Difference of convex functions
Multistart
Variable Neighbourhood Search
Spatial Branch-and-Bound

Convex relaxation I

The main algorithmic difference among different sBB is the way the
convex relaxation is derived.
The standard automatic way to generate a convex relaxation consists in
linearizing all non convex terms in the objective function and constraints
and then replacing each nonconvex definition constraint with the
respective upper concave and lower convex envelopes.
Convex and concave envelopes are suggested for various types of
fractional terms.
E.g a convex underestimator for the term x

y , where x ∈ [xLxU] and y ∈ [yL, yU] are
strictly positive, is as follows:

z ≥
xL

ya
(1− λ) +

xU

yb
λ

yL ≤ ya ≤ yU

yL ≤ yb ≤ yU

y = (1− λ)ya + λyb

x = xL + (xU − xL)λ

0 ≤ λ ≤ 1 20 / 22

Calculating Derivatives
On Global Optimization

Two-phases algorithms
Difference of convex functions
Multistart
Variable Neighbourhood Search
Spatial Branch-and-Bound

Convex relaxation II

The convex relaxation of general twice-differentiable nonconvex terms is
carried out by using a quadratic underestimation (based on the α
parameter). Quadratic underestimations work for any twice-differentiable
nonconvex term, but are usually very slack.
A function f (x) is underestimated over the entire domain [xL, xU] ∈ Rn

by the function L(x) defined as follows:

L(x) = f (x) +
n∑

i=1

αi (xL
i − xi)(xU

i − xi)

where the αi are positive scalars that are sufficiently large to render the
underestimating function convex.

21 / 22

Calculating Derivatives
On Global Optimization

Two-phases algorithms
Difference of convex functions
Multistart
Variable Neighbourhood Search
Spatial Branch-and-Bound

Convex relaxation III

L(x) = f (x) +
n∑

i=1

αi (xL
i − xi)(xU

i − xi)

this kind of underestimator does not introduce any new variable or
constraint
Since the sum

∑n
i=1 αi (xL

i − xi)(xU
i − xi) < 0, L(x) is an

underestimator for f (x). Furthermore, since the quadratic term is
convex, all nonconvexities in f (x) can be overpowered by using
sufficiently large values of the αi parameters.
L(x) is convex if and only if its Hessian matrix HL(x) is positive
semi-definite.

HL(x) = Hf (x) + 2∆

where ∆ ≡ Diag(αi)

22 / 22

	Intro
	ECMI Summer School
	Aug 29 - Sep 05, 2010 - Milan (Italy)

	Presentation
	Calculating Derivatives
	Forward-difference
	Central-difference formula
	Approximating the hessian

	On Global Optimization
	Two-phases algorithms
	Difference of convex functions
	Multistart
	Variable Neighbourhood Search
	Spatial Branch-and-Bound

