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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Constrained Optimization

We want to minimize functions subject to constraints on the variables

min  f(x)
gi(x) <0 j=1,...,k
hi(x) =0 j=1,....,h

with x € R".
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Example |

In presence of constraints a difficult problem can become easy:

1 3 11
f(x) = EXS - §X4 + ?xz‘ — 3x2.
is not convex in R, while it is convex, e.g. in the interval X = [0.6,1.4].
Starting from xp € X any scalar optimization technique would find the

global optimum.

0.75
0.5
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Example |l

Let us consider the following problem
min  f(x,y) = (x = 1)* + (y + 1)
gi(x,y) =1+ 3sin(8x) —y < 0;
g(x,y) = -y <0.
@ The objective function f is convex and allows just one stationary
point (1,—1)
@ (1,—1) optimum of the unconstrained problem
@ the constrained problem has an infinite number of local minima
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Optimality conditions: equality constraints

Let us consider the following problem

min  f(x)
hi(x) =0 j=1,....,h<n

and its Lagrangean function

L(x,\) Z = f(x) + AT h(x).
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

First order optimality conditions

Optimality conditions can be given by means of the Lagrangean function

Theorem We are given a function f(x) and h equality constraints

hi(x) =0, with j = 1,..., h, with f(x) and h; of class C'. Under the
hypothesis that the vectors V hj(x*) are linearly indipendent, if x* is a
local minimum of f(x) which satisfies the equality constraints, then there
exists A" s.t. (x*,A") is a stationary point of the Lagrangean function

L(x, A):
oL Of(x*) h LOhi(x*) .
8)([- = 8)(,- +ZJ:1)\JTX,_O’ /—1,2,...,n (1)
oL N
87)\j = hJ(X)—O, J—1,27...,h (2)
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions
Second order optimality conditions
Quadratic model with linear inequality constraints

First order optimality conditions

The conditions

oL Of (x) hoOk(x) .

Ox; o ox; +Zj:1 )\J ox; =0, i=12,...,n (3)
8L * .

o hi(x*)=0, j=1,2,....,h )

are a system of n+ h equations in n+ h, x, A, unknowns.

The first n conditions can be written as V£(x*) + J(x*)TA* =0, or

R

=

A Vh(x")

i.e., in a stationary point x* the antigradient of f is given by a linear
combination of the gradient vectors of the equality constraints

7/58



Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Example

Example Given the problem

min  f(x,y) = (x —2)2 + (y — 2)?
hi(x,y) =1—-x*>—y?=0.

In the optimum point ( % )
e the antigradient of f, —Vf(x,y) = —(2(x — 2),2(y — 2))7, is the
vector (4 — V2,4 — ﬁ)T
o the gradient of hy, Vh(x,y) = (—2x,—2y)7, is —(v/2,V/2)
@ in the figure on the right the to vectors are collinear

(O 1O
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Geometric interpretation

On the left: point (0,1)

Hyperplane F = {s € R" s.t. Vh(x,y)"s =0}

F = first order approximation of h(x,y)

Subspace D = {d € R" s.t. Vf(x,y)Td < 0}

D = all descent directions (shadowed halfcircle)

Point not optimal: there are descent directions which belong to F
(along them, at least for a infinitesimal distance, we improve f while satisfying the
equality constraint)

On the right: point (%, %)

It is optimal since no descent direction belongs to a F

Here the vectors —Vf(x,y) and Vh(x, y) are collinear.

&

Th KL

1 - 1 -
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

On constraints qualification

The First order optimality conditions are valid
[...] Under the hypothesis that the vectors V h;(x*) are linearly

indipendent [...]
C) v?:;z "

Example Given the problem
min  f(x,y) = (x —2)* + (y = 2)°
h(x,y) =x*+y*—1=0;
h(x,y)=x—-1=0.

The optimum is the only feasible point (1,0).
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

On constraints qualification

@
A
Kngl Vi

In (1,0) the vectors Vhi(x,y) and Vha(x,y) are (2,0)" and (1,0):
they are linearly dependent.

In (1,0) the antigradient —Vf(x,y) is (2,4)7

The system of equations has no solutions for A; and A

(3)-5(3) (1
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Constraints Qualification

@ When considering unconstrained problems, all local minima satisfy
necessary optimality conditions, and theoretically all local minima
can be found among stationary points.

@ When considering constrained problems, not necessarily all local
minima can be found among those which satisfy analitical conditions,

h
_VF(x*) = ijl AV hi(x*)

@ but only those which satisfy the so called Constraints Qualification

12/58



Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Constraints Qualification

Constraints Qualification A point x* satisfies constraint qualifications if
there exists a vector h s.t. Vgij(x*)Th < 0, for all indeces j s.t.
gi(x*) =0, Vhj(x*)Th=0with j = 1,2,..., h and vectors Vh;(x*)
with j =1,2,..., h are linearly indipendent
e Constraints Qualification must hold both for equality constraints and
for the inequality constraints which are active (i.e. satisfied as
equality) in x*
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Constraints Qualification

Constraints Qualification are satisfied if:

@ the set of equality constraints and active inequality constraints
gradients are linearly independent in x*; (as in the theorem)
o if all constraints are linear

o if all constraints are convex and the feasible reagion has at least one
internal point

Definition A point x* which satisfies Constraints Qualification is called
regular
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

On constraints qualification

1IN A
D)

K)vﬁpﬁz )T

min  f(x,y) = (x —3)2 +y?
hi(x,y) =x*>+y? —1=0;
ha(x,y) =x—1=0.
in this problem the system can have solution even if the vectors Vh;(x*)
are linearly dipendent. This occur since —Vf(x*) can be generated by a
linear combination of a subset of the vectors Vh;(x*).
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

First order sufficient conditions for convex problems

First order sufficient conditions

Theorem We are given a function f(x) and h equality constraints

hj(x) =0, with j = 1,..., h, with f(x) and h; convex functions of class
C. Under the hypothesis that the Jacobian matrix J(x*) has full rank h,
if there exists A" s.t. (x*, A*) is a stationary point of the Lagrangean
function L(x,A) then x* is a local minimum of f(x).

16 /58



Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Quadratic model and linear equality constraints

Let us consider the special case of a quadratica model, with Q p.d.,
under linear equality constraints

min  f(x) = 3xTQx — b x
tc. Ax=d

Ais a full rank (h x n) matrix, with h < n.
With linear constraints, Constraints Qualification are satisfied.
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Quadratic model and linear equality constraints

The lagrangean function is
1
L(x,A) = EXTQX —b"x+ AT(d — Ax)

First order optimality condition for x* to be a minimum is that there
exisits A" s.t.:

Vel(x*,2") = Qx*—b—A"A"=0
Val(x*,A*) = Ax*—d=0

which can be written as

Ao )L

with solution
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

From inequality to equality constraints

Let us consider the general problem

First technique: from gi(x) < 0 to gi(x) + 6? = 0.
(Why do we square 6 7)

min f(x)
gj(x)—i—ﬂf =0 j=1,...,k
hi(x) -0 j=1,...,h

with lagrangean model:

Lx, 0 1) = F(x)+ 3 Me(0) + )+ Y
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

From inequality to equality constraints

First order necessary optimality conditions for x are

I VLS LW
géj — 26,=0, j=12... .k

gfj = G(x)+02=0, j=12.. .k

38:1- — h(x)=0, j=12....h

A (n+ 2k + h) X (n+ 2k + h) system

The k relations 2);0; = 0, with j = 1,2,..., k, are complementary slackness
conditions: \; = 0 when the constraint gj(x) < 0 is satified as a strict inequality, and
gj(x) =0 when X\; #0
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

The general case: KKT conditions

Let us consider the general problem

and its lagrangean model:

L(x, A\, p) = f(x Z Aigi(x) +Z;=1M1hj(x)
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

The general case: KKT conditions

Theorem We are given a general problem, where the functions f(x),
gj(x) and hj(x) are in C*. If x* is a local minimum and in x* constraints
qualification hold for equality and active constraints, then there are
Lagrange multiplier vector A* and pu*, s.t. the following conditions are

satisfied,
O) > 280D s ) —o =1 n
gi(x*) <0, j=1...,k
Xigi(x*) =0, j=1,... .,k
hj(x*) =0, j=1,...,h
by >0, J=1,... .,k

These conditions are often known as the Karush-Kuhn-Tucker conditions,
or KKT conditions for short.
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Constrained Optimization

The k conditions )\J’-kgj(x*) =0, with j =1,2,..., k, are complementarity
conditions; they imply that either constraint / is active or \¥ = 0 or
possibly both. In particular, the Lagrange multipliers corresponding to
inactive inequality constraints are zero.

If 1 C{1,2,..., k} denotes the subset of indices 1,2,..., k, of active
inequality constraints, we can rewrite the first n conditions as

—Vif(x Z)\ Vgi(x*) +Z hj(x*) (6)

Jjel

in a stationary point x* the antigradient of f is given by a nonnegative linear
combination of the gradient vectors of the active inequality constraints and of

a linear combination of the gradient vectors of the equality constraints
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions
Second order optimality conditions
Quadratic model with linear inequality constraints

Example

In the optimum x* = (1,0)

the constraints g» e g3 are active, and the vectors Vga(x,y) and Vgz(x,y),
(0,—1)7 and (2,0)7, are linearly independent

—Vf(x,y) is (1,—1)T and

A*is (0,1,1/2)7.

—Vf(x,y) belongs to the cone given by the nonnegative linear combination of

the gradients of active constraints in x* ,
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Example

In the generic point x = (0, 1)

@ the constraints g1 e g3 are active, and the vectors Vgi(x,y) and Vgz(x,y),
(—1,0)T and (2,0)7, are linearly independent

@ —Vf(x,y), is (3,-3)T and
@ X\is (—3,0,—-3/2)7 and violates the non negativity conditions

@ —Vf(x,y) lies outside the cone given by the nonnegative linear combination of
the gradients of active constraints in x
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Example

gi(x,y) =—x<0;
&(x,y) = -y <0;
hi(x,y) = x> +y> —1=0;

In the optimum x* = (1,0)
@ \*is (0,1) and pp = 1/2.
@ —Vf(x,y) belongs to the cone given by the nonnegative linear combination of
the gradients of active inequality constraints and by the linear combination of

the gradients of equality constraints
26 /58
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Feasible direction

Definition Given a feasible point x we call feasible direction set the set

F(x)={d | Vh(x)"d =0, j=1,...,h; Vgi(x)"d <0, jel}.
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Geometric interpretation

Example The feasible region X is the grey quarter of circle. Let us consider the not
optimal point (0,1). Since the inequality constraints are in the form of <, their
gradients point outside X. Following for a small distance the directions d s.t.
Vgj(x)Td < 0 we stay within X. Such direction are the blue cone. (0,1) is not an

optimum since the blue cone contains descent directions
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Geometric interpretation

On the contrary, (1,0) is an optimum since the blue cone (the
intersection of the halfspaces of the feasible directions of the active
constraints in the point) does not contain descent directions
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

A non regular point

In the optimal point x* = (1,0)

@ the constraints g1 e g» are active, and the vectors Vgi(x,y) and Vga(x, y),
(0,1)T and (0,—1)7, are linearly dependent

® F(x*)={(d,0)7 | d eRr}
@ —Vf(x,y) is (1,—1)7 and
@ no \* can exist
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

The convex case

Theorem We are given a general problem, where the functions f(x),
gj(x) and hj(x) are in C1. If f(x), gj(x) and h;(x) are convex functions
then KKT conditions are sufficient conditions.
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Second order optimality conditions

Definition Given a feasible point x* and moltiplier vectors A* and p*

which satisfy KKT conditions, we call critical cone the set

Clx" A", ") = {d € F(x") [Vhj(x*)Td =0, j € E; Vgi(x")Td =0, j € I, with A > 0}.
From KKT conditions we obtain

s\T g * *\T h * s\T g * * *
—VF(x*) d_%xjv&-(x ) d+zj:1ujwj(x )Td =0 Vd € C(x*,\*, u*).

The directions belonging to the critical cone are orthogonal to V£ (x)
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Second order optimality conditions

In the problem
min  f(x,y) = (x — 1.5)2 + y?
g1(X,y) =—x< 0;

&(x,y)=-y <0;
g3(x,y) =x*+y?—1<0;

The critical cone is C(x*,A*) = {(1,d)" | d >0},
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Second order optimality conditions

Theorem We are given a general problem, where the functions f(x),
gj(x) and hj(x) are in C2. If x* is a local minimum and in x* constraints
qualification hold for equality and active constraints, and the Lagrange
multiplier vector A* and p* satisfy the KKT conditions, then

d’V2 L(x* X*p*)d >0 Vd € C(x*, A", pu*).
where the hessian matrix of the lagrangean function is
V2, L(x* Ap*) = )+ > A Vigi(x Z (x*).
jel

We are requiring the semidefinite potiveness of the hessian matrix of the
lagrangean function in the critical cone
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Second order sufficient optimality conditions

If the hessian matrix of the lagrangean function is positive definite in the
critical cone then the KKT conditions become sufficient

Theorem We are given a general problem, where the functions f(x),
gj(x) and hj(x) are in C2. If x* is feasible point and the Lagrange

multiplier vector X* and p* satisfy the KKT conditions, and the
following relation holds

d"V2, L(x* X'p*)d > 0 Vd € C(x*, A", pu*)
then x* is a strict local minimum

Please observe that here we no more require constraints qualification.
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Second order sufficient optimality conditions

Example
min  f(x,y) = 2(x + 1.5)% + 10y2
gilxy) =1-x>—y2<0;
A global minimum at (—1.5,0)" where g; is not active and \* = 0, and
a strict local minimum % = (1,0) where g1(1,0) = 0.

X
o »
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Second order sufficient optimality conditions

In the strict local minimum % = (1,0) the KKT conditions hold

(™) (5) - (8) - (8)-(3)
with ¥ =5.

The hessian matrix of the lagrangean function is

2 ey (4 0\ (2 0\_[4-22 0 (-6 0
vXXL("”\l)—(o 20)A1(0 2)—( 0 20-2a )7\ o 10
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Second order sufficient optimality conditions

In %, Vg1(%) = (2,0)7 and the critical cone is C(%,A}) = {(0,d)7 | d € R}.
Hence we obtain,

T
Te2 1re g [0 6 0\ [0\ . 5
<= () (F 8)=(9) w00

In X, second order sufficient optimality conditions hold and then X is a
strict local minimum.
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Quadratic model with linear inequality constraints

min g(x) = ixTQx + b x
tc. Ax>d

x* = x9=—Q b when Ax* > d.

Quite relevant problem: it is iterativelly solved as a subproblem by some
optimization algorithms.

If we know the set of active constraints then we reduce to the case of a

quadratic model with equality constraints: which is easily solved when Q
is p.d.

We will sketch the Active set method for convex QP
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Primal Active set method for convex QP

@ Primal active-set methods, at each iteration k, solves a quadratic subproblem in
which the inequality constraints in the working set W) are imposed as equalities

@ the gradients a; of the constraints in W, are linearly independent
@ first check whether x; minimizes the quadratic g(x) in Wj
@ If not, compute a step p by solving a suitable equality-constrained QP
subproblem on Wy
o p=Xx—Xk gk = Qxx+b
o px = argmin g(x) = argmin q(xx + p) = argmin 2p” Qp+ g¢ p + p«
s.t. a,-Tp =0,/ € Wy, where p, = %XZQX/( + b xy is independent
from p
o for each i € Wi, we have a] (xx + apk) = a] xx = d; for all a. The
constraints in W are also satisfied at xx + apk.
o if px # 0 then

. . b,-—a'-Txk . T .
® ajp = min 1,m|n{ﬁ ci g W, al p <0} );
I
@ Xpy1 = Xp + Qppi

o else test KKT or update Wy
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Optimality conditions with equality constraints
Analitical conditions The general case: KKT conditions

Second order optimality conditions

Quadratic model with linear inequality constraints

Active set method for convex QP

Active Set Method;
Choose a feasible xp;
Set Wp to be a subset of the active constraints at xq;
for k=0,1,2,...;
Pk = arg min{%pTGerg,z—p s.t. al.Tp =0,i € Wi};
if p =0;
Compute \; s.t. ZiEWk aidi = Gxy, +c¢;
if \; >0 for all ie W, NI
Stop x* = x;
else
Jj=arg minjekal Ajs
X1 = X Wiea = Wi\t

else \x pr#0 *\
. . b,-fa:rxk . T
ag = min l,mln{ﬁ 1P g Wi, a! pe <0} s

X1 = Xp + OpPrs

if oy <1;

Wii1 = Wi U{ a blocking constraint };
else

Wk+1 = Wi

endfor
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Quadratic penalty method

Barrier methods

Projected gradient method

Augmented lagrangean method

SQP (Sequential Quadratic Programming)

Algorithms

Quadratic penalty method

Transform a constrained problem into an unconstrained one.

min  f(x)
hi(x) =0 j=1,...,h

Penalty function
h
_ 2
p) =3 K ()

The quadratic penalty model is
h
min g(x) = f(x) + « Z hjz(x).
j=1

By driving a to oo, we penalize the constraint violations with increasing
severity. It makes good intuitive sense to consider a sequence of values
{ak} with @ — 0o as k — oo, and to seek the approximate minimizer x
of q(x; ay) for each k. Because the penalty terms are smooth, we can

use techniques from uncostrained optimization
42 /58



Quadratic penalty method

Barrier methods

Projected gradient method

Augmented lagrangean method

SQP (Sequential Quadratic Programming)

Algorithms

Quadratic penalty method

First and second order optimality conditions are that
* * h * *
Vq(x*) = VF(x*) + 2a Zj:1 hi(x*)Vhi(x*) = 0,
and that the hessian matrix of g(x) in x*
h
V3q(x") = V(x") +2a ) (h(x")V2h(x") + Vhi(x")Vhi(x")T)
=

is positive semidefinite
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Quadratic penalty method

Barrier methods

Projected gradient method

Augmented lagrangean method

SQP (Sequential Quadratic Programming)

Algorithms

Quadratic penalty method

We can prove that when @ — oo then x*(a) — to a local minimum of
the constrained problem, moreover

lim 2ahi(x*(a)) = A}

a— 00

where A7 is the optimal value of the lagrangean multiplier of the j-th
constraint.
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Quadratic penalty method

Barrier methods

Projected gradient method

Augmented lagrangean method

SQP (Sequential Quadratic Programming)

Algorithms

Quadratic penalty method

The hessian matrix of g is composed by two terms.
V2q(x) = VA(x) 420 Y (hi(x )V hy(x") + Thy(x") T hy(x)T)
The first term is
2f(x*) + 2a Zle hi(x*)V2hy(x")
which for & — co becomes
)+ Z X V2hi(x*)

i.e. the hessian matrix of the Lagrangean function in x*
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Quadratic penalty method

Barrier methods

Projected gradient method

Augmented lagrangean method

SQP (Sequential Quadratic Programming)

Algorithms

Quadratic penalty method

The hessian matrix of g is composed by two terms.
h
Vq(x*) = V2f(x") + 2 Zj:l (hi(x*)V2hi(x*) + Vhi(x*)Vhi(x*)T)
The second term is
Zh

j=

) 2aVhi(x*)Vhi(x*)T
whose norm diverge for a — oo

From a practical viewpoint the matrix hessian becomes increasingly
illconditioned as far as we converge to x*.
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Quadratic penalty method

Barrier methods

Projected gradient method

Augmented lagrangean method

SQP (Sequential Quadratic Programming)

Algorithms

Barrier methods

Let consider an inequality constrained problem

min  f(x)
gi(x) <0 j=1,...,k

We devide the feasible region into
@ a frontier set S¢ := {x € R"|g(x) = 0} and
@ ainner set Siy 1= {x € R" |g(x) < 0}

Barrier methods apply when S, # 0. They use a barrier function v(x) which is
continous in Sy, and s.t. v(x) — oo when x — S¢.

The model is
min b(x) = f(x) + av(x).

The logaritmic barrier model is

k

v(x)=-)_  log(~g(x))

From a practical viewpoint the matrix hessian becomes increasingly illconditioned for

increasing value of a.
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Quadratic penalty method

Barrier methods
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Due to Rosen (1960, 1961). Let us start with linear equality constraints

min  f(x)
tc. Ax=Db

Start with a feasible solution x’, Ax’ = b, and look for an improved
solution x = x’ + ad. Direction d must

@ be normalized, i.e. ||d|| =1
o satisfy A(x' + ad) — b =0, which is Ad =0
e minimize the directional derivative V£(x')"d in x’
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This leads to
min  Vf(x')Td
te. 1-d’d=0
Ad =0

The lagrangean function is
L(d, X X)) = VF(x')Td +ATAd + X\o(1 — d' d)

and by imposing the necessary optimality conditions

Vgl = VIX)+ATA=20d =0
Val = (1-d7d)=0

you (try as an exercise) obtain

(I — AT(AAT)"TA) Vf(x')

d=- [(T= AT (AAT)=14) VF(x')]
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(1 — AT(AAT)"1A) VF(x')
[(1 — AT(AAT)=LA) VE(x')||

d—=—

—Vf(x’) is the most improving direction of f(x) in x’
d is the projection of —Vf(x’) into the hyperplane Ax = b.
The matrix P = (I — AT(AAT)7tA) is called projection matrix

In practice, xx+1 = xx + ad, you use d = —PVf(x'), and you
determine a with, e.g. Armijo
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In a problem with generic equality constraints
min  f(x)
hi(x)=0, j=1,...,h

we use Taylor for obtain linear constraints nearby the current feasible
solution x’

(x) = hy(x') + ()T (x — X',
hence
Vhi(x')Tx —Vh(x)Tx' =0, j=1,...,h

9

N T e
By setting A = [8’:9(: )} ,and b= {3%(: )} x', we obtain the following
linear constrained model

min  f(x)

tc. Ax=0b

The projection matrix P(x’) = (I — AT(AAT)~1A) , depends from x’ through the
matrix A, and we use d = —P(x')Vf(x'). 51/58
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Since x;, = x’, for every value of a > 0, the new point x”/ = x; + ad, likely does not
satisfy the original nonlinear equality constraints, h(x’") # 0, we need to apply a
corrective step x” — xy1.
By imposing

P(xi)(xk41 — x"") = 0,
and h(xy,1) = 0 we obtain

X1 = X" — AT(AAT)"Th(x").

m

X
N — @0

The corrective step is applied till h(x, 1) is small enough while the whole algorithm
stops when P(x')Vf(x’) = 0.
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This approach (Bertsekas 1976) combines the use of the langrangean
function with the quadratic penalty functions. The idea is that of
approximating the lagrangean multipliers.

In a generic problem with equality constraints

min  f(x)
hi(x)=0, j=1,....h

We introduce the augmented langrangean function:

h

Ll A ) = F0+ 30 Al + 03" BR(x)
When \; = 0 we have the penalty function
Moreover if we know AF for each p > 0 by minimizing L£(x, A, p) with respect to x we
get x* (Fletcher 1987)
If Ak is a valid approximation of A*, then we can approximate x* by minimizing
L(x, Ak, p) even for small values of p
p must guarantee that £(x, )\k,p) has a local minimum with respect to x and not just

a stationary point
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To understand this technique it suffices to compare the stationary
conditions of L and £ in x*.
For L :

oL of h K 8/7 )
aXi_ax,-Jij: (A +2h)8x, 0, i=1,...,n

For L : o1 o h .
= WOhi _ o
aXi B 3x,- +ZJ‘:1 )\J aX,' 0) / 1,-..,I7.

We see that when the minimum of £ approaches to x*, then:

k *
S 4 2ph; = Al
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This lead to the following algorithm
@ Set k = 0; initialize ¥ and 0
o While ||£(x, A, p)|| > & do

o compute xj by solving £(x, A¥, p) with respect to x, with your
preferred approach for unconstrained optimization
o update A\ with

k k *
A= A+ 2phi(xk)
e Eventualy update p.

55 /58



Quadratic penalty method
Barrier methods
Projected gradient method

Algorithms Augmented lagrangean method

SQP (Sequential Quadratic Programming)

SQP (Sequential Quadratic Programming)

The idea: apply Newton's method for finding (x*, A*) from the KKT conditions of
constrained problem.
Each Newton step can be reduced to the solution of a QP.

Let us consider the general problem

min  f(x)
g(x) <0 i=1...k ™)
hi(x) =0 j=1,....h

and its lagrangean model

L(x, A, p) = f(x Z Agj(x Z

We are given an approximation (X, Ak, ), with Ay >0, k=1,2,...,
of the solution and of the lagrangean multipliers and we know the hessian
matrix of L

k h
V2L(xk) = H(xk) + ijl A2 (xi) + ijl 12 h(x).
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We can prove that the Newton direction d for computing x,.1 from x,
Xi1 1= Xk +dy

can be obtained by solving the following QP with equality and inequality
constraints:

min ¢(d) — f(xk)+Vf(xk)Td+%dTVQL(xk)d

glxi) + {8g(f§jk)]Td<0,

h(xy) + {8";)’:“] "do

By solving the QP model we get, besides d and xj.1, also Axy1 and
Myy1- So we have all the data for the next iteration

The stopping criterion is on a threshold on the norm of.d
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The SQP method returns a point which satisfies KKT conditions. Hence
all not regular points (those which do not satisfy constraints
qualification) are missed by the algorithm.
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