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Constrained Optimization

We want to minimize functions subject to constraints on the variables

min f (x)
gj(x) ≤ 0 j = 1, . . . , k;
hj(x) = 0 j = 1, . . . , h

with x ∈ Rn.
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Example I

In presence of constraints a difficult problem can become easy:

f (x) =
1
5
x5 − 3

2
x4 +

11
3
x3 − 3x2.

is not convex in R, while it is convex, e.g. in the interval X = [0.6, 1.4].
Starting from x0 ∈ X any scalar optimization technique would find the
global optimum.
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Example II

Let us consider the following problem

min f (x , y) = (x − 1)2 + (y + 1)2

g1(x , y) = 1+ 1
4 sin(8x)− y ≤ 0;

g2(x , y) = −y ≤ 0.

The objective function f is convex and allows just one stationary
point (1,−1)
(1,−1) optimum of the unconstrained problem
the constrained problem has an infinite number of local minima
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Optimality conditions: equality constraints

Let us consider the following problem

min f (x)
hj(x) = 0 j = 1, . . . , h < n

and its Lagrangean function

L(x ,λ) = f (x) +
∑h

j=1
λjhj(x) = f (x) + λTh(x).
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First order optimality conditions

Optimality conditions can be given by means of the Lagrangean function

Theorem We are given a function f (x) and h equality constraints
hj(x) = 0, with j = 1, . . . , h, with f (x) and hj of class C 1. Under the
hypothesis that the vectors ∇hj(x∗) are linearly indipendent, if x∗ is a
local minimum of f (x) which satisfies the equality constraints, then there
exists λ∗ s.t. (x∗,λ∗) is a stationary point of the Lagrangean function
L(x ,λ):

∂L
∂xi

=
∂f (x∗)
∂xi

+
∑h

j=1
λ∗j
∂hj(x∗)
∂xi

= 0, i = 1, 2, . . . , n (1)

∂L
∂λj

= hj(x∗) = 0, j = 1, 2, . . . , h (2)
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First order optimality conditions

The conditions

∂L
∂xi

=
∂f (x)
∂xi

+
∑h

j=1
λj
∂hj(x)
∂xi

= 0, i = 1, 2, . . . , n (3)

∂L
∂λj

= hj(x∗) = 0, j = 1, 2, . . . , h (4)

are a system of n + h equations in n + h, x , λ, unknowns.

The first n conditions can be written as ∇f (x∗) + J(x∗)Tλ∗ = 0, or

−∇f (x∗) =
∑h

j=1
λ∗j ∇hj(x∗)

i.e., in a stationary point x∗ the antigradient of f is given by a linear
combination of the gradient vectors of the equality constraints
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Example

Example Given the problem

min f (x , y) = (x − 2)2 + (y − 2)2

h1(x , y) = 1− x2 − y2 = 0.

In the optimum point (
√

2
2 ,
√

2
2 )

the antigradient of f , −∇f (x , y) = −(2(x − 2), 2(y − 2))T , is the
vector (4−

√
2, 4−

√
2)T

the gradient of h1, ∇h(x , y) = (−2x ,−2y)T , is −(
√
2,
√
2)

in the figure on the right the to vectors are collinear
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Geometric interpretation

On the left: point (0, 1)
Hyperplane F = {s ∈ Rn s.t. ∇h(x , y)T s = 0}
F = first order approximation of h(x , y)
Subspace D = {d ∈ Rn s.t. ∇f (x , y)Td < 0}
D = all descent directions (shadowed halfcircle)
Point not optimal: there are descent directions which belong to F
(along them, at least for a infinitesimal distance, we improve f while satisfying the
equality constraint)

On the right: point (
√

2
2 ,
√

2
2 )

It is optimal since no descent direction belongs to a F
Here the vectors −∇f (x , y) and ∇h(x , y) are collinear.
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On constraints qualification

The First order optimality conditions are valid

[...] Under the hypothesis that the vectors ∇hj(x∗) are linearly
indipendent [...]

Example Given the problem

min f (x , y) = (x − 2)2 + (y − 2)2

h1(x , y) = x2 + y2 − 1 = 0;
h2(x , y) = x − 1 = 0.

The optimum is the only feasible point (1, 0).
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On constraints qualification

In (1, 0) the vectors ∇h1(x , y) and ∇h2(x , y) are (2, 0)T and (1, 0)T :
they are linearly dependent.
In (1, 0) the antigradient −∇f (x , y) is (2, 4)T
The system of equations has no solutions for λ1 and λ2(

2
4

)
= λ1

(
2
0

)
+ λ2

(
1
0

)
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Constraints Qualification

When considering unconstrained problems, all local minima satisfy
necessary optimality conditions, and theoretically all local minima
can be found among stationary points.
When considering constrained problems, not necessarily all local
minima can be found among those which satisfy analitical conditions,

−∇f (x∗) =
∑h

j=1
λ∗j ∇hj(x∗)

but only those which satisfy the so called Constraints Qualification
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Constraints Qualification

Constraints Qualification A point x∗ satisfies constraint qualifications if
there exists a vector h s.t. ∇gj(x∗)Th < 0, for all indeces j s.t.
gj(x∗) = 0, ∇hj(x∗)Th = 0 with j = 1, 2, . . . , h and vectors ∇hj(x∗)
with j = 1, 2, . . . , h are linearly indipendent

Constraints Qualification must hold both for equality constraints and
for the inequality constraints which are active (i.e. satisfied as
equality) in x∗
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Constraints Qualification

Constraints Qualification are satisfied if:

the set of equality constraints and active inequality constraints
gradients are linearly independent in x∗; (as in the theorem)
if all constraints are linear
if all constraints are convex and the feasible reagion has at least one
internal point

Definition A point x∗ which satisfies Constraints Qualification is called
regular
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On constraints qualification

min f (x , y) = (x − 3)2 + y2

h1(x , y) = x2 + y2 − 1 = 0;
h2(x , y) = x − 1 = 0.

in this problem the system can have solution even if the vectors ∇hj(x∗)
are linearly dipendent. This occur since −∇f (x∗) can be generated by a
linear combination of a subset of the vectors ∇hj(x∗).
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First order sufficient conditions for convex problems

First order sufficient conditions

Theorem We are given a function f (x) and h equality constraints
hj(x) = 0, with j = 1, . . . , h, with f (x) and hj convex functions of class
C 1. Under the hypothesis that the Jacobian matrix J(x∗) has full rank h,
if there exists λ∗ s.t. (x∗,λ∗) is a stationary point of the Lagrangean
function L(x ,λ) then x∗ is a local minimum of f (x).
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Quadratic model and linear equality constraints

Let us consider the special case of a quadratica model, with Q p.d.,
under linear equality constraints

min f (x) = 1
2x

TQx − bTx
t.c . Ax = d

A is a full rank (h × n) matrix, with h < n.
With linear constraints, Constraints Qualification are satisfied.
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Quadratic model and linear equality constraints

The lagrangean function is

L(x ,λ) =
1
2
xTQx − bTx + λT (d − Ax)

First order optimality condition for x∗ to be a minimum is that there
exisits λ∗ s.t.:

∇xL(x∗,λ∗) = Qx∗ − b − ATλ∗ = 0
∇λL(x∗,λ∗) = Ax∗ − d = 0

which can be written as[
Q −AT

A 0

] [
x∗
λ∗

]
=

[
b
d

]
with solution [

x∗
λ∗

]
=

[
Q −AT

A 0

]−1 [ b
d

]
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From inequality to equality constraints

Let us consider the general problem

min f (x)
gj(x) ≤ 0 j = 1, . . . , k;
hj(x) = 0 j = 1, . . . , h

First technique: from gi (x) ≤ 0 to gi (x) + θ2
i = 0.

(Why do we square θ ?)

min f (x)
gj(x) + θ2

j = 0 j = 1, . . . , k;
hj(x) = 0 j = 1, . . . , h

with lagrangean model:

L(x ,θ,λ,µ) = f (x) +
∑k

j=1
λj(gj(x) + θ2

j ) +
∑h

j=1
µjhj(x)
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From inequality to equality constraints

First order necessary optimality conditions for x are

∂L
∂xi

=
∂f (x)
∂xi

+
∑k

j=1
λj
∂gj(x)
∂xi

+
∑h

j=1
µj
∂hj(x)
∂xi

= 0, i = 1, 2, . . . , n

∂L
∂θj

= 2λjθj = 0, j = 1, 2, . . . , k

∂L
∂λj

= gj(x) + θ2
j = 0, j = 1, 2, . . . , k

∂L
∂µj

= hj(x) = 0, j = 1, 2, . . . , h

A (n + 2k + h)× (n + 2k + h) system

The k relations 2λjθj = 0, with j = 1, 2, . . . , k, are complementary slackness
conditions: λj = 0 when the constraint gj (x) ≤ 0 is satified as a strict inequality, and
gj (x) = 0 when λj 6= 0
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The general case: KKT conditions

Let us consider the general problem

min f (x)
gj(x) ≤ 0 j = 1, . . . , k;
hj(x) = 0 j = 1, . . . , h

(5)

and its lagrangean model:

L(x ,λ,µ) = f (x) +
∑k

j=1
λjgj(x) +

∑h

j=1
µjhj(x)
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The general case: KKT conditions

Theorem We are given a general problem, where the functions f (x),
gj(x) and hj(x) are in C 1. If x∗ is a local minimum and in x∗ constraints
qualification hold for equality and active constraints, then there are
Lagrange multiplier vector λ∗ and µ∗, s.t. the following conditions are
satisfied,

∂f (x∗)
∂xi

+
∑k

j=1 λ
∗
j
∂gj (x∗)
∂xi

+
∑h

j=1 µ
∗
j
∂hj (x∗)
∂xi

= 0, i = 1, . . . , n
gj(x∗) 6 0, j = 1, . . . , k
λ∗j gj(x∗) = 0, j = 1, . . . , k
hj(x∗) = 0, j = 1, . . . , h
λ∗j ≥ 0, j = 1, . . . , k

These conditions are often known as the Karush-Kuhn-Tucker conditions,
or KKT conditions for short.
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Constrained Optimization

The k conditions λ∗j gj(x∗) = 0, with j = 1, 2, . . . , k , are complementarity
conditions; they imply that either constraint i is active or λ∗j = 0 or
possibly both. In particular, the Lagrange multipliers corresponding to
inactive inequality constraints are zero.

If I ⊆ {1, 2, . . . , k} denotes the subset of indices 1, 2, . . . , k, of active
inequality constraints, we can rewrite the first n conditions as

−∇f (x∗) =
∑
j∈I

λ∗j ∇gj(x∗) +
∑h

j=1
µ∗j ∇hj(x∗) (6)

i.e.

in a stationary point x∗ the antigradient of f is given by a nonnegative linear
combination of the gradient vectors of the active inequality constraints and of
a linear combination of the gradient vectors of the equality constraints
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Example

min f (x , y) = (x − 1.5)2 + (y + 0.5)2
g1(x , y) = −x ≤ 0;
g2(x , y) = −y ≤ 0;
g3(x , y) = x2 + y2 − 1 ≤ 0.

In the optimum x∗ = (1, 0)
the constraints g2 e g3 are active, and the vectors ∇g2(x , y) and ∇g3(x , y),
(0,−1)T and (2, 0)T , are linearly independent
−∇f (x , y), is (1,−1)T and
λ∗ is (0, 1, 1/2)T .
−∇f (x , y) belongs to the cone given by the nonnegative linear combination of
the gradients of active constraints in x∗
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Example

In the generic point x = (0, 1)

the constraints g1 e g3 are active, and the vectors ∇g1(x , y) and ∇g3(x , y),
(−1, 0)T and (2, 0)T , are linearly independent

−∇f (x , y), is (3,−3)T and

λ is (−3, 0,−3/2)T and violates the non negativity conditions

−∇f (x , y) lies outside the cone given by the nonnegative linear combination of
the gradients of active constraints in x
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Example

min f (x , y) = (x − 1.5)2 + (y + 0.5)2
g1(x , y) = −x ≤ 0;
g2(x , y) = −y ≤ 0;
h1(x , y) = x2 + y2 − 1 = 0;

In the optimum x∗ = (1, 0)

λ∗ is (0, 1) and µ1 = 1/2.
−∇f (x , y) belongs to the cone given by the nonnegative linear combination of
the gradients of active inequality constraints and by the linear combination of
the gradients of equality constraints

Here even a negative value for µ1 would have been acceptable 26 / 58
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Feasible direction

Definition Given a feasible point x we call feasible direction set the set

F (x) = {d | ∇hj(x)Td = 0, j = 1, . . . , h; ∇gj(x)Td ≤ 0, j ∈ I}.
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Geometric interpretation

Example The feasible region X is the grey quarter of circle. Let us consider the not
optimal point (0, 1). Since the inequality constraints are in the form of ≤, their
gradients point outside X . Following for a small distance the directions d s.t.
∇gj (x)Td ≤ 0 we stay within X . Such direction are the blue cone. (0, 1) is not an
optimum since the blue cone contains descent directions
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Geometric interpretation

On the contrary, (1, 0) is an optimum since the blue cone (the
intersection of the halfspaces of the feasible directions of the active
constraints in the point) does not contain descent directions
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A non regular point

min f (x , y) = (x − 1.5)2 + (y + 0.5)2

g1(x , y) = −2(x − 1)3 + y ≤ 0;
g2(x , y) = −y ≤ 0.

In the optimal point x∗ = (1, 0)

the constraints g1 e g2 are active, and the vectors ∇g1(x , y) and ∇g2(x , y),
(0, 1)T and (0,−1)T , are linearly dependent

F (x∗) = {(d , 0)T | d ∈ R}
−∇f (x , y), is (1,−1)T and

no λ∗ can exist
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The convex case

Theorem We are given a general problem, where the functions f (x),
gj(x) and hj(x) are in C 1. If f (x), gj(x) and hj(x) are convex functions
then KKT conditions are sufficient conditions.
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Second order optimality conditions

Definition Given a feasible point x∗ and moltiplier vectors λ∗ and µ∗

which satisfy KKT conditions, we call critical cone the set

C(x∗,λ∗,µ∗) = {d ∈ F (x∗) |∇hj (x∗)Td = 0, j ∈ E ; ∇gj (x∗)Td = 0, j ∈ I , with λ∗j > 0}.

From KKT conditions we obtain

−∇f (x∗)Td =
∑
j∈I

λ∗j ∇gj (x∗)Td +
∑h

j=1
µ∗j ∇hj (x∗)Td = 0 ∀d ∈ C(x∗,λ∗,µ∗).

The directions belonging to the critical cone are orthogonal to ∇f (x)
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Second order optimality conditions

In the problem

min f (x , y) = (x − 1.5)2 + y2

g1(x , y) = −x ≤ 0;
g2(x , y) = −y ≤ 0;
g3(x , y) = x2 + y2 − 1 ≤ 0;

The critical cone is C (x∗,λ∗) = {(1, d)T | d ≥ 0}.
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Second order optimality conditions

Theorem We are given a general problem, where the functions f (x),
gj(x) and hj(x) are in C 2. If x∗ is a local minimum and in x∗ constraints
qualification hold for equality and active constraints, and the Lagrange
multiplier vector λ∗ and µ∗ satisfy the KKT conditions, then

dT∇2
x,xL(x

∗,λ∗µ∗)d ≥ 0 ∀d ∈ C (x∗,λ∗,µ∗).

where the hessian matrix of the lagrangean function is

∇2
x,xL(x

∗,λ∗µ∗) = H(x∗) +
∑
j∈I

λ∗j ∇2gj(x∗) +
∑h

j=1
µ∗j ∇2hj(x∗).

We are requiring the semidefinite potiveness of the hessian matrix of the
lagrangean function in the critical cone
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Second order sufficient optimality conditions

If the hessian matrix of the lagrangean function is positive definite in the
critical cone then the KKT conditions become sufficient

Theorem We are given a general problem, where the functions f (x),
gj(x) and hj(x) are in C 2. If x∗ is feasible point and the Lagrange
multiplier vector λ∗ and µ∗ satisfy the KKT conditions, and the
following relation holds

dT∇2
x,xL(x

∗,λ∗µ∗)d > 0 ∀d ∈ C (x∗,λ∗,µ∗)

then x∗ is a strict local minimum

Please observe that here we no more require constraints qualification.
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Second order sufficient optimality conditions

Example
min f (x , y) = 2(x + 1.5)2 + 10y2

g1(x , y) = 1− x2 − y2 ≤ 0;

A global minimum at (−1.5, 0)T where g1 is not active and λ∗ = 0, and
a strict local minimum x̃ = (1, 0) where g1(1, 0) = 0.
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y 
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Second order sufficient optimality conditions

In the strict local minimum x̃ = (1, 0) the KKT conditions hold(
4(x + 1.5)

20y

)
− λ1

(
2x
2y

)
=

(
10
0

)
− λ1

(
2
0

)
=

(
0
0

)
with λ∗1 = 5.
The hessian matrix of the lagrangean function is

∇2
xxL(x̃ , λ∗1) =

(
4 0
0 20

)
−λ∗1

(
2 0
0 2

)
=

(
4− 2λ∗1 0

0 20− 2λ∗1

)
=

(
−6 0
0 10

)

 

1-1 
x 

y 

-1.5 
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Second order sufficient optimality conditions

In x̃ , ∇g1(x̃) = (2, 0)T and the critical cone is C(x̃ , λ∗1) = {(0, d)T | d ∈ R}.

Hence we obtain,

dT∇2
x,xL(x̃ , λ

∗)d =

(
0
d

)T ( −6 0
0 10

)
=

(
0
d

)
= 10d2 > 0.

In x̃ , second order sufficient optimality conditions hold and then x̃ is a
strict local minimum.
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Quadratic model with linear inequality constraints

min q(x) = 1
2x

TQx + bTx
t.c . Ax ≥ d

x∗ = x0 = −Q−1b when Ax∗ ≥ d .
Quite relevant problem: it is iterativelly solved as a subproblem by some
optimization algorithms.
If we know the set of active constraints then we reduce to the case of a
quadratic model with equality constraints: which is easily solved when Q
is p.d.
We will sketch the Active set method for convex QP
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Primal Active set method for convex QP

Primal active-set methods, at each iteration k, solves a quadratic subproblem in
which the inequality constraints in the working set Wk are imposed as equalities

the gradients ai of the constraints in Wk are linearly independent

first check whether xk minimizes the quadratic q(x) in Wk

If not, compute a step p by solving a suitable equality-constrained QP
subproblem on Wk

p = x − xk , gk = Qxk + b
pk = argmin q(x) = argmin q(xk + p) = argmin 1

2pTQp + gT
k p + ρk

s.t. aT
i p = 0, i ∈Wq, where ρk = 1

2xT
k Qxk + bTxk is independent

from p
for each i ∈Wk , we have aT

i (xk + αpk) = aT
i xk = di for all α. The

constraints in Wk are also satisfied at xk + αpk .
if pk 6= 0 then

αk = min
(
1,min{ bi−aT

i xk
aT
i pk

: i /∈Wk , aT
i pk < 0}

)
;

xk+1 = xk + αkpk

else test KKT or update Wk
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Active set method for convex QP

Active Set Method;
Choose a feasible x0;
Set W0 to be a subset of the active constraints at x0;
for k = 0, 1, 2, . . .;

pk = argmin{ 1
2pTGp + gT

k p s.t. aT
i p = 0, i ∈Wk};

if pk = 0;
Compute λi s.t.

∑
i∈Wk

aiλi = Gxk + c;
if λi ≥ 0 for all i ∈Wk ∩ I

Stop x∗ = xk;
else

j = argminj∈Wk∩I λj;
xk+1 = xk ;Wk+1 = Wk\{j};

else \∗ pk 6= 0 ∗ \

αk = min
(
1,min{ bi−aT

i xk
aT
i pk

: i /∈Wk , aT
i pk < 0}

)
;

xk+1 = xk + αkpk;
if αk < 1;

Wk+1 = Wk ∪ { a blocking constraint };
else

Wk+1 = Wk;
endfor

41 / 58



Analitical conditions
Algorithms

Quadratic penalty method
Barrier methods
Projected gradient method
Augmented lagrangean method
SQP (Sequential Quadratic Programming)

Quadratic penalty method

Transform a constrained problem into an unconstrained one.

min f (x)
hj(x) = 0 j = 1, . . . , h;

Penalty function

p(x) =
∑h

j=1
h2
j (x)

The quadratic penalty model is

min q(x) = f (x) + α

h∑
j=1

h2
j (x).

By driving α to ∞, we penalize the constraint violations with increasing
severity. It makes good intuitive sense to consider a sequence of values
{αk} with α→∞ as k →∞, and to seek the approximate minimizer xk
of q(x ;αk) for each k. Because the penalty terms are smooth, we can
use techniques from uncostrained optimization
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Quadratic penalty method

min q(x) = f (x) + α

h∑
j=1

h2
j (x).

First and second order optimality conditions are that

∇q(x∗) = ∇f (x∗) + 2α
∑h

j=1
hj(x∗)∇hj(x∗) = 0,

and that the hessian matrix of q(x) in x∗

∇2q(x∗) = ∇2f (x∗) + 2α
∑h

j=1
(hj(x∗)∇2hj(x∗) +∇hj(x∗)∇hj(x∗)T )

is positive semidefinite
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Quadratic penalty method

We can prove that when α→∞ then x∗(α) → to a local minimum of
the constrained problem, moreover

lim
α→∞

2αhj(x∗(α)) = λ∗j

where λ∗j is the optimal value of the lagrangean multiplier of the j-th
constraint.
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Quadratic penalty method

The hessian matrix of q is composed by two terms.

∇2q(x∗) = ∇2f (x∗) + 2α
∑h

j=1
(hj(x∗)∇2hj(x∗) +∇hj(x∗)∇hj(x∗)T )

The first term is

∇2f (x∗) + 2α
∑h

j=1
hj(x∗)∇2hj(x∗)

which for α→∞ becomes

∇2f (x∗) +
∑h

j=1
λ∗j ∇2hj(x∗)

i.e. the hessian matrix of the Lagrangean function in x∗
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Quadratic penalty method

The hessian matrix of q is composed by two terms.

∇2q(x∗) = ∇2f (x∗) + 2α
∑h

j=1
(hj(x∗)∇2hj(x∗) +∇hj(x∗)∇hj(x∗)T )

The second term is ∑h

j=1
2α∇hj(x∗)∇hj(x∗)T

whose norm diverge for α→∞

From a practical viewpoint the matrix hessian becomes increasingly
illconditioned as far as we converge to x∗.

46 / 58



Analitical conditions
Algorithms

Quadratic penalty method
Barrier methods
Projected gradient method
Augmented lagrangean method
SQP (Sequential Quadratic Programming)

Barrier methods

Let consider an inequality constrained problem

min f (x)
gj(x) ≤ 0 j = 1, . . . , k;

We devide the feasible region into
a frontier set Sf := {x ∈ Rn |g(x) = 0} and
a inner set Sint := {x ∈ Rn |g(x) < 0}

Barrier methods apply when Sint 6= ∅. They use a barrier function v(x) which is
continous in Sint , and s.t. v(x)→∞ when x → Sf .
The model is

min b(x) = f (x) + αv(x).

The logaritmic barrier model is

v(x) = −
∑k

i=1
log(−gj(x))

From a practical viewpoint the matrix hessian becomes increasingly illconditioned for
increasing value of α.
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Projected gradient method

Due to Rosen (1960, 1961). Let us start with linear equality constraints

min f (x)
t.c . Ax = b

Start with a feasible solution x ′, Ax ′ = b, and look for an improved
solution x = x ′ + αd . Direction d must

be normalized, i.e. ||d || = 1
satisfy A(x ′ + αd )− b = 0, which is Ad = 0
minimize the directional derivative ∇f (x ′)Td in x ′
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Projected gradient method

This leads to
min ∇f (x ′)Td
t.c . 1− dTd = 0

Ad = 0

The lagrangean function is

L(d ,λ, λ0) = ∇f (x ′)Td + λTAd + λ0(1− dTd )

and by imposing the necessary optimality conditions

∇dL = ∇f (x ′) + λTA− 2λ0d = 0
∇λL = Ad = 0
∇λ0L = (1− dTd) = 0

you (try as an exercise) obtain

d = −
(
I − AT (AAT )−1A

)
∇f (x ′)∥∥(I − AT (AAT )−1A
)
∇f (x ′)

∥∥
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Projected gradient method

d = −
(
I − AT (AAT )−1A

)
∇f (x ′)

‖(I − AT (AAT )−1A)∇f (x ′)‖

−∇f (x ′) is the most improving direction of f (x) in x ′

d is the projection of −∇f (x ′) into the hyperplane Ax = b.
The matrix P =

(
I − AT (AAT )−1A

)
is called projection matrix

In practice, xk+1 = xk + αd , you use d = −P∇f (x ′), and you
determine α with, e.g. Armijo
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Projected gradient method

In a problem with generic equality constraints

min f (x)
hj(x) = 0, j = 1, . . . , h

we use Taylor for obtain linear constraints nearby the current feasible
solution x ′

hj(x) = hj(x ′) +∇hj(x ′)T (x − x ′),
hence

∇hj(x ′)Tx −∇hj(x ′)Tx ′ = 0, j = 1, . . . , h.

By setting A =
[
∂h(x ′)
∂x

]T
, and b =

[
∂h(x ′)
∂x

]T
x ′, we obtain the following

linear constrained model

min f (x)
t.c . Ax = b

The projection matrix P(x ′) =
(
I − AT (AAT )−1A

)
, depends from x ′ through the

matrix A, and we use d = −P(x ′)∇f (x ′). 51 / 58
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Projected gradient method
Since xk = x ′, for every value of α > 0, the new point x ′′ = xk + αd , likely does not
satisfy the original nonlinear equality constraints, h(x ′′) 6= 0, we need to apply a
corrective step x ′′ → xk+1.
By imposing

P(xk)(xk+1 − x ′′) = 0,
and h(xk+1) = 0 we obtain

xk+1 ≈ x ′′ − AT (AAT )−1h(x ′′).

The corrective step is applied till h(xk+1) is small enough while the whole algorithm
stops when P(x ′)∇f (x ′) ≈ 0.
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Augmented lagrangean method

This approach (Bertsekas 1976) combines the use of the langrangean
function with the quadratic penalty functions. The idea is that of
approximating the lagrangean multipliers.
In a generic problem with equality constraints

min f (x)
hj(x) = 0, j = 1, . . . , h

We introduce the augmented langrangean function:

L(x ,λ, ρ) = f (x) +
∑h

j=1
λjhj(x) + ρ

∑h

j=1
h2
j (x)

When λj = 0 we have the penalty function
Moreover if we know λ∗j for each ρ > 0 by minimizing L(x ,λ, ρ) with respect to x we
get x∗ (Fletcher 1987)
If λk is a valid approximation of λ∗, then we can approximate x∗ by minimizing
L(x ,λk , ρ) even for small values of ρ
ρ must guarantee that L(x ,λk , ρ) has a local minimum with respect to x and not just
a stationary point
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Augmented lagrangean method

To understand this technique it suffices to compare the stationary
conditions of L and L in x∗.
For L :

∂L
∂xi

=
∂f
∂xi

+
∑h

j=1
(λk

j + 2ρhj)
∂hj

∂xi
= 0, i = 1, . . . , n.

For L :
∂L
∂xi

=
∂f
∂xi

+
∑h

j=1
λk

j
∂hj

∂xi
= 0, i = 1, . . . , n.

We see that when the minimum of L approaches to x∗, then:

λk
j + 2ρhj → λ∗j
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Augmented lagrangean method

This lead to the following algorithm

Set k = 0; initialize λk and ρ;
While ||L(x ,λk , ρ)|| > ε do

compute x∗k by solving L(x ,λk , ρ) with respect to x , with your
preferred approach for unconstrained optimization
update λ with

λk+1
j := λk

j + 2ρhj (x∗k)

Eventualy update ρ.
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SQP (Sequential Quadratic Programming)
The idea: apply Newton’s method for finding (x∗,λ∗) from the KKT conditions of
constrained problem.
Each Newton step can be reduced to the solution of a QP.
Let us consider the general problem

min f (x)
gi (x) ≤ 0 i = 1, . . . , k;
hj(x) = 0 j = 1, . . . , h

(7)

and its lagrangean model

L(x ,λ,µ) = f (x) +
∑k

j=1
λjgj(x) +

∑h

j=1
µjhj(x)

We are given an approximation (xk ,λk ,µk), with λk ≥ 0, k = 1, 2, . . . ,
of the solution and of the lagrangean multipliers and we know the hessian
matrix of L

∇2L(xk) = H(xk) +
∑k

j=1
λk

j ∇2gj(xk) +
∑h

j=1
µk

j ∇2hj(xk).
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SQP (Sequential Quadratic Programming)

We can prove that the Newton direction d for computing xk+1 from xk ,

xk+1 := xk + d k

can be obtained by solving the following QP with equality and inequality
constraints:

min φ(d ) = f (xk) +∇f (xk)
Td +

1
2
dT∇2L(xk)d

g(xk) +

[
∂g(xk)

∂x

]T

d 6 0,

h(xk) +

[
∂h(xk)

∂x

]T

d = 0

By solving the QP model we get, besides d and xk+1, also λk+1 and
µk+1. So we have all the data for the next iteration
The stopping criterion is on a threshold on the norm of d
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SQP (Sequential Quadratic Programming)

The SQP method returns a point which satisfies KKT conditions. Hence
all not regular points (those which do not satisfy constraints
qualification) are missed by the algorithm.
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