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Obtaining a Direction

Steepest descent
Newton Methods
Quasi-Newton Methods
Conjugate Gradient Methods
Trust Region Methods

Line Search algorithms

Yesterday
Descent Method;
{

Choose x0 ∈ Rn; k := 0;
While ∇f (xk) 6= ∅;
{

compute d k ∈ Rn; /* descent direction */
compute αk ∈ R; /* step along d k */
xk+1 = xk + αd k ;
k := k + 1;

}
}
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Obtaining a Direction

Consider Taylor’s approximation near xk along d :

f (xk + αd ) = f (xk) + α∇f (xk)Td +
1
2
α2dTH(xk)d + o(‖d‖3)

One possibility: mind{∇f T
k d : ||d || = 1}

The objective is ||∇fk ||||d ||cos(θ) which is minmized if θ = π

In other words, d is along −∇fk and is normalized to

d = − ∇fk
||∇fk ||

This is one type of steepest descent direction (since it is along
−∇fk). In particular, it has a stepsize of 1 at every iteration.

4 / 38



Obtaining a Direction

Steepest descent
Newton Methods
Quasi-Newton Methods
Conjugate Gradient Methods
Trust Region Methods

Steepest Descent Methods

Steepest descent methods: xk+1 = xk − αk∇fk
Directions are orthogonal to contours of function
Low computational effort (does not need to calculate the hessian
matrix H(xk))
Globally convergent but...

5 / 38



Obtaining a Direction

Steepest descent
Newton Methods
Quasi-Newton Methods
Conjugate Gradient Methods
Trust Region Methods

Steepest Descent Methods

Globally convergent but...
Painfully slow if function is ill-conditioned

(a) Contours (b) Ten iterations

Figura: Rosenbrock function: f (x , y) = 100(y − x2)2 + (1− x)2.
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Local Convergence Rate of Steepest Descent

Suppose f (x) = 1
2x

TQx − bTx , with pos. def. Q

∇fk = Qxk − b, α∗ =
∇f T

k ∇fk
∇f T

k Q∇fk
and x∗ = Q−1b

xk+1 = xk −
∇f T

k ∇fk
∇f T

k Q∇fk
∇fk

Local convergence rate is given by

‖xk+1 − x∗‖Q
‖xk − x∗‖Q

=

{
1− (∇f T

k ∇fk)2

(∇f T
k Q∇fk)(∇f T

k Q−1∇fk)

} 1
2
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Local Convergence Rate of Steepest Descent

Theorem Given a positive definite matrix Q the following relationship
holds for each x ∈ Rn

(xTx)2

(xTQx)(xTQ−1x)
≥ 4λmλM

(λm + λM)2

where λm and λM are the min and max eigenvalue of Q.

Hence
‖xk+1 − x∗‖Q
‖xk − x∗‖Q

≤
(
λM − λm

λM + λm

)
On quadratic models the rate of convergence of Steepest
Descent is linear
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Newton Methods

We start with Taylor’s approximation

f (x + d ) ≈ f (x) +∇f Td +
1
2
dTHd .

Minimizing f (x + d ) implies minimizing ∇f Td + 1
2d

THd
The resulting direction is called a Newton direction:
dN = −(H)−1∇f
Two requirements:

a H positive definite
b function is well approximated by a quadratic model

when H is positive definite we have

∇f TdN = −dNHdN ≤ −σ||dN ||2, σ > 0

i.e. when H is positive definite Newton direction is a descent
direction.
Natural stepsize of 1 when quadratic approximation is good else do
a search
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Newton Methods on QP

How good is Newton method on quadratic models

f (x) =
1
2
xTQx − bTx

with Q positive definite ?

x1 = x0−H(x0)−1∇f (x0) = x0−Q−1(Qx0−b) = x0−x0+Q−1b = Q−1b.

If Q is positive definite Newton Method converges in one step otherwise
id does not even converge.

On generic function the quality of the direction depends on the definite
positiveness of the hessian matrix H
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Local Convergence of Newton Methods

Theorem Suppose that f is C 2 and that H(x) is Lipschitz continuous in
a neighborhood of x∗ at which sufficient conditions hold. Assume that
the unit step is admissible implying that xk+1 = xk + dN

k . Then

if x0 is sufficiently close to x∗, then {xk} → x∗

{xk} converges quadratically
{||∇f (xk)||} converges quadratically to zero.
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Convergence of Newton Methods

Newton Methods are locally convergent

dN = −(H)−1∇f

Since H(x) need not always be positive definite (unless f is a convex
function), the directional derivative ∇f TdN may not be negative
However, we only consider the local convergence behavior of
Newton’s method
In other words, if H(x) is continuous, then it will be positive definite
in some neighborhood of the solution
In such a neighborhood, Newton’s method converges quadratically
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Problems/Issues

Newton Method requires computing the true Hessian: O(n3) - costly
H(xk) may not be nonsingular, let alone positive definite
Indefinite H(xk) implies one is near a saddle point/maximizer
Modified Newton methods:

either modify the Hessian matrix while ensuring descent.
H(xk) (H(xk) + γI ), with γ > 0 big enough to guarantee
positiveness
or select a Steepest Descent direction when required
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Modified Newton Method

Modified Newton Method;
{

Choose x0 ∈ Rn; k := 0;
While ∇f (xk) 6= ∅;
{

if H(xk) is singular then d k := −∇f (xk);
else
{

s := −H(xk)
−1∇f (xk);

if |∇f (xk)
T s| < ε||∇f (xk)|| · ||s|| then d k := −∇f (xk);

else
if s is descent direction then d k :=s;

else d k :=−s;
}
compute αk ∈ R; /*step along d k*/
xk+1 = xk + αkd k ;
k := k + 1;

}
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Quasi-Newton Methods

Alternative to Newton methods not requiring costly computation of Hk .
They use an approximation Gk of H−1

k .

(a) d k := −Gk∇f (xk)

(b) compute αk with a line search technique (e.g. Armijo)
(c) xk+1 := xk + αkd k

Let approximate f (xk + hk) with a quadratic model q(hk), where
hk = αkd k = xk+1 − xk :

f (xk + hk) ≈ q(hk) = f (xk) + hT
k ∇f (xk) +

1
2
hT

k H(xk)hk

from which we derive

∇f (xk + hk) = ∇f (xk+1) ≈ ∇q(hk) = ∇f (xk) + H(xk)hk
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Quasi-Newton Methods

∇f (xk + hk) = ∇f (xk+1) ≈ ∇q(hk) = ∇f (xk) + H(xk)hk

By defining pk := ∇f (xk+1)−∇f (xk) we can write the following

Secant relation

H(xk)hk ≈ pk , or (H(xk)−1pk ≈ hk)

Hence, after setting G0 = I , we impose that at each iteration k , the
matrix Gk+1 satisfies the Secant relation as an equality:

Gk+1pk = hk

How to move from Gk to Gk+1 generates different quasi-Newton methods
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Quasi-Newton Methods

Quasi-Newton Method;
{

Choose x0 ∈ Rn; k := 0;
G0 := I ;
While ∇f (xk) 6= ∅;
{

d k := −Gk∇f (xk) /* descent direction */
compute αk ∈ R; /* step along d k */
xk+1 = xk + αd k ;
compute Gk+1 from Gk ;
k := k + 1;

}
}
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Quasi-Newton Methods

How to move from Gk to Gk+1 generates different quasi-Newton methods
impose Gk = GT

k
impose that Gk+1 − Gk have low rank

Symmetric Rank-One or SR1

Gk+1 = Gk +
(hk − Gkpk)(hk − Gkpk)T

(hk − Gkpk)Tpk
.

DFP (rank-two) (Davidon, Fletcher and Powell)

Gk+1 = Gk +
hkhT

k

hT
k pk

− GkpkpT
k Gk

pT
k Gkpk

.

BFGS (Rank-two) (Broyden, Fletcher, Goldfarb and Shanno)

Gk+1 = Gk +

(
1 +

pkGkpT
k

hT
k pk

)
hkhT

k

hT
k pk

−

(
hkpT

k Gk + Gkpkh
T
k

hT
k pk

)
.
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Quasi-Newton Methods

Some properties of Rank-two models:

Gk converges to H(xk)−1 on quadratic models,
if G0 is positive definite (e.g. G0 = I ) then all the Gk are p.d.,
computational cost order of O(n2) in each iteration,
superlinear-convergence rate,
BFGS has global convergence if αk satisfies Wolfe conditions.

Broyden Family

Gk+1 = (1− φ)GDFP
k+1 + φGBFGS

k+1 ,

where 0 ≤ φ ≤ 1.
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Quick Recap

We introduced line search methods and focused on the following:
1 xk+1 = xk + αkd k

2 d k satisfies ∇f T
k d k < 0 (a descent condition)

3 d k may be specified as d k = −B−1
k ∇fk

4 Choice of Bk based on method
a Steepest descent: Bk = I
b Newton method: Bk = H−1

k
c quasi-Newton method: Bk = Gk

5 Choice of αk based on Wolfe conditions
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Quick Recap (2)

Convergence Analysis:

1 we may prove that an α satisfying Wolfe conditions exists
2 we may prove ||∇fk || → 0 i.e. global convergence under mild

hypotheses
3 we may prove that

a Steepest descent is globally convergent with a linear-convergence rate
b Newton method is locally convergent with a quadratic-convergence

rate
c quasi-Newton method is globally convergent with a
superlinear-convergence rate
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Conjugate Gradient Methods

One of the most useful techniques for solving large linear systems. Can
be adapted to solve nonlinear optimization problems.

First proposed by Hestenes and Stiefel for the solution of large linear
systems with positive definite matrices
Performance intimately related to the distribution of the eigenvalues
By transforming the system (called preconditioning), we may make
improve the distribution and therefore, performance.
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The Linear CG Method

The CG Method is an iterative method for solving systems of the
form Ax = b where A pos. def. and A = AT .
This is equivalent to minimizing

f (x) =
1
2
xTAx − bTx

We denote r(x) := ∇f (x) = Ax − b
A set of vectors p0, p1, . . . ph is said to be conjugate with respect to
A if pT

i Apj = 0, for all i 6= j
Given a starting point x0 and conjugate directions p0, . . . pn−1, we
generate sequence xk+1 = xk + αkpk

αk is the one dimensional minimizer along xk +αkpk and is given by

αk = − rT
k pk

pT
k Apk
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Conjugate Direction Method

Theorem For any x0, the sequence generated by xk+1 = xk + αkpk
converges to x∗ in at most n steps.

Interpretation of conjugate directions:
Consider min 1

2x
TAx − bTx

If A is diagonal, problem is separable and it may be solved by
successive minimization along coordinate directions e1, . . . , en

Solution in n iterations
If A is not diagonal

We transform the problem: y = S−1x where S = (p0 · · · pn−1)
We have by conjugacy property that STAS is diagonal and
min yTSTASy + (STb)T y is solvable in n iterations
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Conjugate Gradient Method

CG Method is a coniugate direction method with an important property:
pk can be obtained by knowing only pk−1 and pk is conjugate to all
previous directions.

Choice of pk = linear combination of ∇fk and pk−1

pk = −∇fk + βkpk−1

βk defined by conjugacy between pk−1 and pk , i.e. pT
k Apk−1 = 0

This implies that βk =
∇f T

k Apk−1
pT
k−1Apk−1

p0 = −∇f0
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Conjugate Gradient Method

Conjugate Gradient Method

1 r0 = Ax0 − b0, p0 = −r0, k = 0

2 α = − rT
k pk

pT
k Apk

3 xk+1 = xk + αkpk

4 rk+1 = Axk+1 − b and βk+1 =
rT
k+1Apk
pT
k Apk

5 pk+1 = −rk+1 + βk+1pk

6 k = k + 1

Let observe that βk+1 can be computen also as

βk+1 =
rT
k+1rk+1

rT
k rk
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CG Method for general non linear f

Fletcher-Reeves (1964)

βk+1 =
∇f T

k+1∇fk+1

∇f T
k ∇fk

with α chosen s.t. strong Wolfe conditions are satisfied

Polak-Ribiére (1969)

βk+1 =
(∇fk+1 −∇fk)T∇fk+1

‖∇fk‖2

with α chosen s.t. modified strong Wolfe conditions are satisfied

Dai-Yuan (1999)

βk+1 =
‖∇fk+1‖2

(∇fk+1 −∇fk)Tpk

with α chosen s.t. Wolfe conditions are satisfied
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Why CG Method ?

CG is particularly useful for several reasons:

1 Low storage
2 Compute pT

k Apk and rT
k+1Apk and two vector sums at each iteration

3 Preferable if problem is large else Gaussian elimination is preferred
(less sensitive to rounding errors)

4 CG also converges fast

28 / 38



Obtaining a Direction

Steepest descent
Newton Methods
Quasi-Newton Methods
Conjugate Gradient Methods
Trust Region Methods

Two Main Strategies

Line search: Given an iterate xk , we first determine a direction hk .
Then we determine a stepsize αk given by

min
αk

f (xk + αkhk)

The new iterate is given by xk+1 = xk + αkhk .
Trust region: Construct a model function mk using the information
at xk . A trust-region radius ∆k (stepsize) is selected and we obtain
a hk such that

min
‖hk‖≤∆k

mk(hk)

If hk does not produce sufficient descent, we shrink ∆k and resolve.
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Trust Region Methods

Construct a model function mk using the information at xk .

mk(p) = f (xk) +∇f (xk)Tp +
1
2
pTBkp,

A trust-region radius ∆k is selected and we obtain a p such that

min
‖p‖≤∆k

mk(p)

If p does not produce sufficient descent, we shrink ∆k and resolve.
Bk can be an approximation to the Hessian or the true Hessian.
If Bk is the Hessian matrix Hk then for ∆k large enough and Hk p.d. we
have the Newton direction p = −B−1

k ∇fk .
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Trust Region Methods

Quadratic model of the Rosenbrock function in x = (1, 0),
f (x , y) = 100(y − x2)2 + (1− x)2

mk(p) = 601p2
1 + 100p2

2 − 400p1p2 + 400p1 − 200p2 + 100.
The minimum of the unconstrained quadratic model is x∗ = (0, 1)
(dashed line), the minimum of TR model with ∆ = 0.4 is pointed by the
full line.

-2 -1 0 1 2

-1

0

1

2

3
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Trust Region Methods

The trust-region approach requires us to solve a sequence of subproblems
in which the objective function and constraint are both quadratic.

When Bk is positive definite and ||B−1
k ∇fk || ≤ ∆k the solution is simply

the unconstrained minimum pB
k = −B−1

k ∇fk of the quadratic model
mk(p). In this case, we call pB

k the full step.

The choice of ∆k is based on the ratio between the actual and the
predicted reduction

ρk =
f (xk)− f (xk+1)

mk(0)−mk(pk)
.
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Trust Region Methods

Trust Region Method;
Choose x0 ∈ Rn; k := 0; ∆ > 0, ∆0 ∈ (0,∆); η ∈ [0, 1

4 ];
While ∇f (xk) 6= ∅;
{

pk := argmin{mk(p), s.t. ||p|| ≤ ∆k};
ρk :=

f (xk )−f (xk+pk )

mk (0)−mk (pk )
;

if ρk <
1
4 then

∆k+1 := 1
4 ∆k

else
if ρk >

3
4 e ||pk || = ∆k then

∆k+1 := min{2∆k ,∆}
else

∆k+1 := ∆k
if ρk > η then

xk+1 := xk + pk
else

xk+1 := xk
k := k + 1;

}

33 / 38



Obtaining a Direction

Steepest descent
Newton Methods
Quasi-Newton Methods
Conjugate Gradient Methods
Trust Region Methods

Trust Region Methods

To have a practical algorithm, we need to focus on solving the
trust-region quadratic subproblem.

Theorem The vector p∗ is a global solution of the trust-region problem

min
p∈Rn

m(p) = f (x) +∇f Tp +
1
2
pTBp, s.t ||p|| ≤ ∆.

if and only if p∗ is feasible and there is a scalar λ ≥ 0 such that the
following conditions are satisfied:

(B + λI )p∗ = −∇f ,
λ(∆− ||p∗||) = 0,

(B + λI ) is positive semidefinite
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Cauchy point

Line search methods can be globally convergent even when the step
length αk satisfies fairly loose criteria.
Likewise trust-region methods require to find an approximate
solution pk that lies within the trust region and gives a sufficient
reduction in the model to ensure global convergence.
The sufficient reduction can be quantified in terms of the Cauchy
point, pC .
The Cauchy point is the minimum of the quadratic model along the
−∇fk direction.

pC
k = −τk

∆k

||∇fk ||
∇fk

where

τk =

{
1 if ∇f T

k Bk∇fk ≤ 0
min{τ∗, 1} otherwise
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Cauchy point

The Cauchy step pC
k can be computed in order of O(n2)

it is of crucial importance in deciding if an approximate solution of
the trust-region subproblem is acceptable
A trust-region method will be globally convergent if its steps pk give
a reduction in the model mk that is at least some fixed positive
multiple of the decrease attained by the Cauchy step
by always taking the Cauchy point as our step, we are simply
implementing the steepest descent method with a particular choice
of step length and steepest descent performs poorly
we need to use information from the matrix Bk .
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The Dogleg Method

We apply this method when B is p.d.
compute pB = −B−1∇f
if ||pB || ≤ ∆ then p∗ = pB

else compute pU = − ∇f T∇f
∇f TB∇f ∇f

build the path p̃(τ) for τ ∈ [0, 2]

p̃(τ) =

{
τpU , τ ∈ [0, 1]
pU + (τ − 1)(pB − pU), τ ∈ [1, 2]
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The Dogleg Method

Property If B is p.d. then

‖p̃(τ)‖ is an increasing function of τ , and
m(p̃(τ)) is a decreasing function of τ .

τ can be compute by solving the scalar quadratic equation

||pU + (τ − 1)(pB − pU)||2 = ∆2

there are iterative method for solving the quadratic model
superlinear convergence rate can be achieved
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