Introduction to Local and Global Optimization for NLP

Marco Trubian

Dipartimento di Scienze dell'Informazione (DSI) Università degli Studi di Milano

Unconstrained optimization Constrained optimization Convex optimization Discrete optimization Stochastic optimization

Optimization

- Concerned with minimization/maximization of mathematical functions
- Often subject to constraints
- Important tool in analyzing physical, economic, chemical and biological systems
- Euler (1707-1783): Nothing at all takes place in the universe in which some rule of the maximum or minimum does not apply.
- $\bullet~\mathsf{Model}\to\mathsf{apply}~\mathsf{algorithm}\to\mathsf{check}~\mathsf{solution}$

Unconstrained optimization Constrained optimization Convex optimization Discrete optimization Stochastic optimization

Unconstrained optimization

Unconstrained			
	min s.t.	$f(\mathbf{x})$ $\mathbf{x} \in \mathbb{R}^n$	

- f : Objective function
- x : Decision variables
- $f: \mathbb{R}^n \to \mathbb{R}$
- f is assumed to be at least twice differentiable
- Examples: $f(x) = 2x^3 3x^2$.
- Important application: Data fitting and regression

Unconstrained optimization Constrained optimization Convex optimization Discrete optimization Stochastic optimization

Constrained optimization

Constrained

$$\begin{array}{ll} \min & f(\mathbf{x}) \\ s.t. & g_i(\mathbf{x}) \leq 0, \quad i = 1, \dots, k \\ & h_i(\mathbf{x}) = 0, \quad i = 1, \dots, h \end{array}$$

- g(x) : nonlinear inequality constraints
- h(x) : nonlinear equality constraints
- Application: Resource constrained problems, transportation problems

Unconstrained optimization Constrained optimization Convex optimization Discrete optimization Stochastic optimization

Convex optimization

Convex

 $\begin{array}{ll} \min & f(\boldsymbol{x}) \\ s.t. & \boldsymbol{x} \in X \subseteq \mathbb{R}^n \end{array}$

- f : f is a convex function
- X is convex: if $\mathbf{x}^1, \mathbf{x}^2 \in X$ then $(\lambda \mathbf{x}^1 + (1 \lambda)\mathbf{x}^2) \in X, \ \lambda \in [0, 1]$
- Any local solution is global
- In constrained optimization, $h(\mathbf{x}) = A\mathbf{x} b$ and $g(\mathbf{x})$ are convex
- Application: Controller design

Unconstrained optimization Constrained optimization Convex optimization Discrete optimization Stochastic optimization

Discrete optimization

Discrete

 $\begin{array}{ll} \min & f(\boldsymbol{x}) \\ s.t. & \boldsymbol{x} \in X \cap \mathbb{Z}^n \end{array}$

- x can take only discrete values
- e.g. $x \in \{0,1\}^n$
- Sometimes $\mathbf{x}^1 \in \mathbb{R}, \mathbf{x}^2 \in \{0,1\}^n$ implying mixed-integer model
- Application: facility location, routing, combinatorial problems

Unconstrained optimization Constrained optimization Convex optimization Discrete optimization Stochastic optimization

Stochastic optimization

Stochastic

$$\begin{array}{ll} \min & Ef(\boldsymbol{x};\omega) \\ s.t. & \boldsymbol{x} \in \mathbb{R} \\ & c(\boldsymbol{x};\omega) \geq 0, \omega \in \Omega \end{array}$$

- Random variable ω belonging to a sample space Ω
- \bullet A constraint for each realization of uncertainty ω
- Minimize expected value
- Application: portfolio optimization problem

Unconstrained optimization Constrained optimization Convex optimization Discrete optimization Stochastic optimization

<ロ> (四) (四) (三) (三) (三)

8/42

Our focus

- Smooth nonlinearly constrained optimization problems
- Local solutions (satisfy optimality conditions)
- Main idea:
 - Check if current point satisfies optimality conditions
 - 2 If not, obtain new iterate and return to 1.
- Finding new iterate requires using local information

Curve fitting

<ロ> (四) (四) (三) (三) (三)

9/42

Curve fitting (1)

- Use a curve to fit experimental data
- Measurements y_1, \ldots, y_m at times t_1, \ldots, t_m
- Model: $\phi(t, \mathbf{x}) = x_1 + x_2 e^{-(x_3 t)^2/x_4} + x_5 \cos(x_6 t)$
- Model parameters: x_1, \ldots, x_6
- How does one set these parameters?

Curve fitting

Curve fitting (2)

- Define residuals $r_j = y_j \phi(t_j, \mathbf{x}), \quad j = 1, \dots, m,$
- Residuals: measure discrepancy between actual and estimated
- Specify performance metric: $f(\mathbf{x}) = r_1^2(\mathbf{x}) + r_2^2(\mathbf{x}) + \ldots + r_m^2(\mathbf{x})$

Nonlinear Least Squares

$$\begin{array}{ll} \min & \sum_{j=1}^m r_j^2 \\ s.t. & \boldsymbol{x} \in \mathbb{R}^6 \end{array}$$

Weather forcasting: a limited number of parameters and a huge number of measurements

Minimizers Linear and quadratic mode Optimality Conditions Convex Programming Quadratic Programming

Global and Local Minimizers

Consider a function f(x) defined on X ⊆ ℝⁿ
 Definition A point x^{*} ∈ X is a global minimizer of f(x) if

 $f(\mathbf{x}^*) \leq f(\mathbf{x}) \quad \forall \mathbf{x} \in X$

 $f(x) = (x - 2)^2$ has a global minimizer $x^* = 2$

• **Definition** A point $x^* \in X$ is a local minimizer of f(x) if there exists a neighborhood $N(x^*)$ of x^* such that

$$f(\mathbf{x}^*) \leq f(\mathbf{x}) \quad \forall \mathbf{x} \in N(\mathbf{x}^*)$$

• $f(x) = \sin(x)$ has local minimizers $x^* = \{3\pi/2 \pm 2n\pi, n \in Z\}$

Minimizers Linear and quadratic mode Optimality Conditions Convex Programming Quadratic Programming

Strict and Isolated Minimizers

Consider a function f(x) defined on X ⊆ ℝⁿ
 Definition A point x* ∈ X is a strict local minimizer of f(x) if there exists a neighborhood N(x*) of x* such that

$$f(\mathbf{x}^*) < f(\mathbf{x}) \quad \forall \mathbf{x} \in N(\mathbf{x}^*)$$

- f(x) = sin(x) has strict local minimizers x* = {3π/2 ± 2nπ, n ∈ Z}
 Definition A point x* ∈ X is a isolated local minimizer of f(x) if there exists a neighborhood N(x*) of x* such that x* is the only minimizer in N(x*)
- f(x) = x⁴ cos(1/x) + 2x⁴ has a strict global minimizer at x* = 0 but it is not isolated

Minimizers Linear and quadratic models Optimality Conditions Convex Programming Quadratic Programming

<ロ> (四) (四) (三) (三) (三)

13/42

Our focus

- Smooth nonlinearly constrained optimization problems
- Local solutions (satisfy optimality conditions)
- Main idea:
 - Check if current point satisfies optimality conditions
 - 2 If not, obtain new iterate and return to 1.
- Finding new iterate requires using local information

Minimizers Linear and quadratic models Optimality Conditions Convex Programming Quadratic Programming

The Fondamental Tools: Taylor's Theorems

Theorem (Taylor's First-Order Theorem) Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable and $\mathbf{h} \in \mathbb{R}^n$. Then we have that $f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^T \mathbf{h} + o(||\mathbf{h}||^2)$.

Theorem (Taylor's Second-Order Theorem) Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is twice continuously differentiable and $\mathbf{h} \in \mathbb{R}^n$. Then we have that $f(\mathbf{x} + \mathbf{h}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^T \mathbf{h} + \frac{1}{2} \mathbf{h}^T H(\mathbf{x}) \mathbf{h} + o(\|\mathbf{h}\|^3)$.

In order to manipulate any possible kind of function f the algorithms locally approximate it with linear or quadratic models

$$l(\boldsymbol{h}) = f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})^T \boldsymbol{h}$$

$$m(\mathbf{h}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^T \mathbf{h} + \frac{1}{2} \mathbf{h}^T H(\mathbf{x}) \mathbf{h}$$

(日) (四) (三) (三) (三)

Minimizers Linear and quadratic models Optimality Conditions Convex Programming Quadratic Programming

<ロ> (四) (四) (三) (三) (三)

15 / 42

Our focus

- Smooth nonlinearly constrained optimization problems
- Local solutions (satisfy optimality conditions)
- Main idea:
 - Check if current point satisfies optimality conditions
 - 2 If not, obtain new iterate and return to 1.
- Finding new iterate requires using local information

Minimizers Linear and quadratic models **Optimality Conditions** Convex Programming Quadratic Programming

Descent directions: where to move

Definition (Descent direction and directional derivative) Given a function $f : \mathbb{R}^n \to \mathbb{R}$ continuously differentiable in \boldsymbol{x} and a vector \boldsymbol{d}

• if exists $\overline{\lambda} > 0$ such that $f(\mathbf{x} + \lambda \mathbf{d}) < f(\mathbf{x})$ for each $0 < \lambda < \overline{\lambda}$ then \mathbf{d} is called a descent direction for f in \mathbf{x}

•
$$\lim_{\lambda \to 0^+} \frac{f(\mathbf{x} + \lambda \mathbf{d}) - f(\mathbf{x})}{\lambda} = \nabla f(\mathbf{x})^T \mathbf{d}$$

is called directional derivative of f in x in the direction d

Minimizers Linear and quadratic models **Optimality Conditions** Convex Programming Quadratic Programming

イロト イロト イヨト イヨト 三日

17 / 42

Our focus

- Smooth nonlinearly constrained optimization problems
- Local solutions (satisfy optimality conditions)
- Main idea:
 - Check if current point satisfies optimality conditions
 - 2 If not, obtain new iterate and return to 1.
- Finding new iterate requires using local information

Minimizers Linear and quadratic models Optimality Conditions Convex Programming Quadratic Programming

Optimality Conditions: when to stop

Theorem (First-Order Necessary Conditions) If \mathbf{x}^* is a local minimizer and f is continuously differentiable in a neighborhood of \mathbf{x}^* , then $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

Theorem (Second-Order Necessary Conditions) If \mathbf{x}^* is a local minimizer and the hessian matrix $H(\mathbf{x})$ is continuous in a neighborhood of \mathbf{x}^* , then $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and $H(\mathbf{x}^*)$ is positive semidefinite.

Theorem (Second-Order Sufficient Conditions) Suppose that the hessian matrix $H(\mathbf{x})$ is continuous in an neighborhood of \mathbf{x}^* and that $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and $H(\mathbf{x}^*)$ is positive definite. Then \mathbf{x}^* is a strict local minimizer of f.

Minimizers Linear and quadratic models Optimality Conditions **Convex Programming** Quadratic Programming

Convex Programming (1)

Definition A square matrix *H* of order *n*, is called positive (semi)definite on a set $X \subseteq \mathbb{R}^n$ if for each $d \in X, d \neq 0$, then

 $\boldsymbol{d}^{\mathsf{T}} \boldsymbol{H} \boldsymbol{d} > 0$ positive definite $\boldsymbol{d}^{\mathsf{T}} \boldsymbol{H} \boldsymbol{d} \geq 0$ positive semidefinite

Proposition A simmetric matrix *H* is positive (semi)definite if and only if

- the determinants of all its principal minors are $(\geq) > 0$
- its eigenvalues are $(\geq) > 0$

Proposition Given a simmetric matrix H then $\lambda_{min} \|\boldsymbol{d}\|^2 \leq \boldsymbol{d}^T H \boldsymbol{d} \leq \lambda_{max} \|\boldsymbol{d}\|^2$, for each \boldsymbol{d} , where $\lambda_{min} :=$ min eigenvalue and $\lambda_{max} :=$ max eigenvalue of H.

Observation If $\nabla f(\mathbf{x}^*) = \mathbf{0}$ and the hessian matrix $H(\mathbf{x}^*)$ is not positive (semi)definite then \mathbf{x}^* is neither a minimum nor a maximum.

Minimizers Linear and quadratic models Optimality Conditions **Convex Programming** Quadratic Programming

Convex Programming (2)

Definition A function $f : \mathbb{R}^n \to \mathbb{R}$ defined on $X \subseteq \mathbb{R}^n$ is convex if X is convex and for each $x, y \in X$ the following relationship holds

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \leq \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$
 for each $\lambda \in [0, 1]$.

Proposition Let X be a convex set and let $f : \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable, then

- f is convex if and only if the hessian matrix H(x) is positive semidefinite in x, for each $x \in X$.
- if the hessian matrix H(x) is positive definite in x then f is strictly convex in a neighbourhood of x.

Theorem

- When f is a convex function, then any local minimizer x^* is global.
- If f is a convex differentiable function, then any stationary point x* is a global minimizer of f.

Minimizers Linear and quadratic models Optimality Conditions Convex Programming Quadratic Programming

(日) (四) (王) (王) (王)

21/42

Quadratic Programming (1)

Optimization algorithms locally approximate f with quadratic models

min
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T Q \mathbf{x} - \mathbf{b}^T \mathbf{x}$$

t.c. $\mathbf{x} \in \mathbb{R}^n$

where Q is a simmetric square matrix of order n.

- $\nabla f(\mathbf{x}) = Q\mathbf{x} \mathbf{b}$ (a linear function)
- $H(\mathbf{x}) = Q$ (a costant matrix)
- Qx = b (first-order necessary conditions)

Minimizers Linear and quadratic models Optimality Conditions Convex Programming Quadratic Programming

Quadratic Programming (2)

Optimization algorithms locally approximate f with quadratic models

min
$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T Q \mathbf{x} - \mathbf{b}^T \mathbf{x}$$

t.c. $\mathbf{x} \in \mathbb{R}^n$

Possible cases:

- Q is not positive semidefinite: f has not minima
- Q is positive definite: $\mathbf{x}^* = Q^{-1}\mathbf{b}$ is the only global minimizer
- *Q* is positive semidefinite:
 - Q is not singular: $x^* = Q^{-1}b$ is the only global minimizer
 - Q is singular:
 - no solutions or
 - infinite solutions

Minimizers Linear and quadratic models Optimality Conditions Convex Programming Quadratic Programming

Quadratic Programming (3)

Example:
$$f(x, y) = \frac{1}{2} (ax^2 + by^2) - x$$

$$f(\mathbf{x}) = \frac{1}{2} (x, y) \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} - (x, y) \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

୬ < ୯ 23 / 42

Minimizers Linear and quadratic models Optimality Conditions Convex Programming Quadratic Programming

Example of QP: Portfolio Optimization

- $r_i, i = 1, \ldots, n$ r.v.: returns of n possible investiments
- $\mu_i = E[r_i]$ and $\sigma_i^2 = E[(r_i \mu_i)^2]$ with normal distribution
- $\rho_{ij} = \frac{E[(r_i \mu_i)(r_j \mu_j)]}{\sigma_i \sigma_j}$ for i, j = 1, ..., n correlations among investiments pairs
- $x_i, i = 1, ..., n$, fraction of budget put into investiment i
- $\sum_{i=1}^{n} x_i = 1$, $\mathbf{x} \ge \mathbf{0}$, all funds are invested
- $R = \sum_{i=1}^{n} x_i r_i$, portfolio return
- $E[R] = \sum_{i=1}^{n} x_i E[r_i] = \mathbf{x}^T \boldsymbol{\mu}$, expected return
- $Var[R] = E[(R E[R])^2] = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j \sigma_i \sigma_j \rho_{ij} = \mathbf{x}^T G \mathbf{x}$ where $G_{ij} = \rho_{ij}\sigma_i\sigma_j$ is the symmetric positive semidefinite covariance matrix

• max
$$\mathbf{x}^{\mathsf{T}} \boldsymbol{\mu} - k \mathbf{x}^{\mathsf{T}} G \mathbf{x}$$
, s.t. $\sum_{i=1}^{n} x_i = 1, \ \mathbf{x} \ge \mathbf{0}.$

Convergence Stepsize specification Wolfe Conditions Convergence of inexact linesearch schemes

Algorithm Overview (1)

Continous optimization methods:

- **()** Given a starting point x_0 , generate an sequence $\{x_k\}_{k=0}^{\infty}$.
- ② Terminate the algorithm, when necessary conditions are satisfied with some accuracy, say ||∇f(x_k)|| ≤ ε.
- **③** Monotone algorithms requires that $f(\mathbf{x}_k) < f(\mathbf{x}_{k-1})$ for all k

How good is an optimization algorithm ?

Convergence Stepsize specification Wolfe Conditions Convergence of inexact linesearch schemes

Local and Global Convergence

An optimization algorithm is *fair* if it converges...

Definition An algorithm is called globally convergent if it converges to a point \mathbf{x}^* s.t. $\nabla f(\mathbf{x}^*) = \mathbf{0}$ for each starting point $\mathbf{x}_0 \in \mathbb{R}^n$

Definition An algorithm is called locally convergent if it converges to a point x^* s.t. $\nabla f(x^*) = 0$ only if the starting point $x_0 \in N(x^*)$

N.B. nothing to do with the convergence to a local or a global optimum!

Convergence Stepsize specification Wolfe Conditions Convergence of inexact linesearch schemes

Rate of Convergence

An optimization algorithm is good if it converges rapidly!

- Rate of convergence properties discuss the behavior of an algorithm close to a solution
- How fast does the algorithm converge?

Let \mathbf{x}_k be a sequence in \mathbb{R}^n that converges to \mathbf{x}^* . Convergence is:

- Q-linear if $\exists r \in (0, 1)$ s.t. $\frac{\|\mathbf{x}_{k+1} \mathbf{x}^*\|}{\|\mathbf{x}_k \mathbf{x}^*\|} \leq r$, for $k \geq \overline{k}$. E.g.: $\{\mathbf{x}_k\} = \frac{1}{2^k}$
- Q-superlinear if $\lim_{k \to \infty} \frac{\|\mathbf{x}_{k+1} \mathbf{x}^*\|}{\|\mathbf{x}_k \mathbf{x}^*\|} = 0.$ E.g.: $\{\mathbf{x}_k\} = \frac{1}{k!}$
- Q-quadratic if $\exists C > 0$ s.t. $\frac{\|\mathbf{x}_{k+1} \mathbf{x}^*\|}{\|\mathbf{x}_k \mathbf{x}^*\|^2} \leq C$, for $k \geq \overline{k}$. E.g.: $\{\mathbf{x}_k\} = \frac{1}{2^{2^k}}$

 $\mathsf{Q}\text{-quadratically} \to \mathsf{Q}\text{-superlinearly} \to \mathsf{Q}\text{-linearly} \quad \text{ for all } \mathsf{Q}\text{-superlinearly} \to \mathsf{Q}\text{-linearly}$

27 / 42

Convergence Stepsize specification Wolfe Conditions Convergence of inexact linesearch schemes

Algorithm Overview (2)

Continous optimization methods:

- **()** Given a starting point x_0 , generate an sequence $\{x_k\}_{k=0}^{\infty}$.
- ② Terminate the algorithm, when necessary conditions are satisfied with some accuracy, say ||∇f(x_k)|| ≤ ε.
- **③** Monotone algorithms requires that $f(\mathbf{x}_k) < f(\mathbf{x}_{k-1})$ for all k

How does one determine x_k given x_{k-1} ?

Convergence Stepsize specification Wolfe Conditions Convergence of inexact linesearch schemes

Two Main Strategies (1)

• Line search: Given an iterate x_k , we first determine a direction h_k . Then we determine a stepsize α_k given by

$$\min_{\alpha_k} f(\boldsymbol{x}_k + \alpha_k \boldsymbol{h}_k)$$

The new iterate is given by $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{h}_k$.

 Trust region: Construct a model function m_k using the information at x_k. A trust-region radius Δ_k is selected and we obtain a h_k such that

$$\min_{\|\boldsymbol{h}_k\| \leq \Delta_k} m_k(\boldsymbol{h}_k)$$

If h_k does not produce sufficient descent, we shrink Δ_k and resolve.

Convergence Stepsize specification Wolfe Conditions Convergence of inexact linesearch schemes

<ロ> (四) (四) (三) (三) (三)

30 / 42

Two Strategies(2)

Line search:

- Select direction
- 2 Determine stepsize

Trust Region:

- Select trust region (stepsize)
- 2 Determine direction

Convergence Stepsize specification Wolfe Conditions Convergence of inexact linesearch schemes

Line Search algorithms

Descent Method;

```
{
    Choose \mathbf{x}_0 \in \mathbb{R}^n; k := 0;
    While \nabla f(\mathbf{x}_k) \neq \emptyset;
    {
        compute \mathbf{d}_k \in \mathbb{R}^n; /* descent direction */
        compute \alpha_k \in \mathbb{R}; /* step along \mathbf{d}_k */
        \mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \mathbf{d}_k;
        k := k + 1;
    }
}
```

◆□ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → </p>

Convergence Stepsize specification Wolfe Conditions Convergence of inexact linesearch schemes

Line Search algorithms

Descent Method; { Choose $\mathbf{x}_0 \in \mathbb{R}^n$; k := 0; While $\nabla f(\mathbf{x}_k) \neq \emptyset$; { compute $\mathbf{d}_k \in \mathbb{R}^n$; /* descent direction */ compute $\alpha_k \in \mathbb{R}$; /* step along \mathbf{d}_k */ $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha \mathbf{d}_k$; k := k + 1; } }

◆□ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → </p>

Convergence Stepsize specification Wolfe Conditions Convergence of inexact linesearch schemes

Stepsize specification

We assume that in \boldsymbol{x} a descent direction \boldsymbol{d} has been given

Stepsize Problem

$$\min_{\alpha>0}\phi(\alpha)=f(\boldsymbol{x}+\alpha\boldsymbol{d})$$

- Tradeoff between effort and accuracy
- Global minimizer would be too costly from a computational standpoint
- Exact linesearch: α^* solves $\phi'(\alpha) = \nabla f(\mathbf{x} + \alpha \mathbf{d})^T \mathbf{d} = 0.$
- An inexact linesearch is generally used:
 - Cheap
 - · Convergence rate does not rely on exact line search

Convergence Stepsize specification Wolfe Conditions Convergence of inexact linesearch schemes

Observation

The simple decreasing of f is not enough.

•
$$\phi(\alpha) = \alpha^2 - 4\alpha + 3$$
, convex, with $\alpha^* = 2$.

- α₀ = 0
- $\{\alpha_k\}$ generated by $\alpha_k = 2 + (-1)^{k+1}(1 + 1/(k+1))$
- $\phi(\alpha_{k+1}) < \phi(\alpha_k)$, con $k = 0, 2, \dots$

Convergence Stepsize specification Wolfe Conditions Convergence of inexact linesearch schemes

Wolfe Conditions

To be effective inexact linesearch requires some conditions

- Sufficient Decrease: $f(\mathbf{x} + \alpha \mathbf{d}) \leq f(\mathbf{x}) + c_1 \alpha \nabla f(\mathbf{x})^T \mathbf{d}, \quad c_1 \in (0, 1)$ $\phi(\alpha) \leq \phi(0) + \alpha c_1 \phi'(0)$
- Curvature condition: $\nabla f(\mathbf{x} + \alpha \mathbf{d})^T \mathbf{d} \ge c_2 \nabla f(\mathbf{x})^T \mathbf{d}, \ c_1 \in (0, 1)$

$$\phi'(\alpha) \geq c_2 \phi(0)$$

- Collectively called Wolfe conditions where $0 < c_1 < c_2 < 1$
- Strong Wolfe conditions introduce a sign constraint on curvature $\|\nabla f(\mathbf{x} + \alpha \mathbf{d})^T \mathbf{d}\| \le c_2 \|\nabla f(\mathbf{x})^T \mathbf{d}\|$

35 / 42

Convergence Stepsize specification Wolfe Conditions Convergence of inexact linesearch schemes

Existence of stepsize

Proposition Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable. Let d be a descent direction at x and assume that $\phi(\alpha)$ is bounded below for $\alpha > 0$. Then if $0 < c_1 < c_2 < 1$, there exist steplengths satisfying the (strong) Wolfe conditions.

Looking for α : backtracking line search

```
Armijo's method;

{

Choose \alpha_0 \in \mathbb{R}; \alpha := \alpha_0;

While f(\mathbf{x}_k + \alpha \mathbf{d}_k) > f(\mathbf{x}_k) + \alpha c_1 \nabla f(\mathbf{x}_k)^T \mathbf{d}_k;

\alpha := \sigma \alpha; /* backtracking */

\alpha^* := \alpha;

}
```

 $\sigma \approx$ 0.9, α_0 often set to 1 for Newton and Quasi-Newton methods

Convergence Stepsize specification Wolfe Conditions Convergence of inexact linesearch schemes

Exact line search for QP

Let us consider a Quadratic Programming model

$$f(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^{\mathsf{T}} \boldsymbol{Q} \boldsymbol{x} - \boldsymbol{b}^{\mathsf{T}} \boldsymbol{x}$$

•
$$\phi(\alpha) = f(\mathbf{x} + \alpha \mathbf{d}) = \frac{1}{2}(\mathbf{x} + \alpha \mathbf{d})^T Q(\mathbf{x} + \alpha \mathbf{d}) - \mathbf{b}^T (\mathbf{x} + \alpha \mathbf{d})$$

• $\phi'(\alpha) = \nabla f(\mathbf{x} + \alpha \mathbf{d})^T \mathbf{d} = 0.$
• $(Q(\mathbf{x} + \alpha \mathbf{d}) - \mathbf{b})^T \mathbf{d} = 0$
• $\alpha^* = -\frac{\mathbf{x}^T Q \mathbf{d} - \mathbf{b}^T \mathbf{d}}{\mathbf{d}^T Q \mathbf{d}} = -\frac{\nabla f(\mathbf{x})^T \mathbf{d}}{\mathbf{d}^T Q \mathbf{d}}$

This result is used in the convergence analysis of optimization algorithms.

Convergence Stepsize specification Wolfe Conditions Convergence of inexact linesearch schemes

<ロ> (四) (四) (三) (三) (三)

38 / 42

On computing α

Other techniques for computing $\boldsymbol{\alpha}$

- Interpolation: using quadratic or cubic models
- Derivative free techniques, assuming convexity of $\phi(\alpha)$
 - Golden Section Method,
 - Fibonacci Method,
 - Bisection Method.

Convergence Stepsize specification Wolfe Conditions Convergence of inexact linesearch schemes

Convergence of inexact linesearch schemes (1)

If we define θ_k as the angle between \boldsymbol{d}_k and $-\nabla f_k$, then

$$\cos \theta_k = \frac{-\nabla f(\boldsymbol{x})_k^T \boldsymbol{d}_k}{||\nabla f(\boldsymbol{x})_k|| \cdot ||\boldsymbol{d}_k||}$$

Theorem Let d_k be a descent direction and let α_k satisfy the Wolfe conditions. Also assume that f is bounded below on \mathbb{R}^n and continuously differentiable on N which contains the level set $L_f := \{ \mathbf{x} : f(\mathbf{x}) \le f(\mathbf{x}_0) \}$, where \mathbf{x}_0 is the starting point. We also assume that ∇f is Lipschitz continuous on N. Then

$$\sum_{j=0}^{\infty}\cos^2\theta_j||\nabla f(\mathbf{x}_j)||^2 < \infty.$$

Convergence Stepsize specification Wolfe Conditions Convergence of inexact linesearch schemes

Convergence of inexact linesearch schemes (2)

Proof:

- $\nabla f_{k+1}^{T} \boldsymbol{d}_{k} \geq c_{2} \nabla f_{k}^{T} \boldsymbol{d}_{k}$ (Curvature condition)
- $(\nabla f_{k+1} \nabla f_k)^T \boldsymbol{d}_k \geq (c_2 1) \nabla f_k^T \boldsymbol{d}_k$
- $(\nabla f_{k+1} \nabla f_k)^T \boldsymbol{d}_k \leq ||\nabla f_{k+1} \nabla f_k||||\boldsymbol{d}_k|| \leq \alpha_k L||\boldsymbol{x}_{k+1} \boldsymbol{x}_k||||\boldsymbol{d}_k|| = \alpha_k L||\boldsymbol{d}_k||^2$ (from Schwartz and Lipschitz inequalities)
- $\alpha_k \geq \frac{c_2 1}{L} \frac{\nabla f_k^T d_k}{||d_k||^2}$
- $f_{k+1} \leq f_k + c_1 \alpha_k \boldsymbol{d}_k^T \nabla f_k = f_k c_1 \frac{1-c_2}{L} \frac{(\nabla f_k^T \boldsymbol{d}_k)^2}{||\boldsymbol{d}_k||^2}$ (Sufficient Decrease)
- $f_{k+1} \leq f_k c \cos^2 heta_k ||
 abla f_k ||^2$ where $c = c_1 (1 c_2)/L$
- $f_{k+1} \leq f_0 c \sum_{j=0}^k \cos^2 \theta_j ||
 abla f_j ||^2$ (by recursion)
- $c\sum_{j=0}^k\cos^2\theta_j||\nabla f_j||^2 \le f_0 f_{k+1} < \infty$ (by boundness of f) Zoutendijk condition

Convergence Stepsize specification Wolfe Conditions Convergence of inexact linesearch schemes

イロト イロト イヨト イヨト 三日

41 / 42

Convergence of inexact linesearch schemes (3)

Zoutendijk condition

$$\sum_{j=0}^k \cos^2 heta_j ||
abla f_j||^2 < \infty$$

implies

$$\cos^2 heta_j ||
abla f(oldsymbol{x}_j)||^2 o 0$$

Hence if the algorithm satisfies also the angle condition

$$\cos \theta_k \ge \varepsilon > 0$$

then it converges

$$\lim_{k\to\infty}||\nabla f(\boldsymbol{x}_k)||=0$$

Convergence Stepsize specification Wolfe Conditions Convergence of inexact linesearch schemes

Convergence of inexact linesearch schemes (4)

Given a function f bounded below on \mathbb{R}^n and continuously differentiable on N which contains the level set $L_f := \{ \mathbf{x} : f(\mathbf{x}) \le f(\mathbf{x}_0) \}$, with ∇f Lipschitz continuous on N then an iterative method,

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha_k \boldsymbol{d}_k$$

starting at x_0 converges, i.e.

$$\lim_{k\to\infty}||\nabla f(\boldsymbol{x}_k)||=0$$

- if d_k is a descent direction which satisfies the angle condition
- and α_k satisfies the Wolfe conditions
 - Sufficient Decrease: $f(\mathbf{x} + \alpha \mathbf{d}) \leq f(\mathbf{x}) + c_1 \alpha \nabla f(\mathbf{x})^T \mathbf{d}, c_1 \in (0, 1)$
 - Curvature condition: $\nabla f(\mathbf{x} + \alpha \mathbf{d})^T \mathbf{d} \ge c_2 \nabla f(\mathbf{x})^T \mathbf{d}, \ c_1 \in (0, 1)$ where $0 < c_1 < c_2 < 1$