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Optimization

Concerned with minimization/maximization of mathematical
functions
Often subject to constraints
Important tool in analyzing physical, economic, chemical and
biological systems
Euler (1707-1783): Nothing at all takes place in the universe in
which some rule of the maximum or minimum does not apply.
Model → apply algorithm → check solution
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Unconstrained optimization

Unconstrained

min f (x)
s.t. x ∈ Rn

f : Objective function
x : Decision variables
f : Rn → R
f is assumed to be at least twice differentiable
Examples: f (x) = 2x3 − 3x2.
Important application: Data fitting and regression
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Constrained optimization

Constrained

min f (x)

s.t. gi (x) ≤ 0, i = 1, . . . , k
hi (x) = 0, i = 1, . . . , h

g(x) : nonlinear inequality constraints
h(x) : nonlinear equality constraints
Application: Resource constrained problems, transportation problems
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Convex optimization

Convex

min f (x)
s.t. x ∈ X ⊆ Rn

f : f is a convex function
X is convex: if x1, x2 ∈ X then (λx1 + (1− λ)x2) ∈ X , λ ∈ [0, 1]

Any local solution is global
In constrained optimization, h(x) = Ax − b and g(x) are convex
Application: Controller design
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Discrete optimization

Discrete

min f (x)
s.t. x ∈ X ∩ Zn

x can take only discrete values
e.g. x ∈ {0, 1}n

Sometimes x1 ∈ R, x2 ∈ {0, 1}n implying mixed-integer model
Application: facility location, routing, combinatorial problems
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Stochastic optimization

Stochastic

min Ef (x ;ω)

s.t. x ∈ R
c(x ;ω) ≥ 0, ω ∈ Ω

Random variable ω belonging to a sample space Ω

A constraint for each realization of uncertainty ω
Minimize expected value
Application: portfolio optimization problem
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Our focus

Smooth nonlinearly constrained optimization problems
Local solutions (satisfy optimality conditions)
Main idea:

1 Check if current point satisfies optimality conditions
2 If not, obtain new iterate and return to 1.

Finding new iterate requires using local information
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Curve fitting (1)

Use a curve to fit experimental data
Measurements y1, . . . , ym at times t1, . . . , tm
Model: φ(t, x) = x1 + x2e−(x3−t)2/x4 + x5 cos(x6t)

Model parameters: x1, . . . , x6

How does one set these parameters?
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Curve fitting (2)

Define residuals rj = yj − φ(tj , x), j = 1, . . . ,m,
Residuals: measure discrepancy between actual and estimated
Specify performance metric: f (x) = r2

1 (x) + r2
2 (x) + . . .+ r2

m(x)

Nonlinear Least Squares

min
∑m

j=1 r2
j

s.t. x ∈ R6

Weather forcasting: a limited number of parameters and a huge number
of measurements
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Global and Local Minimizers

Consider a function f (x) defined on X ⊆ Rn

Definition A point x∗ ∈ X is a global minimizer of f (x) if

f (x∗) ≤ f (x) ∀x ∈ X

f (x) = (x − 2)2 has a global minimizer x∗ = 2
Definition A point x∗ ∈ X is a local minimizer of f (x) if there
exists a neighborhood N(x∗) of x∗ such that

f (x∗) ≤ f (x) ∀x ∈ N(x∗)

f (x) = sin(x) has local minimizers x∗ = {3π/2± 2nπ, n ∈ Z}
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Strict and Isolated Minimizers

Consider a function f (x) defined on X ⊆ Rn

Definition A point x∗ ∈ X is a strict local minimizer of f (x) if there
exists a neighborhood N(x∗) of x∗ such that

f (x∗) < f (x) ∀x ∈ N(x∗)

f (x) = sin(x) has strict local minimizers x∗ = {3π/2± 2nπ, n ∈ Z}
Definition A point x∗ ∈ X is a isolated local minimizer of f (x) if
there exists a neighborhood N(x∗) of x∗ such that x∗ is the only
minimizer in N(x∗)
f (x) = x4 cos(1/x) + 2x4 has a strict global minimizer at x∗ = 0
but it is not isolated
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The Fondamental Tools: Taylor’s Theorems

Theorem (Taylor’s First-Order Theorem) Suppose that f : Rn → R is
continuously differentiable and h ∈ Rn. Then we have that
f (x + h) = f (x) +∇f (x)Th + o(‖h‖2).

Theorem (Taylor’s Second-Order Theorem) Suppose that f : Rn → R is
twice continuously differentiable and h ∈ Rn. Then we have that
f (x + h) = f (x) +∇f (x)Th + 1

2h
TH(x)h + o(‖h‖3).

In order to manipulate any possible kind of function f the algorithms
locally approximate it with linear or quadratic models

l(h) = f (x) +∇f (x)Th

m(h) = f (x) +∇f (x)Th +
1
2
hTH(x)h
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Descent directions: where to move

Definition (Descent direction and directional derivative) Given a function
f : Rn → R continuously differentiable in x and a vector d

if exists λ > 0 such that f (x + λd ) < f (x) for each 0 < λ < λ then
d is called a descent direction for f in x
lim
λ→0+

f (x+λd)−f (x)
λ = ∇f (x)Td

is called directional derivative of f in x in the direction d
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Optimality Conditions: when to stop

Theorem (First-Order Necessary Conditions) If x∗ is a local minimizer
and f is continuously differentiable in a neighborhood of x∗, then
∇f (x∗) = 0.

Theorem (Second-Order Necessary Conditions) If x∗ is a local minimizer
and the hessian matrix H(x) is continuous in a neighborhood of x∗, then
∇f (x∗) = 0 and H(x∗) is positive semidefinite.

Theorem (Second-Order Sufficient Conditions) Suppose that the hessian
matrix H(x) is continuous in an neighborhood of x∗ and that
∇f (x∗) = 0 and H(x∗) is positive definite. Then x∗ is a strict local
minimizer of f .
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Convex Programming (1)

Definition A square matrix H of order n, is called positive (semi)definite
on a set X ⊆ Rn if for each d ∈ X ,d 6= 0, then

dTHd > 0 positive definite
dTHd ≥ 0 positive semidefinite

Proposition A simmetric matrix H is positive (semi)definite if and only if
the determinants of all its principal minors are (≥) > 0
its eigenvalues are (≥) > 0

Proposition Given a simmetric matrix H then
λmin ‖d‖2 ≤ dTHd ≤ λmax ‖d‖2, for each d ,
where λmin := min eigenvalue and λmax := max eigenvalue of H.

Observation If ∇f (x∗) = 0 and the hessian matrix H(x∗) is not positive
(semi)definite then x∗ is neither a minimum nor a maximum.
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Convex Programming (2)

Definition A function f : Rn → R defined on X ⊆ Rn is convex if X is
convex and for each x , y ∈ X the following relationship holds

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) for each λ ∈ [0, 1].

Proposition Let X be a convex set and let f : Rn → R be twice
continuously differentiable, then

f is convex if and only if the hessian matrix H(x) is positive
semidefinite in x , for each x ∈ X .
if the hessian matrix H(x) is positive definite in x then f is strictly
convex in a neighbourhood of x .

Theorem
When f is a convex function, then any local minimizer x∗ is global.
If f is a convex differentiable function, then any stationary point x∗
is a global minimizer of f .
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Quadratic Programming (1)

Optimization algorithms locally approximate f with quadratic models

min f (x) = 1
2x

TQx − bTx
t.c . x ∈ Rn

where Q is a simmetric square matrix of order n.

∇f (x) = Qx − b (a linear function)
H(x) = Q (a costant matrix )
Qx = b (first-order necessary conditions)
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Quadratic Programming (2)

Optimization algorithms locally approximate f with quadratic models

min f (x) = 1
2x

TQx − bTx
t.c . x ∈ Rn

Possible cases:

Q is not positive semidefinite: f has not minima
Q is positive definite: x∗ = Q−1b is the only global minimizer
Q is positive semidefinite:

Q is not singular: x∗ = Q−1b is the only global minimizer
Q is singular:

no solutions or
infinite solutions
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Quadratic Programming (3)

Example: f (x , y) = 1
2

(
ax2 + by2

)
− x

f (x) =
1
2

(x , y)

(
a 0
0 b

)(
x
y

)
− (x , y)

(
1
0

)

23 / 42



Introduction
Example

Preliminaries and notation
Algorithm Overview

Minimizers
Linear and quadratic models
Optimality Conditions
Convex Programming
Quadratic Programming

Example of QP: Portfolio Optimization

ri , i = 1, . . . , n r.v.: returns of n possible investiments
µi = E [ri ] and σ2

i = E [(ri − µi )
2] with normal distribution

ρij =
E [(ri−µi )(rj−µj )]

σiσj
for i , j = 1, . . . , n correlations among

investiments pairs
xi , i = 1, . . . , n, fraction of budget put into investiment i∑n

i=1 xi = 1, x ≥ 0, all funds are invested
R =

∑n
i=1 xi ri , portfolio return

E [R] =
∑n

i=1 xiE [ri ] = xTµ, expected return
Var [R] = E [(R − E [R])2] =

∑n
i=1
∑n

j=1 xixjσiσjρij = xTGx
where Gij = ρijσiσj is the symmetric positive semidefinite covariance
matrix
max xTµ− kxTGx , s.t.

∑n
i=1 xi = 1, x ≥ 0.
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Algorithm Overview (1)

Continous optimization methods:
1 Given a starting point x0, generate an sequence {xk}∞k=0.
2 Terminate the algorithm, when necessary conditions are satisfied

with some accuracy, say ‖∇f (xk)‖ ≤ ε.
3 Monotone algorithms requires that f (xk) < f (xk−1) for all k

How good is an optimization algorithm ?
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Local and Global Convergence

An optimization algorithm is fair if it converges...

Definition An algorithm is called globally convergent if it converges to a
point x∗ s.t. ∇f (x∗) = 0 for each starting point x0 ∈ Rn

Definition An algorithm is called locally convergent if it converges to a
point x∗ s.t. ∇f (x∗) = 0 only if the starting point x0 ∈ N(x∗)

N.B. nothing to do with the convergence to a local or a global optimum!
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Rate of Convergence

An optimization algorithm is good if it converges rapidly!
Rate of convergence properties discuss the behavior of an algorithm
close to a solution
How fast does the algorithm converge?

Let xk be a sequence in Rn that converges to x∗. Convergence is:

Q-linear if ∃r ∈ (0, 1) s.t. ‖xk+1−x∗‖
‖xk−x∗‖ ≤ r , for k ≥ k .

E.g.: {xk} = 1
2k

Q-superlinear if lim
k→∞

‖xk+1−x∗‖
‖xk−x∗‖ = 0.

E.g.: {xk} = 1
k!

Q-quadratic if ∃C > 0 s.t. ‖xk+1−x∗‖
‖xk−x∗‖2 ≤ C , for k ≥ k .

E.g.: {xk} = 1
22k

Q-quadratically → Q-superlinearly → Q-linearly
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Algorithm Overview (2)

Continous optimization methods:
1 Given a starting point x0, generate an sequence {xk}∞k=0.
2 Terminate the algorithm, when necessary conditions are satisfied

with some accuracy, say ‖∇f (xk)‖ ≤ ε.
3 Monotone algorithms requires that f (xk) < f (xk−1) for all k

How does one determine xk given xk−1?
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Two Main Strategies (1)

Line search: Given an iterate xk , we first determine a direction hk .
Then we determine a stepsize αk given by

min
αk

f (xk + αkhk)

The new iterate is given by xk+1 = xk + αkhk .
Trust region: Construct a model function mk using the information
at xk . A trust-region radius ∆k is selected and we obtain a hk such
that

min
‖hk‖≤∆k

mk(hk)

If hk does not produce sufficient descent, we shrink ∆k and resolve.
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Two Strategies(2)

Line search:
1 Select direction
2 Determine stepsize

Trust Region:
1 Select trust region (stepsize)
2 Determine direction
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Line Search algorithms

Descent Method;
{

Choose x0 ∈ Rn; k := 0;
While ∇f (xk) 6= ∅;
{

compute d k ∈ Rn; /* descent direction */
compute αk ∈ R; /* step along d k */
xk+1 = xk + αd k ;
k := k + 1;

}
}
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Stepsize specification

We assume that in x a descent direction d has been given

Stepsize Problem

min
α>0

φ(α) = f (x + αd )

Tradeoff between effort and accuracy
Global minimizer would be too costly from a computational
standpoint
Exact linesearch: α∗ solves φ′(α) = ∇f (x + αd )Td = 0.
An inexact linesearch is generally used:

Cheap
Convergence rate does not rely on exact line search
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Observation

The simple decreasing of f is not enough.

φ(α) = α2 − 4α + 3, convex, with α∗ = 2.
α0 = 0
{αk} generated by αk = 2 + (−1)k+1(1 + 1/(k + 1))

φ(αk+1) < φ(αk), con k = 0, 2, . . ..
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Wolfe Conditions

To be effective inexact linesearch requires some conditions
Sufficient Decrease: f (x + αd) ≤ f (x) + c1α∇f (x)Td , c1 ∈ (0, 1)

φ(α) ≤ φ(0) + αc1φ
′(0)

Curvature condition: ∇f (x + αd)Td ≥ c2∇f (x)Td , c1 ∈ (0, 1)

φ′(α) ≥ c2φ(0)

Collectively called Wolfe conditions where 0 < c1 < c2 < 1

Strong Wolfe conditions introduce a sign constraint on curvature∥∥∇f (x + αd)Td
∥∥ ≤ c2

∥∥∇f (x)Td
∥∥
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Existence of stepsize

Proposition Suppose that f : Rn → R is continuously differentiable. Let
d be a descent direction at x and assume that φ(α) is bounded below for
α > 0. Then if 0 < c1 < c2 < 1, there exist steplengths satisfying the
(strong) Wolfe conditions.

Looking for α: backtracking line search

Armijo’s method;
{

Choose α0 ∈ R; α := α0;
While f (xk + αd k) > f (xk) + αc1∇f (xk)Td k;

α := σα; /* backtracking */
α∗ := α;

}

σ ≈ 0.9, α0 often set to 1 for Newton and Quasi-Newton methods
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Exact line search for QP

Let us consider a Quadratic Programming model

f (x) =
1
2
xTQx − bTx

φ(α) = f (x + αd ) = 1
2 (x + αd )TQ(x + αd )− bT (x + αd )

φ′(α) = ∇f (x + αd )Td = 0.
(Q(x + αd )− b)Td = 0

α∗ = − xTQd−bTd
dTQd = −∇f (x)Td

dTQd

This result is used in the convergence analysis of optimization algorithms.
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On computing α

Other techniques for computing α
Interpolation: using quadratic or cubic models
Derivative free techniques, assuming convexity of φ(α)

Golden Section Method,
Fibonacci Method,
Bisection Method.
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Convergence of inexact linesearch schemes (1)

If we define θk as the angle between d k and −∇fk , then

cos θk =
−∇f (x)T

k d k

||∇f (x)k || · ||d k ||

Theorem Let d k be a descent direction and let αk satisfy the Wolfe
conditions. Also assume that f is bounded below on Rn and continuously
differentiable on N which contains the level set
Lf := {x : f (x) ≤ f (x0)}, where x0 is the starting point. We also
assume that ∇f is Lipschitz continuous on N. Then

∞∑
j=0

cos2 θj ||∇f (x j)||2 <∞.
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Convergence of inexact linesearch schemes (2)

Proof:
∇f T

k+1d k ≥ c2∇f T
k d k (Curvature condition)

(∇fk+1 −∇fk)Td k ≥ (c2 − 1)∇f T
k d k

(∇fk+1−∇fk)Td k ≤ ||∇fk+1−∇fk ||||d k || ≤ αkL||xk+1−xk ||||d k || =
αkL||d k ||2 (from Schwartz and Lipschitz inequalities)

αk ≥ c2−1
L
∇f T

k dk
||dk ||2

fk+1 ≤ fk + c1αkdT
k ∇fk = fk − c1

1−c2
L

(∇f T
k dk )2

||dk ||2
(Sufficient Decrease)

fk+1 ≤ fk − c cos2 θk ||∇fk ||2 where c = c1(1− c2)/L

fk+1 ≤ f0 − c
∑k

j=0 cos
2 θj ||∇fj ||2 (by recursion)

c
∑k

j=0 cos
2 θj ||∇fj ||2 ≤ f0 − fk+1 <∞ (by boundness of f )

Zoutendijk condition
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Convergence of inexact linesearch schemes (3)

Zoutendijk condition

k∑
j=0

cos2 θj ||∇fj ||2 <∞

implies

cos2 θj ||∇f (x j)||2 → 0

Hence if the algorithm satisfies also the angle condition

cos θk ≥ ε > 0

then it converges

lim
k→∞

||∇f (xk)|| = 0
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Convergence of inexact linesearch schemes (4)

Given a function f bounded below on Rn and continuously differentiable
on N which contains the level set Lf := {x : f (x) ≤ f (x0)}, with ∇f
Lipschitz continuous on N then an iterative method,

xk+1 = xk + αkd k

starting at x0 converges, i.e.

lim
k→∞

||∇f (xk)|| = 0

if d k is a descent direction which satisfies the angle condition
and αk satisfies the Wolfe conditions

Sufficient Decrease: f (x + αd ) ≤ f (x) + c1α∇f (x)Td , c1 ∈ (0, 1)
Curvature condition: ∇f (x + αd )Td ≥ c2∇f (x)Td , c1 ∈ (0, 1)
where 0 < c1 < c2 < 1
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