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Abstract

The continuous increasing of computing power in biological research places a threshold to the single host use and suggests an approach based
on distributed computing. An emerging solution is grid technology, which allows organization to make better use of existing computing resources
by providing them with a single, transparent, aggregated source of computing power. Equally, bioinformatics analysis often involves many web
services, allowing shared access to information and helping the biologist to design, describe, record complex experiments. A new generation of
grid infrastructure, where web services are building blocks, allow managent of a web services workflow.

This work shows a tool for the identification and functional annotation of ‘Conserved Sequence Tags’ (CSTs) through cross-species genome
comparisons, deployed on a Grid System Architecture, based on Web Services concepts and technologies.
c© 2006 Elsevier B.V. All rights reserved.
1. Introduction

The explosive growth of biological data, stimulated by
genome projects, has generated a parallel development
of efficient computational approaches suitable for several
biological research projects. In this area the need of High
Performance Computing (HPC) is growing, though usually
not affordably by computational resources of a single
research laboratory. Grid computing addresses this problem by
coordinating and unifying several computational resources [1],
allowing the evaluation and mining of a large amount of data
in the terabyte and petabyte range. Unfortunately, present-day
versions of grid middleware provide only a small part of the
functionality required from a bioinformatics community. On
the other hand, web services are the distributed computing
technology that offers powerful capabilities for scalable
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interoperation of heterogeneous software across a wide variety
of networked platforms [2]. They give the opportunity to create
a framework in which applications distributed across local and
wide area networks can interoperate through a set of standard
protocols. The crucial difference with the past is that most of
the systems consisted of ad hoc solutions (e.g. CGI programs)
whereas the web services (WS) should lower the barrier to
application integration. To increase individual and collective
scientific productivity by making powerful information tools
available to everyone, a service-oriented strategy is necessary.
New projects on service-oriented grids [3] have the assets of
both grid and web service technology and help researchers to
obtain high performance web services. Complex applications
exchanging huge amounts of data, using several web services,
have to be managed to gain high performance and high
avalability systems, encouraging convergence of grid and web
services.

Among those classes of applications, to face the problem
of identifying and assessing the coding or noncoding nature
of conserved sequence tags (CSTs) through cross-species
genome comparisons [4–6], we present a grid-web service
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framework, CSTgrid, whose core is implemented as web
services. It is composed of one grid daemon module and
by seven web services, three for grid components and
four for resource components. CSTgrid web tool, available
at http://www.caspur.it/CSTgrid, has been developed as an
Open Grid Service Architecture, in which services act as
a building block of the grid system, allowing a biology
community to use all services without any knowledge of the
underlying infrastructure. It can provide high performance,
high availability and can fairly handle hundreds of concurrent
requests. The grid infrastructure has an ad hoc library,
implemented as a set of web services, developed while the
grid community is working on a standard toolkit for a service-
oriented grid [3]. Furthermore our grid-web service prototype
built to minimize the overhead of standard grid toolkit
(e.g. Globus toolkit [7]), is based on grid source components
developed compliant to Gtk standards, thus permitting an easy
migration path to future grid service-oriented standards.

2. The problem of the identification of conserved sequence
tags (CSTs)

The annotation of sequence features in genome tracts
is a fundamental task in genome analysis. Although the
complete genomes of several eukaryotic organisms have been
sequenced, we are not yet able to detect their complete
gene inventory, including their regulatory elements [8–10].
The identification and assessment of the coding or noncoding
nature of conserved sequence tags (CSTs) through cross-
species genome comparisons may contribute significantly to
functional annotation of whole genome sequences with the
discovery of novel genes or gene expression isoforms. It is
well known that both sequences regulating gene expression
and genes are conserved among species, therefore the problem
of discriminating between potentially coding and noncoding
conserved sequence tags (CSTs) arises. The computation of
a coding potential score (CPS) for each CST identified in
a pairwise genome comparison has been introduced [4] that
provides a reliable classification of CSTs in coding (high CPS)
and noncoding (low CPS), these latter being candidates of
some regulatory activity. An improved version of the method
described in [4] has been developed as a web tool [5]. It
provides, through gene name or chromosomal coordinates,
direct access to Ensembl genomes [11] as well as the possibility
for the user to submit data directly. The graphical output of
detected CSTs shows known gene features (mRNA, exons,
etc.) of the genomic region under investigation and allows
researchers to infer easily the functional annotation of CSTs.
The described algorithms are not able to perform a search
for CSTs between a query sequence and the huge amount of
nucleotide sequence data produced by large scale sequencing
projects. GenoMiner algorithm [6] is a first experiment in this
direction. A GenoMiner analysis is partitioned into three steps:
(1) the best local alignments between the query sequence and
the target genomes identified by BLAT [12] define one or more
homologous regions in the selected target genomes; (2) CSTs
are detected though a BLAST-like alignment with sensitive
parameters of the query sequence and the homologous regions
delimited previously using sensitive parameters; (3) a CPS is
assigned to each detected CST as described in [5].

The GenoMiner web tool allows the user to paste or upload
a query sequence in Fasta format with no length limitation and
select one or more target genomes. Presently, eleven vertebrate
genomes collected in the Ensembl database are available
for GenoMiner analysis. In order to increase computational
efficiency, the searches against genome assemblies are spread
across multiple distributed BLAT servers. This tool has been
developed using distributed computing technology without the
use of any standard developed platforms such as web services or
grid technology. CSTgrid has been implemented with the aim of
searching CSTs among several couples of nucleotide sequences
allowing the user to analyze huge tracts of whole genomes.

2.1. Description of basic tools involved

A set of four web services (GeneInfo, Features, Seq ret,
CSTfinder) has been developed allowing the user to perform a
CST search in four different ways: (1) pasting the sequences (in
FASTA format), (2) uploading a text file containing one query
sequence and one target sequence, (3) submitting the Ensembl
gene ID and selecting the corresponding organism and (4)
selecting the organism and choosing the chromosomal range.
The first two selection cases involve the use CSTfinder of WS
only whereas the last two involve the other three WSs needed to
compose the CTSminer output. In Table 1 we list each of four
WS with a short description and the input and output streams.
A summary of the interaction among these resources is reported
in Section 3.2.

Both GeneInfo and Features WSs query liteDB, a home-
made database of features and genes annotated on genomes.
Gene Info takes a Ensembl gene name and queries liteDB
for the chromosomic coordinates of the gene. Features takes
the chromosomic coordinate and queries liteDB for the list
of annotated features. Data to populate liteDB tables are
mainly extracted from UCSC and Ensembl databases, but
other sources can be used. The advantage of using liteDB is
that information taken from different sources is parsed and
stored with homogeneous structure. Moreover, liteDB has been
designed with a very simple structure so that direct queries to
the database can be performed avoiding the need for complex
API.

Seq ret WS is based on a custom C program designed
to extract efficiently genomic sequences given the organism
name, the absolute genome coordinates and strand orientation
(forward or reverse) of the required region. If reverse
orientation is selected Seq ret outputs the reverse-complement
of the sequence. Seq ret works extracting relevant sub-
sequence from fasta files containg the assembled sequences of
chromosomes. It is also possible to extract masked sequences
where TRF and RepeatMasker repeats are substituted by ‘N’
if chromosomes used have been soft-masked (i.e. repeated
nulceotides are shown in lower-cases). Seq ret has been
designed keeping performance in mind; it is able to extract
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Table 1
Short description and the input and output streams of web services resources

ResourcesWS Description Input Output

GeneInfo Gives information about a gene (chromosome
number, coordinates, strand).

An ENSEMBL identifier. A chromosome name,
chromosomal range, a strand.

Features Gives a list of annotated features in a
chromosomal range.

An organism, a chromosome
name, a chromosomal range.

A list of features.

SeqRet Extract DNA sequence from a chromosomal
range of an organism.

An organism, a chromosome
name, a chromosomal range, a
strand, a mask option.

A DNA sequence.

CSTfinder Performs the search of CSTs between two
DNA sequences.

Two DNA sequences. A list of CSTs and their associated
features (Coding Potential Score,
Alignment, % Identity, etc.).
the selected region much faster than similar programs, such as
extractseq from EMBOSS package.

CSTfinder represents the core of the resources and
essentially implements the new version of the algorithm
described in [4] with default parameters i.e. word size of 7 and
maximum E-value of 10−5 for Blast analysis and minimum
CST length of 60 nt [5]. A couple of sequences is needed
to run a job. CSTfinder results are displayed by scanning
each detected CST with the highest-scoring triplet window
(default minimum length of 60 nt). This approach facilitates
the detection of potential coding regions located in longer CSTs
which might contain both coding and noncoding tracts (through
the presence of untranslated mRNA or intronic regions). The
resources worklow is explained in detail in Section 3.2.

3. The software architecture of CSTgrid

The system is developed in multi-layered components to
allow a Rapid Application Development (RAD) infrastructure
and minimal administration efforts. CSTgrid is logically
composed by three tiers (Fig. 1):

(1) An interface tier responsible for communicating with
end-user agents such as web browsers and command line
clients.

(2) A generic (not oriented to search CSTs) grid tier
composed by a grid daemon responsible for the management
of the grid resources.

(3) A resource tier composed by a set of Resources WS,
specific to search CSTs.

3.1. The interface tier

This tier is responsible for communicating with end-user
agents such as web browsers and command line clients. PHP
scripts (GridStatus and CSTgrid), running under Apache, allow
the user both to obtain information about the status of the grid
and to launch a CST search job through a command line client.
More in detail CSTgrid script inserts new requests into and
fetches results from the CSTminer web service, the specific web
service for managing jobs to search CSTs. CSTminer performs
continuously the following steps:
Fig. 1. The CSTgrid distributed software architecture.

* receives a request from a client;
* obtains information about free resources from the Re-

sourceAllocator web service;
* uses several resources depending on the input request to

perform CSTs search;
* sends CST results to the end-user agent.

CSTminer is a public WS available to an end-user
developer through the standard service description layer, Web
Service Description Language (WSDL), an XML grammar
for specifying a public interface for a web service. Using
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CSTminer WSDL the end-user developer can locate the WS
and invoke any of the publicly available functions from home-
made applications. As with any WS, CSTminer can let users
create new, more complex software that makes use of CSTs data
through the standard web service.

3.2. The grid manager tier

The grid manager tier is based on four components: two
web services (GridInfo and ResourceAllocator), one database
to store information about the grid status and one grid daemon.
The database contains all the information about the hosts taking
part to the grid, the services available on that hosts and the
history of the availability of these services. The history data
are managed by the grid daemon, a C program running in the
background, which periodically queries services to know their
actual status and then stores this information in the database.
The detecting time interval for a given WS is calculated by the
system and thus configured and stored in the database.

GridInfo is a private web service responsible for giving
access to information about grid status vis vis the external world
via the web. GridInfo sends its data to two components:

(1) the GridStatus PHP page;
(2) the ResourceAllocator web service for the managing of

the resources.
ResourceAllocator is a web service responsible for taking

resource requests and providing access to them according to a
load-balancing fail-safe policy. It takes up-to-date information
about the grid by the GridInfo web service. Traditional control
algorithms for load balancing include Random, Round-Robin
(RR) [13], Weighted Round-Robin (WRR) [14], Least Load,
Least Connections and Fastest Response algorithms [15]. For
CSTgrid platform, in ResourceAllocator, we implemented,
as failure-safe policy, the Dynamic Weighted Round-Robin
(DWRR) [16] for load balancing. DWRR is a variant of WRR,
in which the main merit of the algorithm is to minimize the
frequency of detection. ResourceAllocator, calling the method
to perform a DWRR, detects each host’s load in the system at
intervals and, following the detection of loads, a set of weights
(the inverse ratio of host loads) is given to each host. The system
allocates new jobs to each host according to the set of weights.

3.3. The resources tier

The resource tier is actually composed of a set of four web
services, working together to compose the CTSminer output.
In Table 1 we list them with a short description and the
input and output streams. All the resources are replicated on
several server hosts to obtain the load-balancing of resources.
They are the building blocks of the CSTgrid service-oriented
architecture. A summary of the interaction of these resources is
reported in Section 4.2.

Two of them, GeneInfo and Seq ret WS, are necessary
for a pre-processing phase. CSTfinder represents the core
of resources and Features runs for a post-processing phase.
GeneInfo WS is useful to obtain, from an Ensembl gene name,
the corresponding organism, chromosome name, chromosomal
range and strand. Features and SeqRet WSs accept similar
input strings (composed by organism, chromosome name and
chromosomal range for both WSs, plus mask option for
SeqRet): the former gives a list of features as result, whereas
the latter returns the corresponding DNA sequence. CSTfinder
WS essentially implements the new version of the algorithm
described in [4] with default parameters i.e. word size of
7 and maximum E-value of 10−5 for Blast analysis and
minimum CST length of 60 nt [5]. A couple of sequences
is needed to run a job. CSTfinder results are displayed by
scanning each detected CST with the highest-scoring triplet
window (default minimum length of 60 nt). This approach
facilitates the detection of potential coding regions located
in longer CSTs which might contain both coding and non-
coding tracts (through the presence of untranslated mRNA or
intronic regions). The resources worklow is explained in detail
in Section 3.2.

4. Implementing the CSTgrid web services

4.1. The grid enabled CSTminer

CSTminer is a web tool for the identification and
characterization of genome tracts which are highly con-
served across species during evolution. It is available at
http://www.caspur.it/CSTminer. Such a tool make use of local
executables to perform CSTs search and is dynamically inter-
connected to Ensembl genomes. The system was adequate for
few concurrent requests, but in case of multiple concurrent re-
quests the server performance dropped. Furthermore, in case of
a failure of some part of the distributed system, the entire ap-
plication was unable to give any output. These facts gave us
the idea of developing a grid version of the software where
each component of the system was replicated to gain better per-
formances in case of many concurrent requests and to manage
component failures. In fact when an incoming search request is
submitted according to the input selection the ResourceAlloca-
tor web service assigns the corresponding resources to different
jobs depending on predefined policies. The CSTminer WS per-
forms the search using the Resources WS, located on remote
machines and replicated to obtain the fault-tolerant property.

4.2. Fault tolerance

In the event of a Resource WS failure, searches are simply
rescheduled on other available servers. Queuing information is
stored in the grid-status database possibly to preserve the trace
of failure jobs. The end-user agent is also able to show the route
and the history of each job. The system also offers an interface
to view the status of the grid showing a map with the distributed
resources that can be selected to control their state, history, load,
etc. The grid daemon is the managing component of failures.
It periodically queries servers and stores information about
their status in the database. Therefore when the CSTgrid server
asks for free resources the ResourceAllocator web service,
through the information stored in the database, will exclude

http://www.caspur.it/CSTminer
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Fig. 2. Workflow of CSTgrid jobs.
those unavailable. If suddenly a resource becomes unavailable
while the CSTgrid server is using it, the CSTgrid server notifies
the failure to the grid daemon and requests a new resource.

4.3. Resources dataflow

As seen above, the web service CSTminer directly manages
each CSTgrid job. The use of Resources web services depends
on the input data selection and in the submission form of
CSTgrid the end-user has to provide two sequences to start
the search. This can be done in four different ways for both
sequences:

(1) pasting the sequences (in Fasta format);
(2) uploading a text file containing the sequence;
(3) submitting the Ensembl gene name and selecting the

corresponding organism;
(4) selecting the organism and choosing the chromosomal

range.
If one of the selected inputs is a user submitted sequence

(cases a and b) CSTminer sends at once a sequence to CSTfinder
WS. If one of the selected inputs is an Ensembl Gene (case c)
CSTminer uses GeneInfo WS to obtain relative chromosomal
range. This chromosomal range is used as input of both
Features and seq ret WS. If one of the selected inputs is a
Chromosomal parameter selection (case d) CSTminer WS uses
directly Features and seq ret WS. In all cases, as soon as each of
the two sequences are available, CSTminer WS submits them to
CSTfinder WS to search for CSTs. A workflow of CSTgrid jobs
is depicted in Fig. 2.

For each completed CST search, the results, made of CSTs
and related annotated features in case 3 or 4 input selection, is
returned and displayed on the end-user agent. When the user
is adopting a web-based agent the CSTs are displayed on the
web page. Further details about each plotted CSTs (CPS values
vs. input sequence for each CST) are available by clicking on a
specific CST.

4.4. The web interface and the command-line client

CSTgrid provides an easy-to-use graphical user interface
(http://www.caspur.it/CSTgrid) that allow the users to control
grid services even though they may have little or no knowledge
of grid computing and Web Services. The details of underlying
technologies are completely trasparent to the end-user within
the CSTgrid system, while a scheme of the architecture (Fig. 1)
is also available on the web (‘Grid Architecture’ button in the
menu bar). By clicking on the ‘Use it!’ button the end-user can
load data, run the jobs and visualize the results.

By clicking on the ‘Grid Status’ button the end-user can
obtain the following information (Fig. 3):

http://www.caspur.it/CSTgrid
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Fig. 3. Screenshot of the web interface showing the grid status.
• current status and status history of each host taking part to
the grid

• current status and status history of each resource
• resources available on each host of the grid.

CSTgrid provides a command-line client to let the end-
user interact with the system. This client has been developed
as a java application with options to select different inputs to
submit a CSTgrid job. This tool can be used to perform a very
large amount of sequential or parallel CSTs searches and dump
the results. Since the results are written in files, the user can
write code to analyze the results. The ideal target of this tool
are researchers that want to perform CSTs searches on many
sequences and to analize them through other tools without using
the web interface, that, although providing a friendly interface,
is not suitable for batch jobs and very large searches.

4.5. Implementing CSTgrid on the Globus Grid framework

The compliance of a given grid-enabled application with
respect to widely accepted standards is a crucial step in its
development phase. The introduction of the Open Grid Service
Architecture (OGSA) as implemented in the last release of
the Globus Toolkit (GT4) offered an open source fundamental
technology for the sharing of computing resources and a
common reference to the developers of grid applications.
Although still in its development stage, the GT4 offers a a set
of OGSA capabilities based on the WS Resource Framework
(WSRF), which has been used in our project to extend the
CSTgrid compliance with respect to standard grid-oriented
service infrastructure. At this stage of the CSTgrid development
phase, we decided to interface our application at the WS level
of the GT4 components in order to create the interface at the
upper level of the GT framework. In particular, we devoted
much of the efforts toward the implementation within the
CSTgrid of (1) grid authentication and credential certification,
(2) Grid Resource Allocation and Management, and (3) Grid
Data Replication mechanisms.

The mechanism of authentication/certification of user/job
over the grid can be generally obtained in a two stage
phase with local credential and successive validation of the
certificate within a scheme contained in a gridmap file. In
our experiment we provided a WS (GT-Auth) for a single
point of authentication over the grid of the generic (distributed)
‘globus’ user with its CA certificate in a LAN shared homedir at
CASPUR as reported in Fig. 3(a). By following the suggestions
from a larger experiment of the GT infrastructure [17] the
extension over WAN of the authentication/authorization phase
will be deployed as soon as we implement the data replication
mechanism for the user’s data, that is, when the CSTgrid
will be finally released in production. However, this is still in
development phase; the study of the authentication mechanism
(local or server-based) to be adapted for grid users in respect
of the local users in particular for the sharing of the computing
resources, but even at this preliminary stage, it is the opinion
of the authors that the flexibility of GT4 components that will
permit an easy extension of the GT-Auth WS.

Concerning the integration of the resource allocator within
the GT4 framework of reference, we interfaced the GridInfo
WS with the WebMDS component in order to retrieve grid
status for the job submission. As reported in Fig. 3(b), the
CSTgrid is able to get grid information from the GridInfo WS,
which can be configured to interface with the GT4 component
and/or with our grid status database. At the present stage of
development, the CSTminer WS dispatches the resource WSs
following the scheduling mechanism reported in Section 3.2,
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but a porting using also the globus-job-submit() function will
be released by the time the CSTgrid will be deployed in
production.

The configuration of data replication over the grid nodes
participating in the CSTgrid environment is an issue which
we are approaching as a two layer problem: (1) the user and
(2) the resource data sets. First, the mechanism implemented
for the replication of the user data should be compliant with
the authentication scheme adopted (see above). While the
computational experiments reported into the next benchmark
section were carried out using either LAN-based NFS or WAN
based AFS filesystems, the replication of local homedirs using
the GT4 components could be as well implemented. However,
the size of the user datasets to be moved over the grid and the
synchronization of the data flows is still a matter to be assessed
depending on the typical usage of the CSTgrid tool from the
community of users. On the other hand, the FASTA datasets
used by most of the WS resources (mainly Seq ret) are easier
to manage and a data replication scheme among the nodes
which synchronize the local (equally replicated) databases were
implemented using the Data Replication components of GT4.
The benchmarks reported in the next section were carried out
among nodes all with the same replicated FASTA sequences
and the overhead due to the data movement is clearly reported
as a function of the data size (number of sequences = number
of organisms), this becoming less important as the number of
WS resource fetched over the grid increases.

5. Benchmarks

In order to study the code scalability as the complexity
of the run increases, we setup a computing environment
with two DL385 (2x AMD Opteron @ 2.6 GHz, B1 and
B2) and two DL585 (4x AMD Opteron @ 2.4 GHz, Q1
and Q2) interconnected via Cu–Gb ethernet (one op between
B1–B2/Q1–Q2, 3 ops between B1–Q1/B2–Q2). Although this
testbed system was implemented over LAN, the particular
configuration we setup for the above multiprocessor SMP
machines, has been able to clarify the performance of the
CSTgrid WS and its components as reported below in detail.

A first test of CSTgrid system has been performed over
the B1 machine to measure the elapsed time proper of each
resource using five genes. The aim of this benchmark was to
monitor the weight of each resource growing the nucleotide
length of the submitted genes. In Fig. 4(a) the results are shown.
The elapsed time of GeneExtract was very low and negligible
with respect the CPU time needed from the other resources. As
expected, there was a linear dependence between the elapsed
time and the length of genes for Seq ret WS which extracts a
given sequence from the FASTA chromosomes. On the other
hand, a direct correlation between the elapsed time and the
length of genes for CSTfinder WS has not been observed. A
cause of the lack of correlation could be due to the order of
gene complexity (i.e. how many exons and introns constitute
the gene). For istance KIF1B and BCL2 genes are different in
length for about 15 Kb length (only 12% of whole gene length),
but the corresponding CSTfinder elapsed time differs greatly.
Fig. 4. (a) Elapsed time of CSTminer resources vs. different genes. (b)
Analysis of constitutive and alternative splice sites for KIF1B and BCL2 genes.

To verify the hypothesis that this effect could be due to the
complexity of the gene, using the Aspic prediction server [18]
we detected the intron–exon structure of the two genes: KIF1B
gene has a very complex structure, 102 predicted introns,
while BCL2 has only few splicing sites, 3 predicted introns
(Fig. 4).

A second test of CSTgrid system has been performed on the
two WSs and was more time comsuming: CSTfinder Seq ret.
The benchmark was made on the same B1 machine, adding
15–30–45 Kb nucleotides to ST5 gene. The added sequences
were generated randomly to avoid growing the complexity of
ST5 sequence. The results of Fig. 5 show that the elapsed time
is proportional to the sequence length (see Fig. 4(b) for detail)
for both WSs and in particular, the computing time is linearly
dependent to the ST5 randomly added chunks of nucleotides.
From these results, one is able to forecast the computing time
when the dataset (the total number of nt where to perform the
CSTs search) will increase or when several of these jobs have to
be carried out at the same time, as expected in real production
runs of the CSTgrid application.

From the results of the last tests, we selected the ST5+30 Kb
as target sequence for the complete CSTfinder benchmarks over
the whole SMP cluster described above. The aim of these
series of tests was to measure the CSTfinder code scalability
and efficiency with respect to the number of jobs submitted
to the grid. Furthermore, having several SMP architectures at
the same time, the overhead due to multiple fetches of the
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Fig. 5. Elapsed time of CSTminer resources vs. different gene length.
Table 2
CSTFinder WS elapsed time (ET) in seconds of the ST5+30 Kb job (see text
for details)

Node elapsed time (ET) (s) overhead (s) code efficiency (%)

B1 1 26.6
B1 2 26.8 0.2 99.2

B2 1 26.4
B2 2 27.0 0.5 98.1

Q1 1 31.3
Q1 2 32.0 0.7 97.8
Q1 3 33.1 1.8 94.5
Q1 4 33.8 2.5 92.6

Q2 1 32.2
Q2 2 33.4 1.2 96.4
Q2 3 33.7 1.5 95.5
Q2 4 34.0 1.8 94.7

Timings refer to multiple spawning of WS where each multiprocessor machine
acts as master node for a complete run (XML-IO+CPU).

CSTfinder WS has been evaluated, either over local or remote
nodes of the grid, thus including any bottleneck arising from
multi-ops network paths.

The first test results are given in Table 2, where the elapsed
time of the CSTfinder WS are reported when each machine
of the grid acts as master node for the job submission. In
Tables 3 and 4 we report the same data and in Table 2, but
when the B1–B2 and Q1–Q2 sets of machines were clustered
together with the first acting as master node. In the Tables 2–4
we also report the overhead due to multiple instances of
the CSTfinder WS over the grid and the corresponding code
efficency given by the ratio of the measured parallel execution
time with respect to the elapsed time of a single WS instance.
We should note however, that the jobs we carried out included
the whole workflow of the CSTfinder WS, that is (1) XML
input data stream; (2) computing phase; and (3) XML outuput
data stream (XML-IO+CPU). Taking this fact into account,
the results showed in Table 2 are fairly good with a single
node spawn ovehead well below 10% of the execution time
and with a computational efficiency of 93% and above.
Concerning the multi-ops benchmarks, of Table 3 (B1-2)
Table 3
CSTFinder WS elapsed time (ET) in seconds of the ST5+30 Kb job (see text
for details)

Node Elapsed time (ET) (s) Overhead (s) Code efficiency (%)

B1 1 27.7
B1 2 28.5 0.9 97.5
B2 1 28.7 1.1 96.1
B2 2 31.5 3.8 87.9

Timings refer to multiple spawning of WS where the B1 biprocessor machine
acts as master node for a complete run (XML-IO+CPU).

Table 4
CSTFinder WS elapsed time (ET) in seconds of the ST5+30 Kb job (see text
for details)

Node Elapsed time (ET) (s) Overhead (s) Code efficiency (%)

Q1 1 32.1
Q1 2 32.7 0.5 98.4
Q1 3 34.3 2.2 93.5
Q1 4 36.2 4.1 88.6
Q2 1 37.7 5.6 85.1
Q2 2 37.8 5.6 85.1
Q2 3 37.9 5.8 84.6
Q2 4 39.4 7.2 81.6

Timings refer to multiple spawning of WS where the Q1 quadriprocessor
machine acts as master node for a complete run (XML-IO+CPU).

and Table 4 (Q1-2) we found a a larger drop in efficiency
than expected (down to 82% for the quadriprocessor cluster)
with a corresponding increase of the WS multi instances
overheads.

In order to investigate further this unusual feature of the
CSTfinder WS, we setup a second set of benchmarks without
the input/output IO via XML, thus focusing the measurements
on the CPU bound section of the workflow (CPU only). The
results of the tests carried out on the same ST5+30 Kb target
system described above are reported in Tables 5 and 6. The
data reported clearly show the bottleneck due to the XML-IO
stage of the workflow: once this phase is skipped from the
computation the CSTfinder code efficiency return to very good
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Table 5
CSTFinder WS elapsed time (ET) in seconds of the ST5+30 Kb job (see text
for details)

Node Elapsed time (ET) (s) Overhead (s) Code efficiency (%)

B1 1 24.4
B1 2 24.4 0.0 99.8
B2 1 24.9 0.4 98.1
B2 2 25.0 0.6 97.7

Timings refer to multiple spawning of WS where the B1 biprocessor machine
acts as master node for a partial run (CPU only).

Table 6
CSTFinder WS elapsed time (ET) in seconds of the ST5+30 Kb job (see text
for details)

Node CST elapsed time (s) Delta Efficiency (%)

Q1 1 28.8
Q1 2 29.1 0.4 98.7
Q1 3 29.6 0.9 97.0
Q1 4 30.0 1.3 95.8
Q2 1 30.1 1.4 95.6
Q2 2 30.4 1.7 94.7
Q2 3 30.5 1.8 94.4
Q2 4 30.8 2.2 93.4

Timings refer to multiple spawning of WS where the Q1 quadriprocessor
machine acts as master node for a partial run (CPU only).

efficiency (93% and above) and the overhead is reduced on
both bi- and quadri-processor clusters. The reason why this
effect of reduced performance take place is probably due to
the serialization of the XML I/O streaming from the apache
servers running on each nodes, and on very large computational
grids composed of many different SMP architectures; this factor
should be tuned with care in order to reach the expected parallel
performance of the CSTfinder WS.

In Table 7 we report the last set of measuments regarding
the data replication of the FASTA databases used by our
CSTgrid package with the aim of understanding the impact
of transferring the most relevant datasets over the grid nodes.
We carried out several node-to-node copy instances between
couples of bi- and quadri-processors machines with one or
three network ops using the scp and rsync tools. We found
the latter tool to be more efficient in any test we performed
independently of the network ops between the grid nodes;
taking into account the extremely good perfomance over
LAN via TCP/IP we obtained using rsync, we expect to
implement a data replication mechanism over the WAN grid of
the CSTgrid databases in the production phase. Furthermore,
even taking into account the expected reduced performance
of the data replication mechanism over the WAN network
among the CSTgrid centres, we are confident that these results
confirmed the feasibility of sharing over the grid a common
database of FASTA sequences and efficient maintenance of the
upgrades.

6. Conclusion

CSTgrid architecture is highly modular allowing an easier
development and debugging process. The system has been
developed as a Service-Oriented Architecture based on a
collection of web services distributed over a geographical grid.
It deploys an interface layer, completely independent of an
underneath grid-layer. The system has been designed in a user-
centric way providing two points of access: the first one is
for an end-user to perform high-performance CST serches; the
second one is for the developer user to build new large scale
WS applications. The access point for the end-user is composed
of two tools: a web interface giving an easy-to-use connection
to CSTgrid system both in the submission of data and in the
visualization of results, and a client to perform batch searches.
The access point for the developer user is essentially the
CSTminer web service. It provides several methods allowing
CST searches based on different inputs parameter selection.
It gives functionalities similar to the web interface and the
command-line client, but has to be used as a component of more
complex applications.

The system has been developed as a grid-aware applica-
tion to deploy fault tolerance, high availability and high per-
formance. The fault tolerance and high availability have been
obtained by replicating all resouces on many hosts and cre-
ating the grid manager tier responsible of dynamically allo-
cating resources and taking care of their status. Of course,
the whole system still has two single points of failure: the
grid manager layer and the web server component. For the
improvement of the web server availability, an easy solution
could be a cluster of web servers accessed through a load
balancer. On the other hand, the problem of the grid man-
ager layer is more complex, since the simple replication of
the grid managers on several hosts does not give the solution.
The release of a standard architecture for a service-oriented
Table 7
Data transfer rates of selected chromosomes and whole genome (human and mouse FASTA format databases) using the scp and rsync tools

Organism Chromosome (size) Scp timing (s) Scp bandwidth (MB/s) Rsync timing (s) Rsync bandwidth (MB/s)

Human Chr1 (238.83 Mb) 9.7 24.6 8.3 28.8

Chr14 (103.46 Mb) 4.7 22.0 4.5 23.0

Whole genome (2992.94 Mb) 86.0 34.8 78.3 38.2

Mouse Chr1 (189.88 Mb) 6.5 29.3 6.3 30.1

Chr14 (113.88 Mb) 5.2 21.9 4.8 23.7

Whole genome (2562.39 Mb) 67.2 38.1 62.1 41.3
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grid will give the best solution to the high availability of this
component.

CSTgrid high performance is based on a native concurrent
architecture where several distributed tasks are managed across
the network. Future efforts will be dedicated to the optimization
of the parallel execution of exact CST resource, in order to
best fit the guest host architecture and real-time environment,
by gathering information from the CST grid manager
database.
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