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Deep Learning 
Limitations and New Frontiers



The Rise of Deep Learning
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So far..   

Data 
•   Signals 
•  Images 
•  Sensors 

…
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Decision 
•  Prediction 
•  Detection 
•  Action 

…

Generative Models



Power of Neural Nets 
Universal Approximation Theorem 

A feedforward network with a single layer is sufficient to approximate, to 
an arbitrary precision, any continuous function. 

Hornik et al.  Neural Networks. (1989)
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Power of Neural Nets 
Universal Approximation Theorem 

A feedforward network with a single layer is sufficient to approximate, to 
an arbitrary precision, any continuous function. 

Caveats:

The number of 
hidden units may 
be infeasibly large

The resulting 
model may not 

generalize 

Hornik et al.  Neural Networks. (1989)
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Artificial Intelligence “Hype”: Historical Perspective
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Limitations



dog banana dog tree

Zhang et al.  ICLR. (2017)
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Rethinking Generalization 
“Understanding Deep Neural Networks Requires Rethinking Generalization

banana dog tree dog



dog banana dog tree

banana dog tree dog

Zhang et al.  ICLR. (2017)
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Rethinking Generalization 
“Understanding Deep Neural Networks Requires Rethinking Generalization



Capacity of Deep Neural Networks

100% 

accuracy 

0%
original 
labels

randomization 

Training Set Testing Set

completely 
random 

Zhang et al.  ICLR. (2017)
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Capacity of Deep Neural Networks 
Modern deep networks can 
perfectly fit to random data

100% 

accuracy 

0%
original 
labels

randomization 

Training Set Testing Set

completely 
random 

Zhang et al.  ICLR. (2017)
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Neural Networks as Function Approximators 
Neural networks are excellent function approximators
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Neural Networks as Function Approximators 
Neural networks are excellent function approximators 

?
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Neural Networks as Function Approximators
Neural networks are excellent function approximators

…when they have training data 

How do we know when our 
network doesn’t know?
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Adversarial Attacks on Neural Networks 

Despois. “Adversarial examples and their implications” (2017).
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Adversarial Attacks on Neural Networks 

Despois. “Adversarial examples and their implications” (2017).
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Bayesian Deep Learning



Why Care About Uncertainty? 

ℙ(cat)	

OR 

ℙ(dog)
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Model Uncertainty Application

Input image Predicted Depth Model Uncertainty

Kendall, Gal, NIPS, 2017.
6.S191 Introduction to Deep Learning 

introtodeeplearning.com
1/30/19



Neural Network Limitations… 

•  Very data hungry (eg. often millions of examples) 

•  Computationally intensive to train and deploy (tractably requires GPUs) 

•  Easily fooled by adversarial examples 

•  Can be subject to algorithmic bias 

•  Poor at representing uncertainty (how do you know what the model knows?) 

•  Uninterpretable black boxes, difficult to trust 

•  Finicky to optimize: non-convex, choice of architecture, learning parameters 

•  Often require expert knowledge to design, fine tune architectures
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The End


