Visione Artificiale

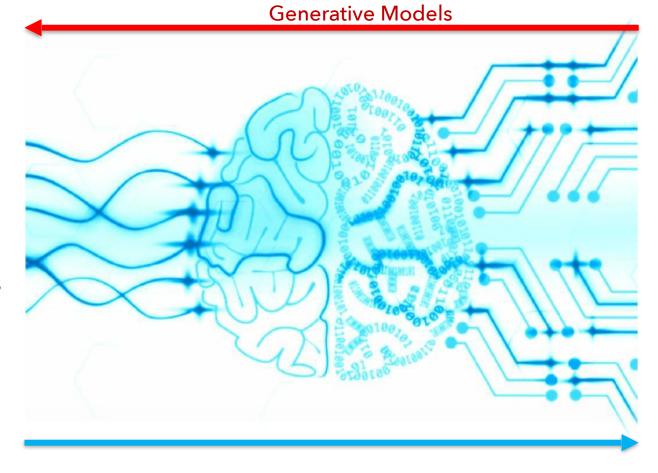
Raffaella Lanzarotti

Deep Learning Limitations and New Frontiers

So far...

- Signals
- Images
- Sensors

. . .



Decision

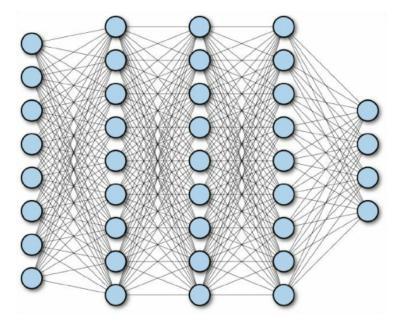
- Prediction
- Detection
- Action

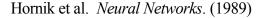
. . .

Power of Neural Nets

Universal Approximation Theorem

A feedforward network with a single layer is sufficient to approximate, to an arbitrary precision, any continuous function.

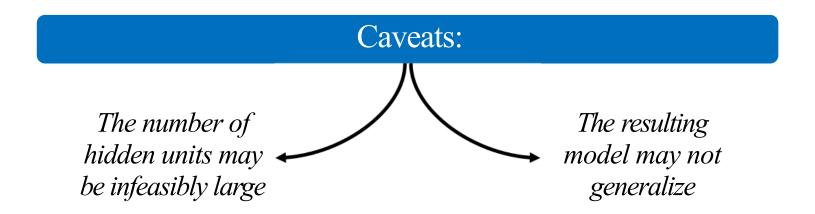




Power of Neural Nets

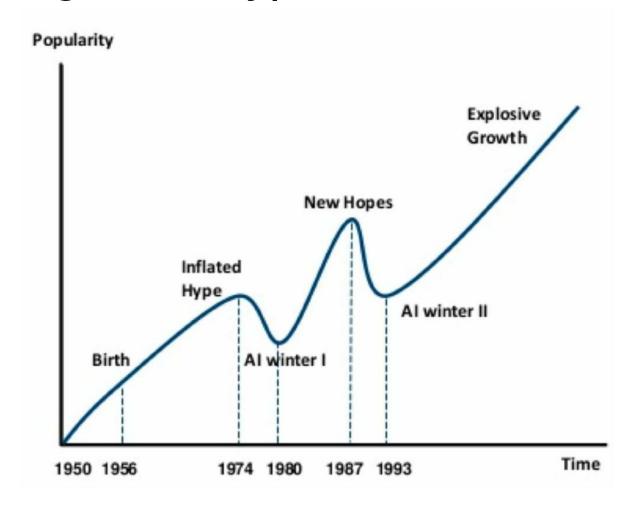
Universal Approximation Theorem

A feedforward network with a single layer is sufficient to approximate, to an arbitrary precision, any continuous function.



Hornik et al. Neural Networks. (1989)

Artificial Intelligence "Hype": Historical Perspective



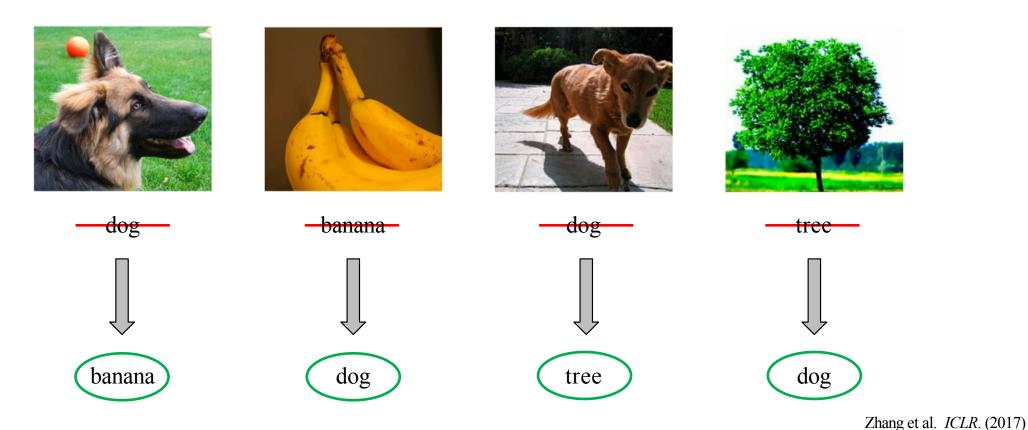
Limitations

Rethinking Generalization

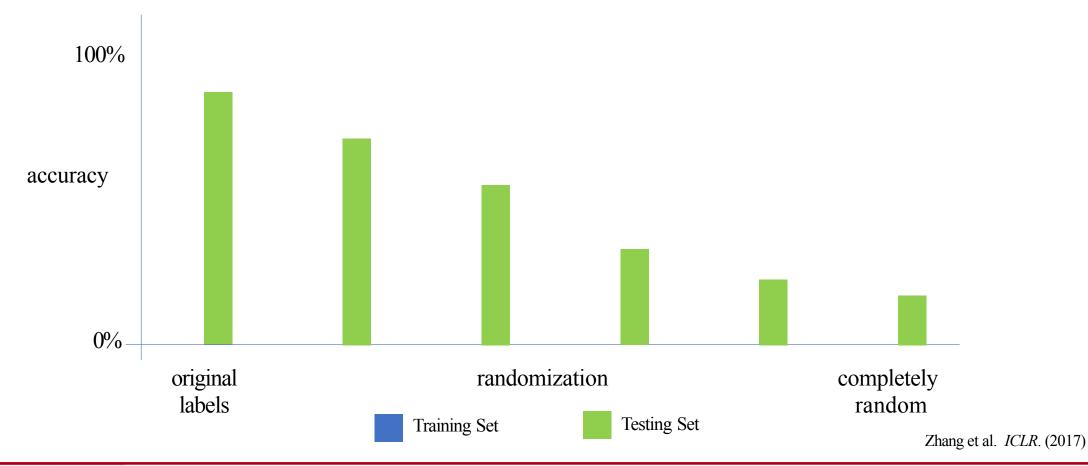
"Understanding Deep Neural Networks Requires Rethinking Generalization

Rethinking Generalization

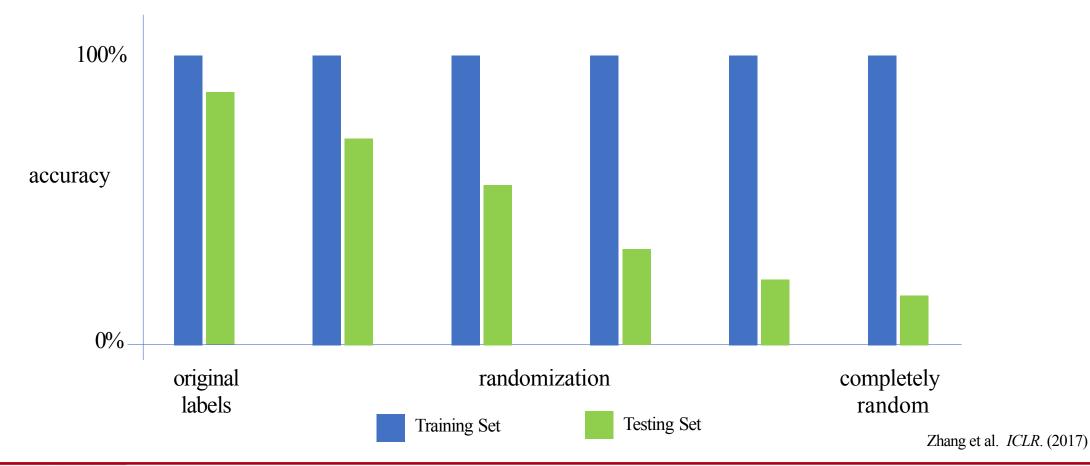
"Understanding Deep Neural Networks Requires Rethinking Generalization



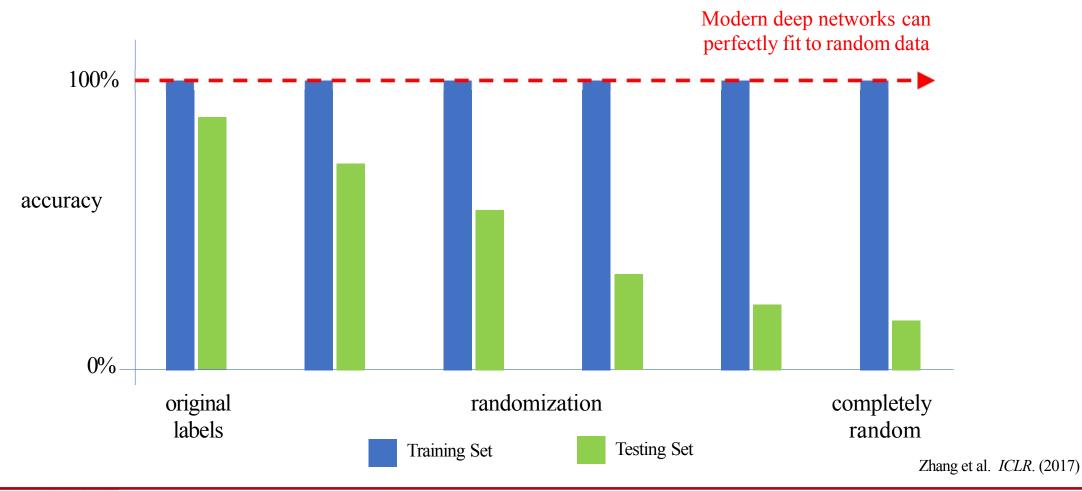
Capacity of Deep Neural Networks

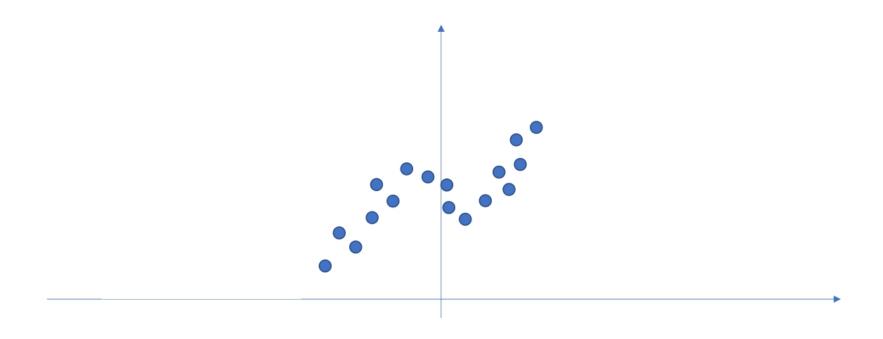


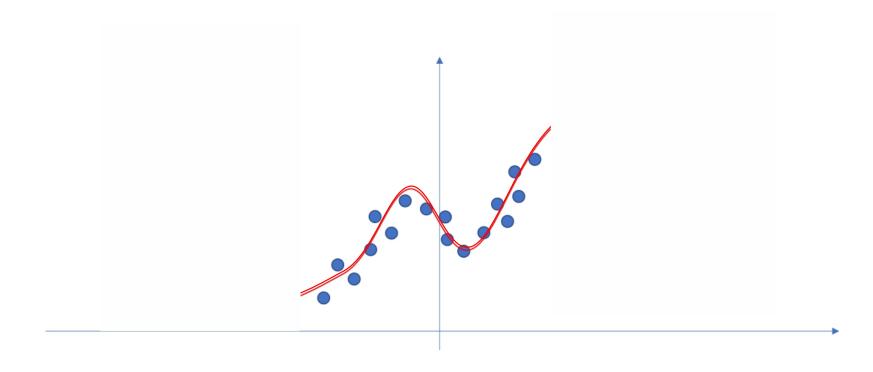
Capacity of Deep Neural Networks

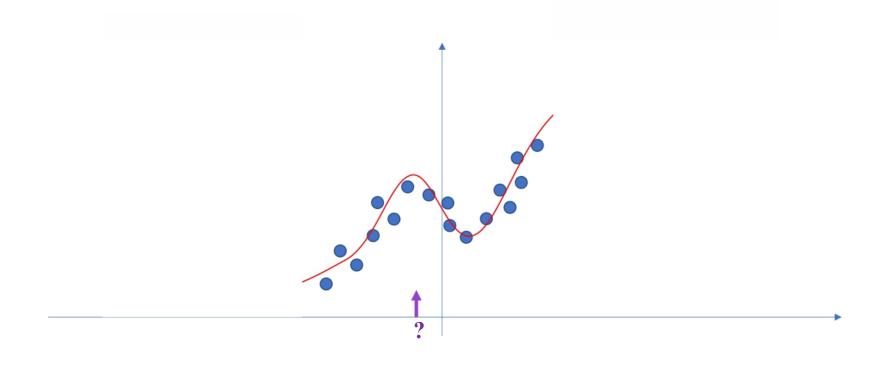


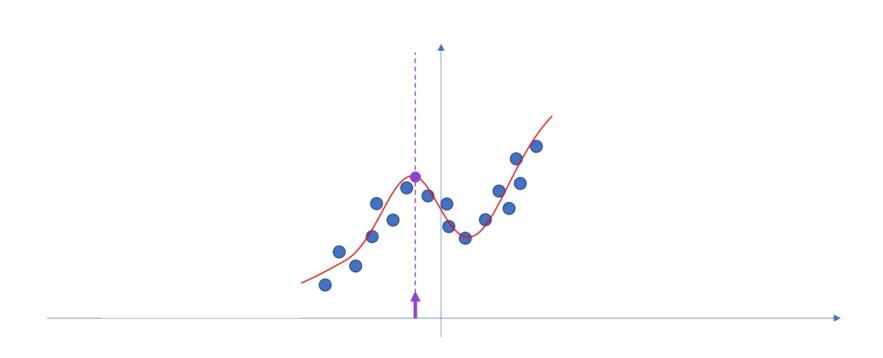
Capacity of Deep Neural Networks

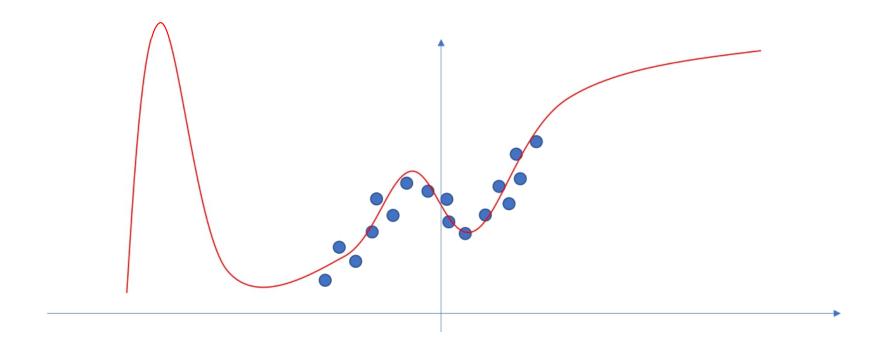




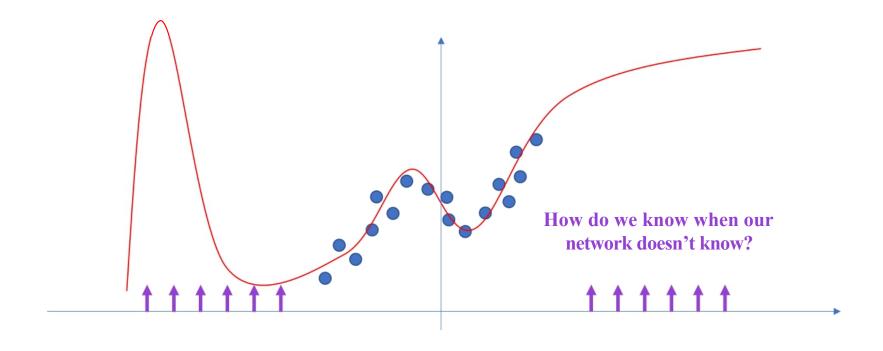


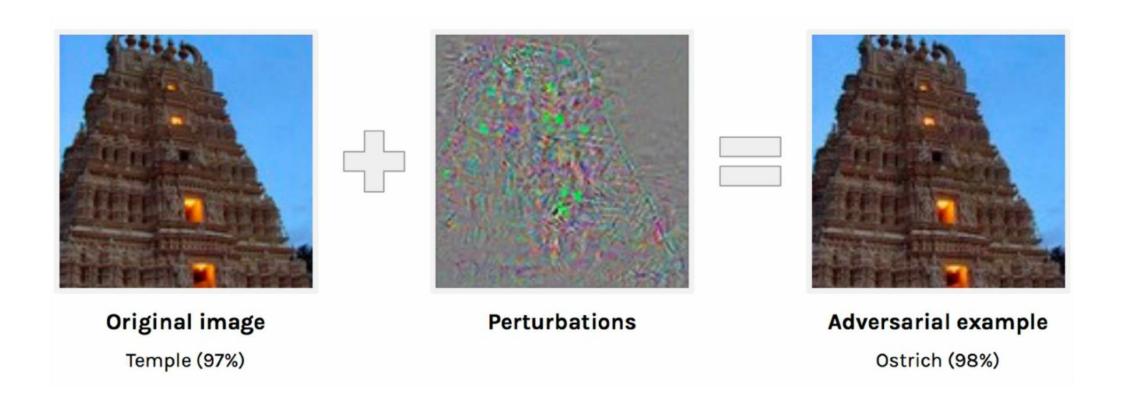




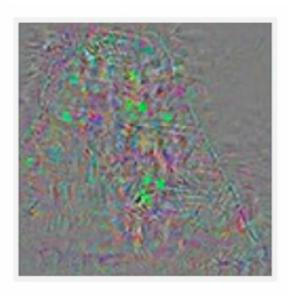


Neural networks are **excellent** function approximators ...when they have training data





Despois. "Adversarial examples and their implications" (2017).



Perturbations

Remember:

We train our networks with gradient descent

$$\theta \leftarrow \theta - \eta \frac{\partial J(\theta, x, y)}{\partial \theta}$$

"How does a small change in weights decrease our loss"

Remember:

We train our networks with gradient descent

$$\theta \leftarrow \theta - \eta \frac{\partial J(\theta, x, y)}{\partial \theta}$$

"How does a small change in weights decrease our loss"

Remember:

We train our networks with gradient descent

$$\theta \leftarrow \theta - \eta \frac{\partial J(\theta, x, y)}{\partial \theta}$$
 Fix your image x , and true label y

"How does a small change in weights decrease our loss"

Adversarial Image:

Modify image to increase error

$$x \leftarrow x + \eta \, \frac{\partial J(\theta, x, y)}{\partial x}$$

"How does a small change in the input increase our loss"

Adversarial Image:

Modify image to increase error

$$x \leftarrow x + \eta \frac{\partial J(\theta, x, y)}{\partial x}$$

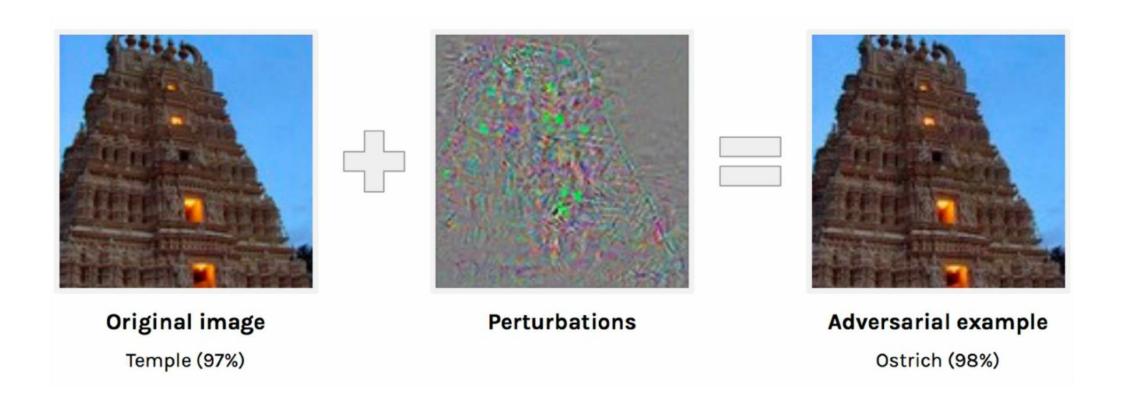
"How does a small change in the input increase our loss"

Adversarial Image:

Modify image to increase error

$$x \leftarrow x + \eta \frac{\partial J(\theta, x, y)}{\partial x}$$
 Fix your weights θ , and true label y

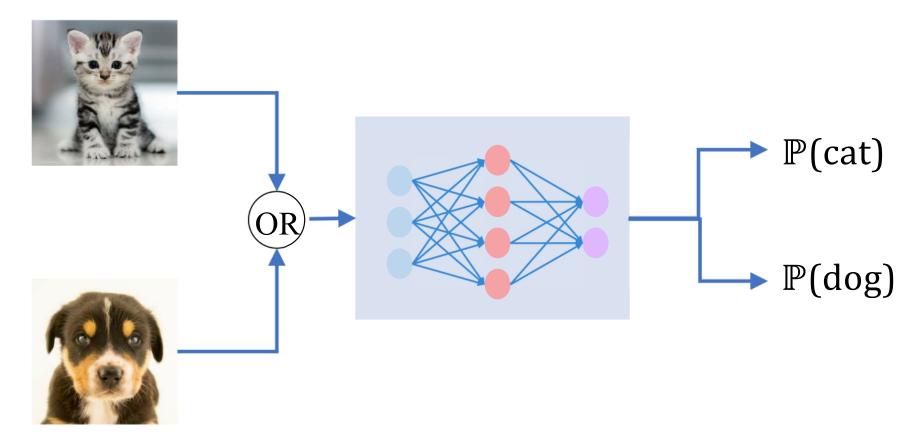
"How does a small change in the input increase our loss"



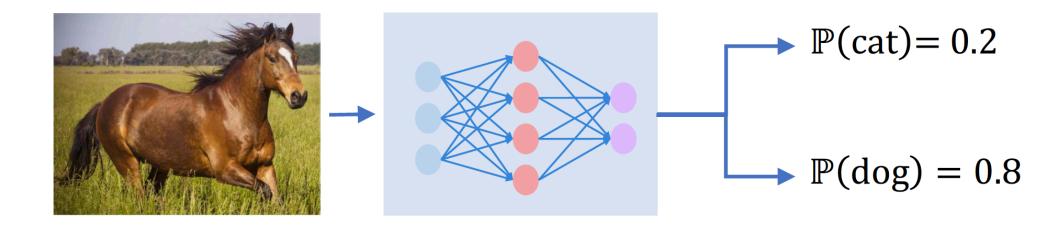
Despois. "Adversarial examples and their implications" (2017).

Bayesian Deep Learning

Why Care About Uncertainty?



Why Care About Uncertainty?



Remember: $\mathbb{P}(cat) + \mathbb{P}(dog) = 1$

Bayesian Deep Learning for Uncertainty

Network tries to learn output, Y, directly from raw data, X

Find mapping, f, parameterized by weights θ such that $\min \mathcal{L}(Y, f(X; \theta))$

Bayesian neural networks aim to learn a posterior over weights, $\mathbb{P}(\theta|X,Y)$:

$$\mathbb{P}(\boldsymbol{\theta}|X,Y) = \frac{\mathbb{P}(Y|X,\boldsymbol{\theta})\mathbb{P}(\boldsymbol{\theta})}{\mathbb{P}(Y|X)}$$

Bayesian Deep Learning for Uncertainty

Network tries to learn output, Y, directly from raw data, X

Find mapping, f, parameterized by weights θ such that $\min \mathcal{L}(Y, f(X; \theta))$

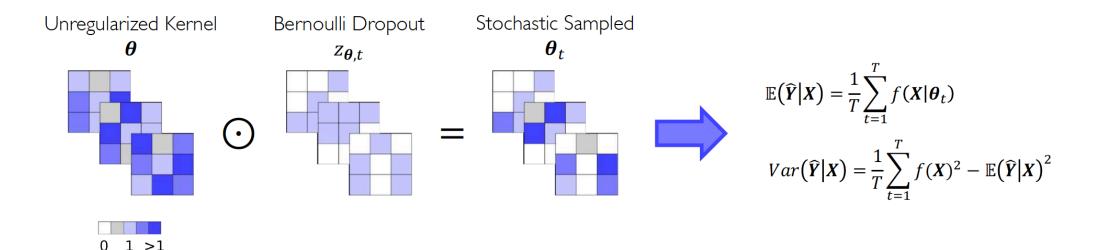
Bayesian neural networks aim to learn a posterior over weights, $\mathbb{P}(\theta|X,Y)$:

Intractable!
$$\mathbb{P}(\boldsymbol{\theta}|X,Y) = \frac{\mathbb{P}(Y|X,\boldsymbol{\theta})\mathbb{P}(\boldsymbol{\theta})}{\mathbb{P}(Y|X)}$$

Elementwise Dropout for Uncertainty

Evaluate T stochastic forward passes through the network $\{\boldsymbol{\theta}_t\}_{t=1}^T$

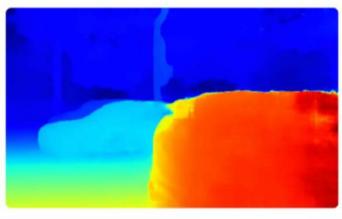
Dropout as a form of stochastic sampling $z_{w,t} \sim Bernoulli(p) \ \forall \ w \in \theta$

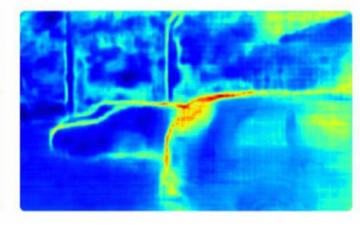


Gal and Ghahramani, ICML, 2016.

Amini, Soleimany, et al., NIPS Workshop on Bayesian Deep Learning, 2017.

Model Uncertainty Application





Input image

Predicted Depth

Model Uncertainty

Neural Network Limitations...

- Very data hungry (eg. often millions of examples)
- Computationally intensive to train and deploy (tractably requires GPUs)
- Easily fooled by adversarial examples
- Can be subject to algorithmic bias
- Poor at **representing uncertainty** (how do you know what the model knows?)
- Uninterpretable **black boxes**, difficult to trust
- Finicky to optimize: non-convex, choice of architecture, learning parameters
- Often require **expert knowledge** to design, fine tune architectures

The End