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Deep Learning
Limitations and New Frontiers
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So far..
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Data Decision
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Power of Neural Nets

Universal Approximation Theorem

A feedforward network with a single layer is sufficient to approximate, to
an arbitrary precision, any continuous function.

Hornik et al. Neural Networks. (1989)
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Power of Neural Nets

Universal Approximation Theorem

A feedforward network with a single layer is sufficient to approximate, to
an arbitrary precision, any continuous function.

The number of The resulting
hidden units may model may not
be infeasibly large generalize

Homnik et al. Neural Networks. (1989)
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Artificial Intelligence “Hype": Historical Perspective
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Limitations



Rethinking Generalization

"Understanding Deep Neural Networks Requires Rethinking Generalization

banana

banana tree dog

Zhang et al. ICLR. (2017)
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Rethinking Generalization

"Understanding Deep Neural Networks Requires Rethinking Generalization

Zhang et al. ICLR. (2017)
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Capacity of Deep Neural Networks

100%
accuracy
0%
original
labels

randomization

. Training Set Testing Set

completely
random

Zhang et al. ICLR. (2017)
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Capacity of Deep Neural Networks

100%
accuracy
0% —
original randomization completely
labels random
. Training Set . Testing Set

Zhang et al. ICLR. (2017)
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Capacity of Deep Neural Networks

Modern deep networks can
perfectly fit to random data

100%

—— — ———— —— - — —— — - P

accuracy

0%

original randomization completely

labels random

. Training Set . Testing Set
Zhang et al. ICLR. (2017)
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Neural Networks as Function Approximators

Neural networks are excellent function approximators
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Neural Networks as Function Approximators

Neural networks are excellent function approximators
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Neural Networks as Function Approximators

Neural networks are excellent function approximators
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Neural Networks as Function Approximators

Neural networks are excellent function approximators
...when they have training data

How do we know when our
network doesn’t know?
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Adversarial Attacks on Neural Networks

Original image Perturbations Adversarial example

Temple (97%) Ostrich (98%)

Despois. “Adversarial examples and their implications” (2017).
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Adversarial Attacks on Neural Networks

Perturbations
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Adversarial Attacks on Neural Networks

Remember:

We train our networks with gradient descent

a/(0,x,y)
90

“How does a small change in weights decrease our loss”

60 <60-—n
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Adversarial Attacks on Neural Networks

Remember:

We train our networks with gradient descent
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Adversarial Attacks on Neural Networks

Remember:

We train our networks with gradient descent

v
a/(6,x,y)

0 <« 0 — n Fix your image x,
20 and true label y

“How does a small change in weights decrease our loss”
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Adversarial Attacks on Neural Networks

Adversarial Image:

Modify image to increase error

a/(0,x,y)
ox

“How does a small change in the input increase our loss”

X< X+

Goodfellow et al. NIPS (2014)
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Adversarial Attacks on Neural Networks

Adversarial Image:

Modify image to increase error

a/(0,x,y)
0x

“How does a small change in the input increase our loss”

X< X+n
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Adversarial Attacks on Neural Networks

Adversarial Image:

Modify image to increase error

; ;
aJ (o, x,
X< X+n ]( y) Fix your weights 6,
0x and true label y

“How does a small change in the input increase our loss”
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Adversarial Attacks on Neural Networks

Original image Perturbations Adversarial example

Temple (97%) Ostrich (98%)

Despois. “Adversarial examples and their implications” (2017).
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Bayesian Deep Learning




Why Care About Uncertainty?

— P(cat)

— [P(dog)

o)
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Why Care About Uncertainty!?

e . —— P(cat)= 0.2
B, e QUH — P(dog) = 0.8

Remember: P(cat) + P(dog) = 1
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Bayesian Deep Learning for Uncertainty

Network tries to learn output, ¥, directly from raw data, X

Find mapping, f, parameterized by weights 8 such that
min L(Y, f(X; 0))

Bayesian neural networks aim to learn a posterior over weights,

P(6|X,Y):

P(Y|X, 0)P(6)

P(OIX,Y) = —— 0
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Bayesian Deep Learning for Uncertainty

Network tries to learn output, ¥, directly from raw data, X

Find mapping, f, parameterized by weights 8 such that
min L(Y, f(X; 0))

Bayesian neural networks aim to learn a posterior over weights,

P(6|X,Y):

P(Y|X, 0)P(6)

Intractable! P(O|X,Y) = POYIX)
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Elementwise Dropout for Uncertainty

Evaluate T stochastic forward passes through the network {6:}1_,

Dropout as a form of stochastic sampling  z,, ~ Bernoulli(p) Yw € 6

Unregularized Kernel Bernoulli Dropout Stochastic Sampled
(7] Zg’t Ot

o " - S =
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T
—~ 1
E(7IX) =7 ) f(xl6,)
t=1

T
Var(71X) =7 Y FO0? ~ E(FX)°
t=1

0 1 >1

Gal and Ghahramani, ICML, 201 6.
Amini, Soleimany, et al., NIPS Workshop on Bayesian Deep Learning, 201 /.
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Model Uncertainty Application

Input image Predicted Depth Model Uncertainty

Kendall, Gal, NIPS, 2017.
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Neural Network Limitations...

Very data hungry (eg. often millions of examples)

Computationally intensive to train and deploy (tractably requires GPUs)
Easily fooled by adversarial examples

Can be subject to algorithmic bias

Poor at representing uncertainty (how do you know what the model knows?)
Uninterpretable black boxes, difficult to trust

Finicky to optimize: non-convex, choice of architecture, learning parameters

Often require expert knowledge to design, fine tune architectures
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