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Generazione di un’immagine
(image formation)

Modelli radiometrici di formazione dell'immagine

v Modello radiometrico di camera 
Ø della lente
Ø del sensore (calibrazione radiometrica, HDR)

v Modelli di riflessione superficiale
v Applicazioni:

Ø Lightness constancy
Ø Photometric stereo
Ø BRDF – Helmholtz stereopsis

(Forsyth/Ponce: Capitolo 2)
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Grandezze radiometriche: definizione di angolo solido

v Angolo piano [radianti]:
Ø Rapporto tra lunghezza arco 

sotteso (s) e raggio (R):
Ø Angolo giro (360º):

v Angolo solido [steradianti]:
Ø Rapporto tra area sottesa (A) e 

raggio al quadrato (R2):

ϑ =
s
R

[rad]

Ω =
A
R2

[sr]

image from:
www.globalspec.com

Angolo giro:

ϑ =
2πR
R

= 2π

Angolo solido "giro":

Ω =
4πR2

R2
= 4π
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Grandezze radiometriche

v Radianza (L): potenza emessa da una superficie luminosa, 
per unità di area e di angolo solido di emissione
Ø È la misura di quanto “abbaglia” una superficie luminosa
Ø Unità di misura: Watt / (m2 sr)  ;  (W m–2 sr –1) 

v Irradianza (E): potenza ricevuta su una superficie, per unità di area
Ø È la misura di quanto viene illuminata una superficie luminosa
Ø Unità di misura: Watt / m2 ;  (W m–2)

Legge di Lambert ("legge del coseno"): 
la irradianza E di una superficie
illuminata da una sorgente con radianza L vale:

in forma differenziale:
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Processo di acquisizione immagine (radiometrico)

proprietà della
sorgente

proprietà della
superficie

proprietà
dell’obiettivo

proprietà del
sensore

!(#, %)

Che cosa determina la luminosità di un pixel?
v Caratteristiche della sorgente
v Caratteristiche della superficie osservata
v Caratteristiche della camera

Ø della lente
Ø del sensore

slide credit:
L. Fei-Fei
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Modello di luminosità di un pixel

v Il nostro caso: immagini digitali
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Figure 1: Image Acquisition Pipeline shows how scene radiance becomes pixel values for both film and digital cameras. Unknown nonlin-
ear mappings can occur during exposure, development, scanning, digitization, and remapping. The algorithm in this paper determines the
aggregate mapping from scene radiance to pixel values from a set of differently exposed images.

the entire dynamic range captured by the original photographs.

1.1 Applications
Our technique of deriving imaging response functions and recover-
ing high dynamic range radiance maps has many possible applica-
tions in computer graphics:

Image-based modeling and rendering
Image-based modeling and rendering systems to date (e.g. [11, 15,
2, 3, 12, 6, 17]) make the assumption that all the images are taken
with the same exposure settings and film response functions. How-
ever, almost any large-scale environment will have some areas that
are much brighter than others, making it impossible to adequately
photograph the scene using a single exposure setting. In indoor
scenes with windows, this situation often arises within the field of
view of a single photograph, since the areas visible through the win-
dows can be far brighter than the areas inside the building.
By determining the response functions of the imaging device, the

method presented here allows one to correctly fuse pixel data from
photographs taken at different exposure settings. As a result, one
can properly photograph outdoor areas with short exposures, and in-
door areas with longer exposures, without creating inconsistencies
in the data set. Furthermore, knowing the response functions can
be helpful in merging photographs taken with different imaging sys-
tems, such as video cameras, digital cameras, and film cameras with
various film stocks and digitization processes.
The area of image-based modeling and rendering is working to-

ward recovering more advanced reflection models (up to complete
BRDF’s) of the surfaces in the scene (e.g. [21]). These meth-
ods, which involve observing surface radiance in various directions
under various lighting conditions, require absolute radiance values
rather than the nonlinearly mapped pixel values found in conven-
tional images. Just as important, the recovery of high dynamic range
images will allow these methods to obtain accurate radiance val-
ues from surface specularities and from incident light sources. Such
higher radiance values usually become clamped in conventional im-
ages.

Image processing
Most image processing operations, such as blurring, edge detection,
color correction, and image correspondence, expect pixel values to
be proportional to the scene radiance. Because of nonlinear image
response, especially at the point of saturation, these operations can
produce incorrect results for conventional images.
In computer graphics, one common image processing operation

is the application of synthetic motion blur to images. In our re-
sults (Section 3), we will show that using true radiance maps pro-
duces significantly more realistic motion blur effects for high dy-
namic range scenes.

Image compositing
Many applications in computer graphics involve compositing im-
age data from images obtained by different processes. For exam-
ple, a background matte might be shot with a still camera, live
action might be shot with a different film stock or scanning pro-
cess, and CG elements would be produced by rendering algorithms.
When there are significant differences in the response curves of
these imaging processes, the composite image can be visually un-
convincing. The technique presented in this paper provides a conve-
nient and robust method of determining the overall response curve
of any imaging process, allowing images from different processes to
be used consistently as radiance maps. Furthermore, the recovered
response curves can be inverted to render the composite radiance
map as if it had been photographed with any of the original imaging
processes, or a different imaging process entirely.

A research tool
One goal of computer graphics is to simulate the image formation
process in a way that produces results that are consistent with what
happens in the real world. Recovering radiance maps of real-world
scenes should allow more quantitative evaluations of rendering al-
gorithms to be made in addition to the qualitative scrutiny they tra-
ditionally receive. In particular, the method should be useful for de-
veloping reflectance and illuminationmodels, and comparing global
illumination solutions against ground truth data.
Rendering high dynamic range scenes on conventional display

devices is the subject of considerable previous work, including [20,
16, 5, 23]. The work presented in this paper will allow such meth-
ods to be tested on real radiance maps in addition to synthetically
computed radiance solutions.

1.2 Background
The photochemical processes involved in silver halide photography
have been the subject of continued innovation and research ever
since the invention of the daguerretype in 1839. [18] and [8] pro-
vide a comprehensive treatment of the theory and mechanisms in-
volved. For the newer technology of solid-state imaging with charge
coupled devices, [19] is an excellent reference. The technical and
artistic problem of representing the dynamic range of a natural scene
on the limited range of film has concerned photographers from the
early days – [1] presents one of the best known systems to choose
shutter speeds, lens apertures, and developing conditions to best co-
erce the dynamic range of a scene to fit into what is possible on a
print. In scientific applications of photography, such as in astron-
omy, the nonlinear film response has been addressed by suitable cal-
ibration procedures. It is our objective instead to develop a simple
self-calibrating procedure not requiring calibration charts or photo-
metric measuring devices.
In previous work, [13] used multiple flux integration times of a

CCD array to acquire extended dynamic range images. Since direct
CCD outputs were available, the work did not need to deal with the
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the entire dynamic range captured by the original photographs.

1.1 Applications
Our technique of deriving imaging response functions and recover-
ing high dynamic range radiance maps has many possible applica-
tions in computer graphics:

Image-based modeling and rendering
Image-based modeling and rendering systems to date (e.g. [11, 15,
2, 3, 12, 6, 17]) make the assumption that all the images are taken
with the same exposure settings and film response functions. How-
ever, almost any large-scale environment will have some areas that
are much brighter than others, making it impossible to adequately
photograph the scene using a single exposure setting. In indoor
scenes with windows, this situation often arises within the field of
view of a single photograph, since the areas visible through the win-
dows can be far brighter than the areas inside the building.
By determining the response functions of the imaging device, the

method presented here allows one to correctly fuse pixel data from
photographs taken at different exposure settings. As a result, one
can properly photograph outdoor areas with short exposures, and in-
door areas with longer exposures, without creating inconsistencies
in the data set. Furthermore, knowing the response functions can
be helpful in merging photographs taken with different imaging sys-
tems, such as video cameras, digital cameras, and film cameras with
various film stocks and digitization processes.
The area of image-based modeling and rendering is working to-

ward recovering more advanced reflection models (up to complete
BRDF’s) of the surfaces in the scene (e.g. [21]). These meth-
ods, which involve observing surface radiance in various directions
under various lighting conditions, require absolute radiance values
rather than the nonlinearly mapped pixel values found in conven-
tional images. Just as important, the recovery of high dynamic range
images will allow these methods to obtain accurate radiance val-
ues from surface specularities and from incident light sources. Such
higher radiance values usually become clamped in conventional im-
ages.

Image processing
Most image processing operations, such as blurring, edge detection,
color correction, and image correspondence, expect pixel values to
be proportional to the scene radiance. Because of nonlinear image
response, especially at the point of saturation, these operations can
produce incorrect results for conventional images.
In computer graphics, one common image processing operation

is the application of synthetic motion blur to images. In our re-
sults (Section 3), we will show that using true radiance maps pro-
duces significantly more realistic motion blur effects for high dy-
namic range scenes.

Image compositing
Many applications in computer graphics involve compositing im-
age data from images obtained by different processes. For exam-
ple, a background matte might be shot with a still camera, live
action might be shot with a different film stock or scanning pro-
cess, and CG elements would be produced by rendering algorithms.
When there are significant differences in the response curves of
these imaging processes, the composite image can be visually un-
convincing. The technique presented in this paper provides a conve-
nient and robust method of determining the overall response curve
of any imaging process, allowing images from different processes to
be used consistently as radiance maps. Furthermore, the recovered
response curves can be inverted to render the composite radiance
map as if it had been photographed with any of the original imaging
processes, or a different imaging process entirely.

A research tool
One goal of computer graphics is to simulate the image formation
process in a way that produces results that are consistent with what
happens in the real world. Recovering radiance maps of real-world
scenes should allow more quantitative evaluations of rendering al-
gorithms to be made in addition to the qualitative scrutiny they tra-
ditionally receive. In particular, the method should be useful for de-
veloping reflectance and illuminationmodels, and comparing global
illumination solutions against ground truth data.
Rendering high dynamic range scenes on conventional display

devices is the subject of considerable previous work, including [20,
16, 5, 23]. The work presented in this paper will allow such meth-
ods to be tested on real radiance maps in addition to synthetically
computed radiance solutions.

1.2 Background
The photochemical processes involved in silver halide photography
have been the subject of continued innovation and research ever
since the invention of the daguerretype in 1839. [18] and [8] pro-
vide a comprehensive treatment of the theory and mechanisms in-
volved. For the newer technology of solid-state imaging with charge
coupled devices, [19] is an excellent reference. The technical and
artistic problem of representing the dynamic range of a natural scene
on the limited range of film has concerned photographers from the
early days – [1] presents one of the best known systems to choose
shutter speeds, lens apertures, and developing conditions to best co-
erce the dynamic range of a scene to fit into what is possible on a
print. In scientific applications of photography, such as in astron-
omy, the nonlinear film response has been addressed by suitable cal-
ibration procedures. It is our objective instead to develop a simple
self-calibrating procedure not requiring calibration charts or photo-
metric measuring devices.
In previous work, [13] used multiple flux integration times of a

CCD array to acquire extended dynamic range images. Since direct
CCD outputs were available, the work did not need to deal with the

Che cosa determina la luminosità di un pixel?

v Image Acquisition Pipeline [Debevec, Malik] 
da: radianza del punto di scena L à a: valore di luminanza/colore del pixel Z
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Radiometria di sistemi ottici a lenti sottili

Radiometria delle lenti sottili
v L: radianza emessa dal punto P della sorgente, verso P’
v E: irradianza ricevuta nel punto immagine P’ attraverso la lente

Che relazione c’è tra L ed E ?

Forsyth & Ponce, Sec. 4.2.3

L

E
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Radiometria di sistemi ottici a lenti sottili
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Radiometria di sistemi ottici a lenti sottili

L’irradianza E:
v è direttamente proporzionale alla radianza L

v è proporzionale al quadrato dell’apertura: ⁄" # = %& '
v cala allontanandosi dal centro ottico come cos+ , = '

'-./-
+

Applicazioni:
v calibrazione intrinseca: posso stimare f, d, cX, cY, ...
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S. B. Kang and R. Weiss, 
Can we calibrate a camera using an image of a flat, textureless Lambertian surface?
ECCV 2000
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Radiometria di sistemi ottici a lenti sottili

Source: S. Seitz, P. Debevec
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Figure 1: Image Acquisition Pipeline shows how scene radiance becomes pixel values for both film and digital cameras. Unknown nonlin-
ear mappings can occur during exposure, development, scanning, digitization, and remapping. The algorithm in this paper determines the
aggregate mapping from scene radiance to pixel values from a set of differently exposed images.

the entire dynamic range captured by the original photographs.

1.1 Applications
Our technique of deriving imaging response functions and recover-
ing high dynamic range radiance maps has many possible applica-
tions in computer graphics:

Image-based modeling and rendering
Image-based modeling and rendering systems to date (e.g. [11, 15,
2, 3, 12, 6, 17]) make the assumption that all the images are taken
with the same exposure settings and film response functions. How-
ever, almost any large-scale environment will have some areas that
are much brighter than others, making it impossible to adequately
photograph the scene using a single exposure setting. In indoor
scenes with windows, this situation often arises within the field of
view of a single photograph, since the areas visible through the win-
dows can be far brighter than the areas inside the building.
By determining the response functions of the imaging device, the

method presented here allows one to correctly fuse pixel data from
photographs taken at different exposure settings. As a result, one
can properly photograph outdoor areas with short exposures, and in-
door areas with longer exposures, without creating inconsistencies
in the data set. Furthermore, knowing the response functions can
be helpful in merging photographs taken with different imaging sys-
tems, such as video cameras, digital cameras, and film cameras with
various film stocks and digitization processes.
The area of image-based modeling and rendering is working to-

ward recovering more advanced reflection models (up to complete
BRDF’s) of the surfaces in the scene (e.g. [21]). These meth-
ods, which involve observing surface radiance in various directions
under various lighting conditions, require absolute radiance values
rather than the nonlinearly mapped pixel values found in conven-
tional images. Just as important, the recovery of high dynamic range
images will allow these methods to obtain accurate radiance val-
ues from surface specularities and from incident light sources. Such
higher radiance values usually become clamped in conventional im-
ages.

Image processing
Most image processing operations, such as blurring, edge detection,
color correction, and image correspondence, expect pixel values to
be proportional to the scene radiance. Because of nonlinear image
response, especially at the point of saturation, these operations can
produce incorrect results for conventional images.
In computer graphics, one common image processing operation

is the application of synthetic motion blur to images. In our re-
sults (Section 3), we will show that using true radiance maps pro-
duces significantly more realistic motion blur effects for high dy-
namic range scenes.

Image compositing
Many applications in computer graphics involve compositing im-
age data from images obtained by different processes. For exam-
ple, a background matte might be shot with a still camera, live
action might be shot with a different film stock or scanning pro-
cess, and CG elements would be produced by rendering algorithms.
When there are significant differences in the response curves of
these imaging processes, the composite image can be visually un-
convincing. The technique presented in this paper provides a conve-
nient and robust method of determining the overall response curve
of any imaging process, allowing images from different processes to
be used consistently as radiance maps. Furthermore, the recovered
response curves can be inverted to render the composite radiance
map as if it had been photographed with any of the original imaging
processes, or a different imaging process entirely.

A research tool
One goal of computer graphics is to simulate the image formation
process in a way that produces results that are consistent with what
happens in the real world. Recovering radiance maps of real-world
scenes should allow more quantitative evaluations of rendering al-
gorithms to be made in addition to the qualitative scrutiny they tra-
ditionally receive. In particular, the method should be useful for de-
veloping reflectance and illuminationmodels, and comparing global
illumination solutions against ground truth data.
Rendering high dynamic range scenes on conventional display

devices is the subject of considerable previous work, including [20,
16, 5, 23]. The work presented in this paper will allow such meth-
ods to be tested on real radiance maps in addition to synthetically
computed radiance solutions.

1.2 Background
The photochemical processes involved in silver halide photography
have been the subject of continued innovation and research ever
since the invention of the daguerretype in 1839. [18] and [8] pro-
vide a comprehensive treatment of the theory and mechanisms in-
volved. For the newer technology of solid-state imaging with charge
coupled devices, [19] is an excellent reference. The technical and
artistic problem of representing the dynamic range of a natural scene
on the limited range of film has concerned photographers from the
early days – [1] presents one of the best known systems to choose
shutter speeds, lens apertures, and developing conditions to best co-
erce the dynamic range of a scene to fit into what is possible on a
print. In scientific applications of photography, such as in astron-
omy, the nonlinear film response has been addressed by suitable cal-
ibration procedures. It is our objective instead to develop a simple
self-calibrating procedure not requiring calibration charts or photo-
metric measuring devices.
In previous work, [13] used multiple flux integration times of a

CCD array to acquire extended dynamic range images. Since direct
CCD outputs were available, the work did not need to deal with the
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the entire dynamic range captured by the original photographs.

1.1 Applications
Our technique of deriving imaging response functions and recover-
ing high dynamic range radiance maps has many possible applica-
tions in computer graphics:

Image-based modeling and rendering
Image-based modeling and rendering systems to date (e.g. [11, 15,
2, 3, 12, 6, 17]) make the assumption that all the images are taken
with the same exposure settings and film response functions. How-
ever, almost any large-scale environment will have some areas that
are much brighter than others, making it impossible to adequately
photograph the scene using a single exposure setting. In indoor
scenes with windows, this situation often arises within the field of
view of a single photograph, since the areas visible through the win-
dows can be far brighter than the areas inside the building.
By determining the response functions of the imaging device, the

method presented here allows one to correctly fuse pixel data from
photographs taken at different exposure settings. As a result, one
can properly photograph outdoor areas with short exposures, and in-
door areas with longer exposures, without creating inconsistencies
in the data set. Furthermore, knowing the response functions can
be helpful in merging photographs taken with different imaging sys-
tems, such as video cameras, digital cameras, and film cameras with
various film stocks and digitization processes.
The area of image-based modeling and rendering is working to-

ward recovering more advanced reflection models (up to complete
BRDF’s) of the surfaces in the scene (e.g. [21]). These meth-
ods, which involve observing surface radiance in various directions
under various lighting conditions, require absolute radiance values
rather than the nonlinearly mapped pixel values found in conven-
tional images. Just as important, the recovery of high dynamic range
images will allow these methods to obtain accurate radiance val-
ues from surface specularities and from incident light sources. Such
higher radiance values usually become clamped in conventional im-
ages.

Image processing
Most image processing operations, such as blurring, edge detection,
color correction, and image correspondence, expect pixel values to
be proportional to the scene radiance. Because of nonlinear image
response, especially at the point of saturation, these operations can
produce incorrect results for conventional images.
In computer graphics, one common image processing operation

is the application of synthetic motion blur to images. In our re-
sults (Section 3), we will show that using true radiance maps pro-
duces significantly more realistic motion blur effects for high dy-
namic range scenes.

Image compositing
Many applications in computer graphics involve compositing im-
age data from images obtained by different processes. For exam-
ple, a background matte might be shot with a still camera, live
action might be shot with a different film stock or scanning pro-
cess, and CG elements would be produced by rendering algorithms.
When there are significant differences in the response curves of
these imaging processes, the composite image can be visually un-
convincing. The technique presented in this paper provides a conve-
nient and robust method of determining the overall response curve
of any imaging process, allowing images from different processes to
be used consistently as radiance maps. Furthermore, the recovered
response curves can be inverted to render the composite radiance
map as if it had been photographed with any of the original imaging
processes, or a different imaging process entirely.

A research tool
One goal of computer graphics is to simulate the image formation
process in a way that produces results that are consistent with what
happens in the real world. Recovering radiance maps of real-world
scenes should allow more quantitative evaluations of rendering al-
gorithms to be made in addition to the qualitative scrutiny they tra-
ditionally receive. In particular, the method should be useful for de-
veloping reflectance and illuminationmodels, and comparing global
illumination solutions against ground truth data.
Rendering high dynamic range scenes on conventional display

devices is the subject of considerable previous work, including [20,
16, 5, 23]. The work presented in this paper will allow such meth-
ods to be tested on real radiance maps in addition to synthetically
computed radiance solutions.

1.2 Background
The photochemical processes involved in silver halide photography
have been the subject of continued innovation and research ever
since the invention of the daguerretype in 1839. [18] and [8] pro-
vide a comprehensive treatment of the theory and mechanisms in-
volved. For the newer technology of solid-state imaging with charge
coupled devices, [19] is an excellent reference. The technical and
artistic problem of representing the dynamic range of a natural scene
on the limited range of film has concerned photographers from the
early days – [1] presents one of the best known systems to choose
shutter speeds, lens apertures, and developing conditions to best co-
erce the dynamic range of a scene to fit into what is possible on a
print. In scientific applications of photography, such as in astron-
omy, the nonlinear film response has been addressed by suitable cal-
ibration procedures. It is our objective instead to develop a simple
self-calibrating procedure not requiring calibration charts or photo-
metric measuring devices.
In previous work, [13] used multiple flux integration times of a

CCD array to acquire extended dynamic range images. Since direct
CCD outputs were available, the work did not need to deal with the
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Calibrazione radiometrica (camera response function)

Calibrazione radiometrica:
Determinazione della relazione  ! = # $ (Z noto, E incognito)

X: Esposizione: energia raccolta nel punto immagine [Joule/m2 = Watt・s/m2]

X = E ⋅ Δt = L ⋅ A2 ⋅ Δt [J m2]
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Figure 1: Image Acquisition Pipeline shows how scene radiance becomes pixel values for both film and digital cameras. Unknown nonlin-
ear mappings can occur during exposure, development, scanning, digitization, and remapping. The algorithm in this paper determines the
aggregate mapping from scene radiance to pixel values from a set of differently exposed images.

the entire dynamic range captured by the original photographs.

1.1 Applications
Our technique of deriving imaging response functions and recover-
ing high dynamic range radiance maps has many possible applica-
tions in computer graphics:

Image-based modeling and rendering
Image-based modeling and rendering systems to date (e.g. [11, 15,
2, 3, 12, 6, 17]) make the assumption that all the images are taken
with the same exposure settings and film response functions. How-
ever, almost any large-scale environment will have some areas that
are much brighter than others, making it impossible to adequately
photograph the scene using a single exposure setting. In indoor
scenes with windows, this situation often arises within the field of
view of a single photograph, since the areas visible through the win-
dows can be far brighter than the areas inside the building.
By determining the response functions of the imaging device, the

method presented here allows one to correctly fuse pixel data from
photographs taken at different exposure settings. As a result, one
can properly photograph outdoor areas with short exposures, and in-
door areas with longer exposures, without creating inconsistencies
in the data set. Furthermore, knowing the response functions can
be helpful in merging photographs taken with different imaging sys-
tems, such as video cameras, digital cameras, and film cameras with
various film stocks and digitization processes.
The area of image-based modeling and rendering is working to-

ward recovering more advanced reflection models (up to complete
BRDF’s) of the surfaces in the scene (e.g. [21]). These meth-
ods, which involve observing surface radiance in various directions
under various lighting conditions, require absolute radiance values
rather than the nonlinearly mapped pixel values found in conven-
tional images. Just as important, the recovery of high dynamic range
images will allow these methods to obtain accurate radiance val-
ues from surface specularities and from incident light sources. Such
higher radiance values usually become clamped in conventional im-
ages.

Image processing
Most image processing operations, such as blurring, edge detection,
color correction, and image correspondence, expect pixel values to
be proportional to the scene radiance. Because of nonlinear image
response, especially at the point of saturation, these operations can
produce incorrect results for conventional images.
In computer graphics, one common image processing operation

is the application of synthetic motion blur to images. In our re-
sults (Section 3), we will show that using true radiance maps pro-
duces significantly more realistic motion blur effects for high dy-
namic range scenes.

Image compositing
Many applications in computer graphics involve compositing im-
age data from images obtained by different processes. For exam-
ple, a background matte might be shot with a still camera, live
action might be shot with a different film stock or scanning pro-
cess, and CG elements would be produced by rendering algorithms.
When there are significant differences in the response curves of
these imaging processes, the composite image can be visually un-
convincing. The technique presented in this paper provides a conve-
nient and robust method of determining the overall response curve
of any imaging process, allowing images from different processes to
be used consistently as radiance maps. Furthermore, the recovered
response curves can be inverted to render the composite radiance
map as if it had been photographed with any of the original imaging
processes, or a different imaging process entirely.

A research tool
One goal of computer graphics is to simulate the image formation
process in a way that produces results that are consistent with what
happens in the real world. Recovering radiance maps of real-world
scenes should allow more quantitative evaluations of rendering al-
gorithms to be made in addition to the qualitative scrutiny they tra-
ditionally receive. In particular, the method should be useful for de-
veloping reflectance and illuminationmodels, and comparing global
illumination solutions against ground truth data.
Rendering high dynamic range scenes on conventional display

devices is the subject of considerable previous work, including [20,
16, 5, 23]. The work presented in this paper will allow such meth-
ods to be tested on real radiance maps in addition to synthetically
computed radiance solutions.

1.2 Background
The photochemical processes involved in silver halide photography
have been the subject of continued innovation and research ever
since the invention of the daguerretype in 1839. [18] and [8] pro-
vide a comprehensive treatment of the theory and mechanisms in-
volved. For the newer technology of solid-state imaging with charge
coupled devices, [19] is an excellent reference. The technical and
artistic problem of representing the dynamic range of a natural scene
on the limited range of film has concerned photographers from the
early days – [1] presents one of the best known systems to choose
shutter speeds, lens apertures, and developing conditions to best co-
erce the dynamic range of a scene to fit into what is possible on a
print. In scientific applications of photography, such as in astron-
omy, the nonlinear film response has been addressed by suitable cal-
ibration procedures. It is our objective instead to develop a simple
self-calibrating procedure not requiring calibration charts or photo-
metric measuring devices.
In previous work, [13] used multiple flux integration times of a

CCD array to acquire extended dynamic range images. Since direct
CCD outputs were available, the work did not need to deal with the
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Figure 1: Image Acquisition Pipeline shows how scene radiance becomes pixel values for both film and digital cameras. Unknown nonlin-
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the entire dynamic range captured by the original photographs.

1.1 Applications
Our technique of deriving imaging response functions and recover-
ing high dynamic range radiance maps has many possible applica-
tions in computer graphics:

Image-based modeling and rendering
Image-based modeling and rendering systems to date (e.g. [11, 15,
2, 3, 12, 6, 17]) make the assumption that all the images are taken
with the same exposure settings and film response functions. How-
ever, almost any large-scale environment will have some areas that
are much brighter than others, making it impossible to adequately
photograph the scene using a single exposure setting. In indoor
scenes with windows, this situation often arises within the field of
view of a single photograph, since the areas visible through the win-
dows can be far brighter than the areas inside the building.
By determining the response functions of the imaging device, the

method presented here allows one to correctly fuse pixel data from
photographs taken at different exposure settings. As a result, one
can properly photograph outdoor areas with short exposures, and in-
door areas with longer exposures, without creating inconsistencies
in the data set. Furthermore, knowing the response functions can
be helpful in merging photographs taken with different imaging sys-
tems, such as video cameras, digital cameras, and film cameras with
various film stocks and digitization processes.
The area of image-based modeling and rendering is working to-

ward recovering more advanced reflection models (up to complete
BRDF’s) of the surfaces in the scene (e.g. [21]). These meth-
ods, which involve observing surface radiance in various directions
under various lighting conditions, require absolute radiance values
rather than the nonlinearly mapped pixel values found in conven-
tional images. Just as important, the recovery of high dynamic range
images will allow these methods to obtain accurate radiance val-
ues from surface specularities and from incident light sources. Such
higher radiance values usually become clamped in conventional im-
ages.

Image processing
Most image processing operations, such as blurring, edge detection,
color correction, and image correspondence, expect pixel values to
be proportional to the scene radiance. Because of nonlinear image
response, especially at the point of saturation, these operations can
produce incorrect results for conventional images.
In computer graphics, one common image processing operation

is the application of synthetic motion blur to images. In our re-
sults (Section 3), we will show that using true radiance maps pro-
duces significantly more realistic motion blur effects for high dy-
namic range scenes.

Image compositing
Many applications in computer graphics involve compositing im-
age data from images obtained by different processes. For exam-
ple, a background matte might be shot with a still camera, live
action might be shot with a different film stock or scanning pro-
cess, and CG elements would be produced by rendering algorithms.
When there are significant differences in the response curves of
these imaging processes, the composite image can be visually un-
convincing. The technique presented in this paper provides a conve-
nient and robust method of determining the overall response curve
of any imaging process, allowing images from different processes to
be used consistently as radiance maps. Furthermore, the recovered
response curves can be inverted to render the composite radiance
map as if it had been photographed with any of the original imaging
processes, or a different imaging process entirely.

A research tool
One goal of computer graphics is to simulate the image formation
process in a way that produces results that are consistent with what
happens in the real world. Recovering radiance maps of real-world
scenes should allow more quantitative evaluations of rendering al-
gorithms to be made in addition to the qualitative scrutiny they tra-
ditionally receive. In particular, the method should be useful for de-
veloping reflectance and illuminationmodels, and comparing global
illumination solutions against ground truth data.
Rendering high dynamic range scenes on conventional display

devices is the subject of considerable previous work, including [20,
16, 5, 23]. The work presented in this paper will allow such meth-
ods to be tested on real radiance maps in addition to synthetically
computed radiance solutions.

1.2 Background
The photochemical processes involved in silver halide photography
have been the subject of continued innovation and research ever
since the invention of the daguerretype in 1839. [18] and [8] pro-
vide a comprehensive treatment of the theory and mechanisms in-
volved. For the newer technology of solid-state imaging with charge
coupled devices, [19] is an excellent reference. The technical and
artistic problem of representing the dynamic range of a natural scene
on the limited range of film has concerned photographers from the
early days – [1] presents one of the best known systems to choose
shutter speeds, lens apertures, and developing conditions to best co-
erce the dynamic range of a scene to fit into what is possible on a
print. In scientific applications of photography, such as in astron-
omy, the nonlinear film response has been addressed by suitable cal-
ibration procedures. It is our objective instead to develop a simple
self-calibrating procedure not requiring calibration charts or photo-
metric measuring devices.
In previous work, [13] used multiple flux integration times of a

CCD array to acquire extended dynamic range images. Since direct
CCD outputs were available, the work did not need to deal with the
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Calibrazione radiometrica (camera response function)

Principio di reciprocità:
v il sensore misura energia à è sensibile all'esposizione ! = # $ Δ&

à non è in grado di distinguere E da ∆t
v ∆t però è noto (parametro controllato nel processo di acquisizione)

Calibrazione radiometrica: stima di ': ) = ' ! → # = +
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Figure 1: Image Acquisition Pipeline shows how scene radiance becomes pixel values for both film and digital cameras. Unknown nonlin-
ear mappings can occur during exposure, development, scanning, digitization, and remapping. The algorithm in this paper determines the
aggregate mapping from scene radiance to pixel values from a set of differently exposed images.

the entire dynamic range captured by the original photographs.

1.1 Applications
Our technique of deriving imaging response functions and recover-
ing high dynamic range radiance maps has many possible applica-
tions in computer graphics:

Image-based modeling and rendering
Image-based modeling and rendering systems to date (e.g. [11, 15,
2, 3, 12, 6, 17]) make the assumption that all the images are taken
with the same exposure settings and film response functions. How-
ever, almost any large-scale environment will have some areas that
are much brighter than others, making it impossible to adequately
photograph the scene using a single exposure setting. In indoor
scenes with windows, this situation often arises within the field of
view of a single photograph, since the areas visible through the win-
dows can be far brighter than the areas inside the building.
By determining the response functions of the imaging device, the

method presented here allows one to correctly fuse pixel data from
photographs taken at different exposure settings. As a result, one
can properly photograph outdoor areas with short exposures, and in-
door areas with longer exposures, without creating inconsistencies
in the data set. Furthermore, knowing the response functions can
be helpful in merging photographs taken with different imaging sys-
tems, such as video cameras, digital cameras, and film cameras with
various film stocks and digitization processes.
The area of image-based modeling and rendering is working to-

ward recovering more advanced reflection models (up to complete
BRDF’s) of the surfaces in the scene (e.g. [21]). These meth-
ods, which involve observing surface radiance in various directions
under various lighting conditions, require absolute radiance values
rather than the nonlinearly mapped pixel values found in conven-
tional images. Just as important, the recovery of high dynamic range
images will allow these methods to obtain accurate radiance val-
ues from surface specularities and from incident light sources. Such
higher radiance values usually become clamped in conventional im-
ages.

Image processing
Most image processing operations, such as blurring, edge detection,
color correction, and image correspondence, expect pixel values to
be proportional to the scene radiance. Because of nonlinear image
response, especially at the point of saturation, these operations can
produce incorrect results for conventional images.
In computer graphics, one common image processing operation

is the application of synthetic motion blur to images. In our re-
sults (Section 3), we will show that using true radiance maps pro-
duces significantly more realistic motion blur effects for high dy-
namic range scenes.

Image compositing
Many applications in computer graphics involve compositing im-
age data from images obtained by different processes. For exam-
ple, a background matte might be shot with a still camera, live
action might be shot with a different film stock or scanning pro-
cess, and CG elements would be produced by rendering algorithms.
When there are significant differences in the response curves of
these imaging processes, the composite image can be visually un-
convincing. The technique presented in this paper provides a conve-
nient and robust method of determining the overall response curve
of any imaging process, allowing images from different processes to
be used consistently as radiance maps. Furthermore, the recovered
response curves can be inverted to render the composite radiance
map as if it had been photographed with any of the original imaging
processes, or a different imaging process entirely.

A research tool
One goal of computer graphics is to simulate the image formation
process in a way that produces results that are consistent with what
happens in the real world. Recovering radiance maps of real-world
scenes should allow more quantitative evaluations of rendering al-
gorithms to be made in addition to the qualitative scrutiny they tra-
ditionally receive. In particular, the method should be useful for de-
veloping reflectance and illuminationmodels, and comparing global
illumination solutions against ground truth data.
Rendering high dynamic range scenes on conventional display

devices is the subject of considerable previous work, including [20,
16, 5, 23]. The work presented in this paper will allow such meth-
ods to be tested on real radiance maps in addition to synthetically
computed radiance solutions.

1.2 Background
The photochemical processes involved in silver halide photography
have been the subject of continued innovation and research ever
since the invention of the daguerretype in 1839. [18] and [8] pro-
vide a comprehensive treatment of the theory and mechanisms in-
volved. For the newer technology of solid-state imaging with charge
coupled devices, [19] is an excellent reference. The technical and
artistic problem of representing the dynamic range of a natural scene
on the limited range of film has concerned photographers from the
early days – [1] presents one of the best known systems to choose
shutter speeds, lens apertures, and developing conditions to best co-
erce the dynamic range of a scene to fit into what is possible on a
print. In scientific applications of photography, such as in astron-
omy, the nonlinear film response has been addressed by suitable cal-
ibration procedures. It is our objective instead to develop a simple
self-calibrating procedure not requiring calibration charts or photo-
metric measuring devices.
In previous work, [13] used multiple flux integration times of a

CCD array to acquire extended dynamic range images. Since direct
CCD outputs were available, the work did not need to deal with the
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Figure 1: Image Acquisition Pipeline shows how scene radiance becomes pixel values for both film and digital cameras. Unknown nonlin-
ear mappings can occur during exposure, development, scanning, digitization, and remapping. The algorithm in this paper determines the
aggregate mapping from scene radiance to pixel values from a set of differently exposed images.

the entire dynamic range captured by the original photographs.

1.1 Applications
Our technique of deriving imaging response functions and recover-
ing high dynamic range radiance maps has many possible applica-
tions in computer graphics:

Image-based modeling and rendering
Image-based modeling and rendering systems to date (e.g. [11, 15,
2, 3, 12, 6, 17]) make the assumption that all the images are taken
with the same exposure settings and film response functions. How-
ever, almost any large-scale environment will have some areas that
are much brighter than others, making it impossible to adequately
photograph the scene using a single exposure setting. In indoor
scenes with windows, this situation often arises within the field of
view of a single photograph, since the areas visible through the win-
dows can be far brighter than the areas inside the building.
By determining the response functions of the imaging device, the

method presented here allows one to correctly fuse pixel data from
photographs taken at different exposure settings. As a result, one
can properly photograph outdoor areas with short exposures, and in-
door areas with longer exposures, without creating inconsistencies
in the data set. Furthermore, knowing the response functions can
be helpful in merging photographs taken with different imaging sys-
tems, such as video cameras, digital cameras, and film cameras with
various film stocks and digitization processes.
The area of image-based modeling and rendering is working to-

ward recovering more advanced reflection models (up to complete
BRDF’s) of the surfaces in the scene (e.g. [21]). These meth-
ods, which involve observing surface radiance in various directions
under various lighting conditions, require absolute radiance values
rather than the nonlinearly mapped pixel values found in conven-
tional images. Just as important, the recovery of high dynamic range
images will allow these methods to obtain accurate radiance val-
ues from surface specularities and from incident light sources. Such
higher radiance values usually become clamped in conventional im-
ages.

Image processing
Most image processing operations, such as blurring, edge detection,
color correction, and image correspondence, expect pixel values to
be proportional to the scene radiance. Because of nonlinear image
response, especially at the point of saturation, these operations can
produce incorrect results for conventional images.
In computer graphics, one common image processing operation

is the application of synthetic motion blur to images. In our re-
sults (Section 3), we will show that using true radiance maps pro-
duces significantly more realistic motion blur effects for high dy-
namic range scenes.

Image compositing
Many applications in computer graphics involve compositing im-
age data from images obtained by different processes. For exam-
ple, a background matte might be shot with a still camera, live
action might be shot with a different film stock or scanning pro-
cess, and CG elements would be produced by rendering algorithms.
When there are significant differences in the response curves of
these imaging processes, the composite image can be visually un-
convincing. The technique presented in this paper provides a conve-
nient and robust method of determining the overall response curve
of any imaging process, allowing images from different processes to
be used consistently as radiance maps. Furthermore, the recovered
response curves can be inverted to render the composite radiance
map as if it had been photographed with any of the original imaging
processes, or a different imaging process entirely.

A research tool
One goal of computer graphics is to simulate the image formation
process in a way that produces results that are consistent with what
happens in the real world. Recovering radiance maps of real-world
scenes should allow more quantitative evaluations of rendering al-
gorithms to be made in addition to the qualitative scrutiny they tra-
ditionally receive. In particular, the method should be useful for de-
veloping reflectance and illuminationmodels, and comparing global
illumination solutions against ground truth data.
Rendering high dynamic range scenes on conventional display

devices is the subject of considerable previous work, including [20,
16, 5, 23]. The work presented in this paper will allow such meth-
ods to be tested on real radiance maps in addition to synthetically
computed radiance solutions.

1.2 Background
The photochemical processes involved in silver halide photography
have been the subject of continued innovation and research ever
since the invention of the daguerretype in 1839. [18] and [8] pro-
vide a comprehensive treatment of the theory and mechanisms in-
volved. For the newer technology of solid-state imaging with charge
coupled devices, [19] is an excellent reference. The technical and
artistic problem of representing the dynamic range of a natural scene
on the limited range of film has concerned photographers from the
early days – [1] presents one of the best known systems to choose
shutter speeds, lens apertures, and developing conditions to best co-
erce the dynamic range of a scene to fit into what is possible on a
print. In scientific applications of photography, such as in astron-
omy, the nonlinear film response has been addressed by suitable cal-
ibration procedures. It is our objective instead to develop a simple
self-calibrating procedure not requiring calibration charts or photo-
metric measuring devices.
In previous work, [13] used multiple flux integration times of a

CCD array to acquire extended dynamic range images. Since direct
CCD outputs were available, the work did not need to deal with the
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Calibrazione radiometrica: stima di !: # = ! %
Ø & in genere è non lineare, 

soprattutto agli estremi, anche
per aumentare il range dinamico (DR):.

'() = )*+,
)*-.

> '(0 = 0*+,
0*-.

Come ottenere una calibrazione radiometrica?
1. Modellazione a priori

Modellazione fisica accurata di ogni fase della pipeline

Ø misuro: apertura, sensibilità del chip, ADC ... è ✗ "really hard to get right"

2. Calibrazione radiometrica con radianze note
Ø Acquisizione di immagini multiple di scene con radianza L nota
Ø Misura dei valori di intensità corrispondenti
Ø Determinazione della funzione interpolante è curva di calibrazione
Problema: anche L è difficile da conoscere/fissare a priori!

irradiance  E

pixel intensity  Z

1 = & 2

EmaxEmin

Zmin

Zmax

slide credit:
Steve Seitz

Calibrazione radiometrica (camera response function)
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3. Calibrazione radiometrica con esposizioni multiple

v Acquisisco più immagini della stessa scena (stessa E) con esposizioni differenti
Ø Tipicamente, con tempi diversi: 1/1000 s, 1/100 s, 1/10 s, 1 s

v L’esposizione di ogni pixel  X = EDt varia di conseguenza 
Ø nell’esempio varia di un fattore 10 ogni volta

v I valori del pixel Z ad ogni esposizione saranno:

f(X=E),  f(X=10 E),  f (X=100 E), ...
v Calibrazione radiometrica: 

curva interpolante la risposta tra i punti ottenuti sul grafico ! = #(%)

slide credit:
Steve Seitz

camera
response
function

log(%)

pixel 
intensity

Esposizione: X = EDt

!

Calibrazione radiometrica (camera response function)
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Calibrazione radiometrica

Esempio di calibrazione radiometrica:
v sensore digitale con risoluzione 8 bit/pixel à 256 livelli di grigio

EV (Exposure Value)
scala logaritmica di esposizione:  log $

(+1 EV  à X raddoppia)

saturazione

stesso punto 
immagine, a 

diverse esposizioni
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Esposizione (X) e range dinamico (EV)

L'irradianza E in una scena può avere un range dinamico molto elevato, quindi 
troppo elevato per essere rilevato dal sensore (CCD, CMOS) della camera

EV – Exposure Value: scala logaritmica di esposizione
Ø 1 EV  (“1 stop”) è fattore 2 su X (X raddoppia)

v Dato EV (L), per regolare X sul sensore, posso:
Ø cambiare l’apertura: A
Ø cambiare il tempo di esposizione: Dt

EV = log2 L+ k

X = E ⋅ Δt = L ⋅ A2 ⋅ Δt

DR =
LEV 23
LEV−5

= 228 = 2,62 ⋅108
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Calibrazione radiometrica

Un sensore è quantizzato su 8÷12 bit è 256÷4096 livelli di energia

il sensore digitale percepisce solo una piccola porzione del range dinamico!
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Calibrazione radiometrica e HDR

Mappe HDR (High Dynamic Range)
Combino due operazioni: 

calibrazione radiometrica e stima della irradianza E (con il suo range dinamico)
v P.E. Debevec and J. Malik. Recovering High Dynamic Range Radiance Maps from Photographs.

SIGGRAPH 1997

Tecnica:
v Acquisisco N immagini della stessa scena, con N esposizioni (Dt) diverse

fino ad avere tutto il range dinamico di E “ben esposto” in almeno una immagine
Ø Non cambio l’esposizione con il diaframma (A), perché cambierebbe E! 

à avrò pixel sottoesposti (Z=ZMIN) e sovraesposti (Z=ZMAX)

v Per ogni pixel i dell’esposizione j ho un valore di intensità Zi,j :

( )tEfZ D×=
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Figure 1: Image Acquisition Pipeline shows how scene radiance becomes pixel values for both film and digital cameras. Unknown nonlin-
ear mappings can occur during exposure, development, scanning, digitization, and remapping. The algorithm in this paper determines the
aggregate mapping from scene radiance to pixel values from a set of differently exposed images.

the entire dynamic range captured by the original photographs.

1.1 Applications
Our technique of deriving imaging response functions and recover-
ing high dynamic range radiance maps has many possible applica-
tions in computer graphics:

Image-based modeling and rendering
Image-based modeling and rendering systems to date (e.g. [11, 15,
2, 3, 12, 6, 17]) make the assumption that all the images are taken
with the same exposure settings and film response functions. How-
ever, almost any large-scale environment will have some areas that
are much brighter than others, making it impossible to adequately
photograph the scene using a single exposure setting. In indoor
scenes with windows, this situation often arises within the field of
view of a single photograph, since the areas visible through the win-
dows can be far brighter than the areas inside the building.
By determining the response functions of the imaging device, the

method presented here allows one to correctly fuse pixel data from
photographs taken at different exposure settings. As a result, one
can properly photograph outdoor areas with short exposures, and in-
door areas with longer exposures, without creating inconsistencies
in the data set. Furthermore, knowing the response functions can
be helpful in merging photographs taken with different imaging sys-
tems, such as video cameras, digital cameras, and film cameras with
various film stocks and digitization processes.
The area of image-based modeling and rendering is working to-

ward recovering more advanced reflection models (up to complete
BRDF’s) of the surfaces in the scene (e.g. [21]). These meth-
ods, which involve observing surface radiance in various directions
under various lighting conditions, require absolute radiance values
rather than the nonlinearly mapped pixel values found in conven-
tional images. Just as important, the recovery of high dynamic range
images will allow these methods to obtain accurate radiance val-
ues from surface specularities and from incident light sources. Such
higher radiance values usually become clamped in conventional im-
ages.

Image processing
Most image processing operations, such as blurring, edge detection,
color correction, and image correspondence, expect pixel values to
be proportional to the scene radiance. Because of nonlinear image
response, especially at the point of saturation, these operations can
produce incorrect results for conventional images.
In computer graphics, one common image processing operation

is the application of synthetic motion blur to images. In our re-
sults (Section 3), we will show that using true radiance maps pro-
duces significantly more realistic motion blur effects for high dy-
namic range scenes.

Image compositing
Many applications in computer graphics involve compositing im-
age data from images obtained by different processes. For exam-
ple, a background matte might be shot with a still camera, live
action might be shot with a different film stock or scanning pro-
cess, and CG elements would be produced by rendering algorithms.
When there are significant differences in the response curves of
these imaging processes, the composite image can be visually un-
convincing. The technique presented in this paper provides a conve-
nient and robust method of determining the overall response curve
of any imaging process, allowing images from different processes to
be used consistently as radiance maps. Furthermore, the recovered
response curves can be inverted to render the composite radiance
map as if it had been photographed with any of the original imaging
processes, or a different imaging process entirely.

A research tool
One goal of computer graphics is to simulate the image formation
process in a way that produces results that are consistent with what
happens in the real world. Recovering radiance maps of real-world
scenes should allow more quantitative evaluations of rendering al-
gorithms to be made in addition to the qualitative scrutiny they tra-
ditionally receive. In particular, the method should be useful for de-
veloping reflectance and illuminationmodels, and comparing global
illumination solutions against ground truth data.
Rendering high dynamic range scenes on conventional display

devices is the subject of considerable previous work, including [20,
16, 5, 23]. The work presented in this paper will allow such meth-
ods to be tested on real radiance maps in addition to synthetically
computed radiance solutions.

1.2 Background
The photochemical processes involved in silver halide photography
have been the subject of continued innovation and research ever
since the invention of the daguerretype in 1839. [18] and [8] pro-
vide a comprehensive treatment of the theory and mechanisms in-
volved. For the newer technology of solid-state imaging with charge
coupled devices, [19] is an excellent reference. The technical and
artistic problem of representing the dynamic range of a natural scene
on the limited range of film has concerned photographers from the
early days – [1] presents one of the best known systems to choose
shutter speeds, lens apertures, and developing conditions to best co-
erce the dynamic range of a scene to fit into what is possible on a
print. In scientific applications of photography, such as in astron-
omy, the nonlinear film response has been addressed by suitable cal-
ibration procedures. It is our objective instead to develop a simple
self-calibrating procedure not requiring calibration charts or photo-
metric measuring devices.
In previous work, [13] used multiple flux integration times of a

CCD array to acquire extended dynamic range images. Since direct
CCD outputs were available, the work did not need to deal with the
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Figure 1: Image Acquisition Pipeline shows how scene radiance becomes pixel values for both film and digital cameras. Unknown nonlin-
ear mappings can occur during exposure, development, scanning, digitization, and remapping. The algorithm in this paper determines the
aggregate mapping from scene radiance to pixel values from a set of differently exposed images.

the entire dynamic range captured by the original photographs.

1.1 Applications
Our technique of deriving imaging response functions and recover-
ing high dynamic range radiance maps has many possible applica-
tions in computer graphics:

Image-based modeling and rendering
Image-based modeling and rendering systems to date (e.g. [11, 15,
2, 3, 12, 6, 17]) make the assumption that all the images are taken
with the same exposure settings and film response functions. How-
ever, almost any large-scale environment will have some areas that
are much brighter than others, making it impossible to adequately
photograph the scene using a single exposure setting. In indoor
scenes with windows, this situation often arises within the field of
view of a single photograph, since the areas visible through the win-
dows can be far brighter than the areas inside the building.
By determining the response functions of the imaging device, the

method presented here allows one to correctly fuse pixel data from
photographs taken at different exposure settings. As a result, one
can properly photograph outdoor areas with short exposures, and in-
door areas with longer exposures, without creating inconsistencies
in the data set. Furthermore, knowing the response functions can
be helpful in merging photographs taken with different imaging sys-
tems, such as video cameras, digital cameras, and film cameras with
various film stocks and digitization processes.
The area of image-based modeling and rendering is working to-

ward recovering more advanced reflection models (up to complete
BRDF’s) of the surfaces in the scene (e.g. [21]). These meth-
ods, which involve observing surface radiance in various directions
under various lighting conditions, require absolute radiance values
rather than the nonlinearly mapped pixel values found in conven-
tional images. Just as important, the recovery of high dynamic range
images will allow these methods to obtain accurate radiance val-
ues from surface specularities and from incident light sources. Such
higher radiance values usually become clamped in conventional im-
ages.

Image processing
Most image processing operations, such as blurring, edge detection,
color correction, and image correspondence, expect pixel values to
be proportional to the scene radiance. Because of nonlinear image
response, especially at the point of saturation, these operations can
produce incorrect results for conventional images.
In computer graphics, one common image processing operation

is the application of synthetic motion blur to images. In our re-
sults (Section 3), we will show that using true radiance maps pro-
duces significantly more realistic motion blur effects for high dy-
namic range scenes.

Image compositing
Many applications in computer graphics involve compositing im-
age data from images obtained by different processes. For exam-
ple, a background matte might be shot with a still camera, live
action might be shot with a different film stock or scanning pro-
cess, and CG elements would be produced by rendering algorithms.
When there are significant differences in the response curves of
these imaging processes, the composite image can be visually un-
convincing. The technique presented in this paper provides a conve-
nient and robust method of determining the overall response curve
of any imaging process, allowing images from different processes to
be used consistently as radiance maps. Furthermore, the recovered
response curves can be inverted to render the composite radiance
map as if it had been photographed with any of the original imaging
processes, or a different imaging process entirely.

A research tool
One goal of computer graphics is to simulate the image formation
process in a way that produces results that are consistent with what
happens in the real world. Recovering radiance maps of real-world
scenes should allow more quantitative evaluations of rendering al-
gorithms to be made in addition to the qualitative scrutiny they tra-
ditionally receive. In particular, the method should be useful for de-
veloping reflectance and illuminationmodels, and comparing global
illumination solutions against ground truth data.
Rendering high dynamic range scenes on conventional display

devices is the subject of considerable previous work, including [20,
16, 5, 23]. The work presented in this paper will allow such meth-
ods to be tested on real radiance maps in addition to synthetically
computed radiance solutions.

1.2 Background
The photochemical processes involved in silver halide photography
have been the subject of continued innovation and research ever
since the invention of the daguerretype in 1839. [18] and [8] pro-
vide a comprehensive treatment of the theory and mechanisms in-
volved. For the newer technology of solid-state imaging with charge
coupled devices, [19] is an excellent reference. The technical and
artistic problem of representing the dynamic range of a natural scene
on the limited range of film has concerned photographers from the
early days – [1] presents one of the best known systems to choose
shutter speeds, lens apertures, and developing conditions to best co-
erce the dynamic range of a scene to fit into what is possible on a
print. In scientific applications of photography, such as in astron-
omy, the nonlinear film response has been addressed by suitable cal-
ibration procedures. It is our objective instead to develop a simple
self-calibrating procedure not requiring calibration charts or photo-
metric measuring devices.
In previous work, [13] used multiple flux integration times of a

CCD array to acquire extended dynamic range images. Since direct
CCD outputs were available, the work did not need to deal with the

X = E ⋅ ΔtE

Zi , j = f Ei ⋅ Δt j( )
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Calibrazione radiometrica e HDR

Immagini a diverse esposizioni:
v Una singola immagine non è in grado di rappresentare l’intero range dinamico

saturazione (Z=255)

Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.
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Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.

sotto soglia di sensibilità (Z=0)

v 16 differenti esposizioni – differenza: 1 stop (1 EV) tra adiacenti
v Dt: da 1/1024 s (2–10) a 32 s (25)   à DR = 28 215 ~ 8.000.000 Zi , j = f Ei ⋅ Δt j( )
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Calibrazione radiometrica e HDR

v f(Z) è monotona, quindi invertibile:

v Applico il logaritmo a entrambi i membri:

v Per P pixel rappresentativi, N esposizioni, 
G campioni della funzione g(): Z à X (ad es. G=256 valori di Z):
Ø P+G incognite (Ei ,g) 
Ø NP equazioni (Zi,j)

Soluzione:
trovo !" = $, & che
minimizza la funzione:

l: peso della regolarizzazione di g() (scelto in base al rumore su Z)

f −1 Zi , j( ) = Ei ⋅ Δt j

ln f −1 Zi , j( ) = g Zi , j( ) = lnEi + lnΔt j → g Zi , j( )− lnEi − lnΔt j = 0

se: (N–1)P > G à sistema risolvibile (sovradet.)

ℑ E,g( ) = g Zi , j( )− lnEi − lnΔt j( )
2
+λ ʹ́g (z)2

z

0–255

∑
j

N

∑
i

P

∑
termine di 

regolarizzazione:
cresce con g’’(z)

m̂ = Ê,ĝ = argmin
E,g

ℑ E,g( )

Zi , j = f Ei ⋅ Δt j( )



21Visione Artificiale – F. Pedersini Dip. Informatica, Università degli studi di Milano

Calibrazione radiometrica e HDR

Pesatura: aggiungo una funzione peso w(z)
per pesare meno il fitting agli 
estremi della risposta del sensore

v Funzione quadratica nelle incognite è risolvibile in forma chiusa mediante sistema 
lineare sovradeterminato omogeneo:

v Risolvo mediante SVD:

v Noto m, posso ricavare l’irradianza
Ei per tutti i pixel dell’immagine:

ℑ E,g( ) = w Zi , j( )g Zi , j( )− lnEi − lnΔt j( )
2
+λ w(z) ʹ́g (z)⎡⎣ ⎤⎦

2

z

0–255

∑
j

N

∑
i

P

∑

A ⋅m = 0 , m = E,g : P +G⎡⎣ ⎤⎦

ZMIN ZMAX

w(z)

U,S,V⎡⎣ ⎤⎦= svd(A) → m̂ =V :,end( )

lnEi =
w Zij( ) g Zij( )− lnΔti( )j=1

P
∑

w Zij( )j=1

P
∑!

!
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Calibrazione radiometrica

Risultati:
v mappa irradianza

v calibrazione
radiometrica

(a) (b) (c)

(d) (e) (f)

Figure 8: (a) An actual photograph, taken with conventional print film at two seconds and scanned to PhotoCD. (b) The high dynamic range
radiance map, displayed by linearly mapping its entire dynamic range into the dynamic range of the display device. (c) The radiance map,
displayed by linearly mapping the lower of its dynamic range to the display device. (d) A false-color image showing relative radiance
values for a grayscale version of the radiance map, indicating that the map contains over five orders of magnitude of useful dynamic range.
(e) A rendering of the radiance map using adaptive histogram compression. (f) A rendering of the radiance map using histogram compression
and also simulating various properties of the human visual system, such as glare, contrast sensitivity, and scotopic retinal response. Images
(e) and (f) were generated by a method described in [23]. Images (d-f) courtesy of Gregory Ward Larson.

Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.
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Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.
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Generazione di un’immagine
(image formation)

Aspetti radiometrici di formazione dell'immagine

v Modello radiometrico di camera 
Ø della lente
Ø del sensore (calibrazione radiometrica, HDR)

v Modelli di riflessione superficiale
v Applicazioni:

Ø Lightness constancy
Ø Photometric stereo
Ø BRDF – Helmholtz stereopsis

(Forsyth/Ponce: Capitolo 2)
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Modelli di riflessione superficiale

v Cosa succede a un raggio di luce che colpisce un oggetto?
Ø parte della luce viene assorbita (es. convertita in calore)
Ø parte viene trasmessa attraverso l’oggetto (es. rifrazione)
Ø parte viene riflessa (in varie direzioni)
Ø altro (fluorescenza)

v Consideriamo in dettaglio la riflessione
Ø Come possiamo modellizzare la riflessione nelle varie direzioni?

slide credit:
Steve Seitz

proprietà della
sorgente

proprietà e geometria
della superficie

proprietà
dell’obiettivo

proprietà del
sensore
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Esempi di riflessione

slide credit:
L. Cinque
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Diffuse (Lambertian)/Specular surface model

Section 2.1 Modelling Pixel Brightness 33
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FIGURE 2.1: The two most important reflection modes for computer vision are diffuse re-
flection (left), where incident light is spread evenly over the whole hemisphere of outgoing
directions, and specular reflection (right), where reflected light is concentrated in a single
direction. The specular direction S is coplanar with the normal and the source direction
(L), and has the same angle to the normal that the source direction does. Most sur-
faces display both diffuse and specular reflection components. In most cases, the specular
component is not precisely mirror like, but is concentrated around a range of directions
close to the specular direction (lower right). This causes specularities, where one sees a
mirror like reflection of the light source. Specularities, when they occur, tend to be small
and bright. In the photograph, they appear on the metal spoon and on the plate. Large
specularities can appear on flat metal surfaces (arrows). Most curved surfaces (such as
the plate) show smaller specularities. Most of the reflection here is diffuse; some cases are
indicated by arrows. Martin Brigdale c© Dorling Kindersley, used with permission.

purposes in computer vision.
Illumination: The amount of light a patch receives depends on the overall

intensity of the light, and on the geometry. The overall intensity could change
because some luminaires (the formal term for light sources) might be shadowed, or
might have strong directional components. Geometry affects the amount of light
arriving at a patch because surface patches facing the light collect more radiation
and so are brighter than surface patches tilted away from the light, an effect known
as shading. Section 2.1.2 describes the most important model used in computer
vision; Section 2.3 describes a much more complex model that is necessary to explain
some important practical difficulties in shading inference.

2.1.1 Reflection at Surfaces

Most surfaces reflect light by a process of diffuse reflection. Diffuse reflection scat-
ters light evenly across the directions leaving a surface, so the brightness of a diffuse
surface doesn’t depend on the viewing direction. Examples are easy to identify with
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(L), and has the same angle to the normal that the source direction does. Most sur-
faces display both diffuse and specular reflection components. In most cases, the specular
component is not precisely mirror like, but is concentrated around a range of directions
close to the specular direction (lower right). This causes specularities, where one sees a
mirror like reflection of the light source. Specularities, when they occur, tend to be small
and bright. In the photograph, they appear on the metal spoon and on the plate. Large
specularities can appear on flat metal surfaces (arrows). Most curved surfaces (such as
the plate) show smaller specularities. Most of the reflection here is diffuse; some cases are
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purposes in computer vision.
Illumination: The amount of light a patch receives depends on the overall

intensity of the light, and on the geometry. The overall intensity could change
because some luminaires (the formal term for light sources) might be shadowed, or
might have strong directional components. Geometry affects the amount of light
arriving at a patch because surface patches facing the light collect more radiation
and so are brighter than surface patches tilted away from the light, an effect known
as shading. Section 2.1.2 describes the most important model used in computer
vision; Section 2.3 describes a much more complex model that is necessary to explain
some important practical difficulties in shading inference.

2.1.1 Reflection at Surfaces

Most surfaces reflect light by a process of diffuse reflection. Diffuse reflection scat-
ters light evenly across the directions leaving a surface, so the brightness of a diffuse
surface doesn’t depend on the viewing direction. Examples are easy to identify with

source:
khanacademy.org

v Modello di riflessione più comune: 
riflessione diffusa + riflessione speculare
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Riflessione diffusa (diffuse/Lambertian)

Riflessione diffusa (Lambertiana)
v Tipica di superfici opache, ruvide

v A livello microscopico: superficie scabra
à riflessione casuale con distribuzione uniforme in tutte le direzioni

v Intensità di riflessione costante in tutte le direzioni

à intensità (colore) indipendente dal punto di osservazione
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Riflessione diffusa (Lambertiana)

Riflessione diffusa (o Lambertiana):
l’irradianza osservata E:
– non dipende dalla direzione di osservazione, 
– ma solo dalla direzione di illuminazione.

r albedo: frazione della radiosità incidente, riflessa dalla
superficie:  0 < # < 1 (in realtà 0.05 < # < 0.90)

v N: versore normale alla superficie

v E0: irradianza incidente
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A

B

θ

θ

Cast shadow
Diffuse reflection,
bright

Diffuse reflection,
dark

Light

Blocker

Source

FIGURE 2.2: The orientation of a surface patch with respect to the light affects how
much light the patch gathers. We model surface patches as illuminated by a distant point
source, whose rays are shown as light arrowheads. Patch A is tilted away from the source
(θ is close to 900) and collects less energy, because it cuts fewer light rays per unit surface
area. Patch B, facing the source (θ is close to 00), collects more energy, and so is brighter.
Shadows occur when a patch cannot see a source. The shadows are not dead black, because
the surface can see interreflected light from other surfaces. These effects are shown in the
photograph. The darker surfaces are turned away from the illumination direction. Martin
Brigdale c© Dorling Kindersley, used with permission.

where I0 is the intensity of the light source, θ is the angle between the light source
direction and the surface normal, and ρ is the diffuse albedo. This law predicts that
bright image pixels come from surface patches that face the light directly and dark
pixels come from patches that see the light only tangentially, so that the shading
on a surface provides some shape information. We explore this cue in Section 2.4.

If the surface cannot see the source, then it is in shadow. Since we assume
that light arrives at our patch only from the distant point light source, our model
suggests that shadows are deep black; in practice, they very seldom are, because
the shadowed surface usually receives light from other sources. Outdoors, the most
important such source is the sky, which is quite bright. Indoors, light reflected
from other surfaces illuminates shadowed patches. This means that, for example,
we tend to see few shadows in rooms with white walls, because any shadowed
patch receives a lot of light from the walls. These interreflections also can have a
significant effect on the brightness surfaces that are not in shadow. Interreflection
effects are sometimes modelled by adding a constant ambient illumination term
to the predicted intensity. The ambient term ensures that shadows are not too
dark, but this is not a particularly successful model of the spatial properties of
interreflections. More detailed models require some familiarity with radiometric
terminology, but they are important in some applications; we have confined this
topic to Section 2.3.

E = ρE0 cosϑ = ρ
!
N ⋅
!
E0( )

N

E0
ϑ

E
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Modello speculare (specular reflection)

E dϑ( ) = cosN dϑ( )

Riflessione speculare
v La radiazione incidente viene riflessa 

prevalentemente lungo la direzione speculare 
(simmetrica rispetto alla normale n)

v La distribuzione angolare dell’energia riflessa in 
direzione speculare definisce un lobo speculare

v Modello di Phong: distribuzione angolare 
del lobo speculare:

v Il coefficiente all'esponente N
determina la “specularità”
della superficie:

n

dϑ
n

γ γ

" crescente →
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Specular reflection

al variare dell’esponente N

al variare della direzione di illuminazione S

E dϑ( ) = cosN dϑ( )Modello di Phong:

S
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Modelli di riflessione superficiale

Modello generale 
di riflessione superficiale
combinazione di tre termini:
v riflessione della radianza

diffusa dalla sorgente
(se non in ombra)

v riflessione speculare

v riflessione della radianza 
diffusa dall’ambiente

E x( ) = ρ x( ) N ⋅S( )Vis S,x( ) + ρ x( )A + M
riflessione diffusa illuminaz.

ambiente

rifless.
speculare

Vis S,x( ) = 1, x 'vede' S
0, x in ombra

⎧
⎨
⎪

⎩⎪
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Generazione di un’immagine
(image formation)

Aspetti radiometrici di formazione dell'immagine

v Modello radiometrico di camera 
Ø della lente
Ø del sensore (calibrazione radiometrica, HDR)

v Modelli di riflessione superficiale
v Applicazioni:

Ø Lightness constancy
Ø Photometric stereo
Ø BRDF – Helmholtz stereopsis

(Forsyth/Ponce: Capitolo 2)
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Modelli di riflessione superficiale

Modello generale di riflessione superficiale
v riflessione diffusa (se non in ombra)
v riflessione della radianza d’ambiente
v riflessione speculare

Modello semplificato: soltanto riflessione diffusa: 

Ambiguità albedo/illuminante:
data !(#), non è possibile risalire alla albedo %(&)
v Anche in caso di modelli semplici (superficie Lambertiana, 

illuminatore distante),
!(#) è il prodotto di illuminante !' per la albedo %(&)

E x( ) = ρ x( ) N ⋅S( )Vis S,x( ) + ρ x( )A + M
riflessione diffusa illuminaz.

ambiente

rifless.
speculare

( ) = + ) , - . = + ) (/ cos 3

( ) = + ) 4 - 5/ = + ) (/())

N

E0
ϑ

E
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Lightness Constancy

Lightness Constancy: separazione albedo/illuminazione
v Ipotesi semplificative:

– scena sostanzialmente frontale – superfici a riflessione diffusa
– camera lineare (calibrata): ! " → $ " = &'()*(") – assenza di ombre

Principio:
v albedo NON varia o varia bruscamente (es. 2 oggetti diversi, cambio colore),

v illuminazione varia lentamente (variazione geometria/normale)

Algoritmo “Retinex” (Land & McCann, 1971):
1.  calcolo gradiente del logaritmo dell’immagine: G(x,y)
2.  se |G(x,y)| < T à G(x,y) = 0
3.  integro G(x,y)   à esponenziale à I’(x)

Nell’integrazione perdo la costante:
ASSUNZIONE: punto più brillante dell’immagine è bianco

I x( ) = kCAM E x( )ρ x( ) → log I x( ) = logkCAM + logE x( )+ logρ x( )
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Lightness Constancy

Lightness Constancy: 
separazione 
albedo/illuminazione

Algoritmo “Retinex”
in 1-D:

Section 2.2 Inference from Shading 43
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FIGURE 2.8: The lightness algorithm is easiest to illustrate for a 1D image. In the top
row, the graph on the left shows log ρ(x), that in the center log I(x), and that on the
right their sum, which is logC. The log of image intensity has large derivatives at changes
in surface reflectance and small derivatives when the only change is due to illumination
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pose of small derivatives, and integrating at the cost of a missing constant of integration.

2.2.3 Inferring Lightness and Illumination

If we could estimate the albedo of a surface from an image, then we would know a
property of the surface itself, rather than a property of a picture of the surface. Such
properties are often called intrinsic representations. They are worth estimating,
because they do not change when the imaging circumstances change. It might seem
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Lightness Constancy

Esempio:
separazione albedo / shading

v albedo: !(#)
(decorazioni) 

da 

v shading: %(#) &'( )(#)
(variazioni della luminanza dovuti a 
illuminazione o al rilievo che ne 
cambia la normale locale)
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FIGURE 2.9: Retinex remains a strong algorithm for recovering albedo from images. Here
we show results from the version of Retinex described in the text applied to an image of
a room (left) and an image from a collection of test images due to Grosse et al. (2009).
The center-left column shows results from Retinex for this image, and the center-
right column shows results from a variant of the algorithm that uses color reasoning to
improve the classification of edges into albedo versus shading. Finally, the right column
shows the correct answer, known by clever experimental methods used when taking the
pictures. This problem is very hard; you can see that the albedo images still contain
some illumination signal. Part of this figure courtesy Kevin Karsch, U. Illinois. Part
of this figure was originally published as Figure 3 of “Ground truth dataset and baseline
evaluations for intrinsic image algorithms,” by R. Grosse, M. Johnson, E. Adelson, and
W. Freeman, Proc. IEEE ICCV 2009, c© IEEE, 2009.

evaluating lightness algorithms, and show that a version of the procedure we de-
scribe performs extremely well compared to more sophisticated algorithms (2009).
The major difficulty with all these approaches is caused by shadow boundaries,
which we discuss in Section 3.5.2.

2.2.4 Photometric Stereo: Shape from Multiple Shaded Images

It is possible to reconstruct a patch of surface from a series of pictures of that surface
taken under different illuminants. First, we need a camera model. For simplicity,
we choose a camera situated so that the point (x, y, z) in space is imaged to the
point (x, y) in the camera (the method we describe works for the other camera
models described in Chapter 1).

In this case, to measure the shape of the surface, we need to obtain the
depth to the surface. This suggests representing the surface as (x, y, f(x, y))—a
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Photometric stereo

Photometric stereo – shape from multiple shaded images
Stima della forma 3D a partire da un modello di "shading" della superficie

v Ipotesi:
Ø Oggetto da ricostruire con superficie Lambertiana (à riflessione diffusa)
Ø "local shading model": ogni punto della superficie illuminato solo dalla sorgente
Ø N sorgenti (illuminanti) illuminano da N direzioni note
à N immagini dell’oggetto da ricostruire, illuminate con ciascuna delle N sorgenti, 
ma con la stessa posizione camera/oggetto
Ø Camera model ≈ proiezione ortogonale

v Obiettivo: stima della forma 3D (altezza) dell’oggetto

surface

SN
S1

S2
! ", $

"
$

% ", $
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Surface model: Monge patch

Camera/surface model
v Camera model semplificato ≈ proiezione ortogonale

Ø piano immagine coplanare al piano di riferimento
dell’oggetto !, #

v Surface model: Monge patch
$ = & !, # ∶ depth/height/distance map

height :
z = f x, y( )

$ = & !, #

$ = & !, #
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I j (x, y) = k B(x, y)

= kρ x, y( ) N x, y( ) ⋅ S j( )
= ρ x, y( )N x, y( )( ) ⋅ (kS j ) = g(x, y) ⋅Vj

Photometric stereo

Ipotesi:
v Local shading model: 

à luminosità del pixel, B(x,y):

v Camera calibrata:
risposta lineare alla luminosità:

Date: – le direzioni delle N sorgenti S" , " = 1. . ' e
– gli N valori di luminosità ("(*, +), " = 1. . '

Posso scrivere:

Dove: 

I (x, y) = k B(x, y)

g(x, y) = ρ x, y( )N x, y( )
Vj = kS j

dipende dalla superficie in (x,y)
(albedo + normale), indipendente da j
dipende dalla sorgente j-esima, " = 1. . '

- *, + = .(*, +) /(*, +) 0 S1

/

/

/

2

2

direzione
sorgente j
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Photometric stereo

Per ogni pixel !, #
ho N immagini: $%(!, #)

è possiamo scrivere N equazioni nelle 3 ingognite ( !, # :

Per N≥3 il sistema lineare è determinato à ottengo:

Poiché:
e poiché:  ) = 1:

I1(x, y)

I2 (x, y)

!
IN (x, y)

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

V1
T

V2
T

!
VN
T

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

g(x, y) =

v1x v1y v1z

v2x v2 y v2 z

!

vNx vNy vNz

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

gx (x, y)

gy (x, y)

gz (x, y)

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

g(x, y) = ρ x, y( )N x, y( ) → ρ x, y( ) = g(x, y) , N x, y( ) = g(x, y)g(x, y)

$- !, # = .- / ( !, # ; 1 = 1. . 3

( !, #

) )
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Photometric stereo

Albedo:  !(#, %) Versore normale:  '(#, %)
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Photometric stereo – dalle normali alla superficie

dalla normale !(#, %) alla superficie '(#, %):
La superficie è definita come (Monge patch):

Le derivate parziali definiscono i vettori tangenti () e (*:
Ø (+ e (, definiscono il piano tangente a -(., /)

La normale !(#, %) alla superficie è quindi:

Ricordando che:

→ 1(#, %) = 3(4,5)
3(4,5)

è Ottengo: 

x = x, y, f x, y( )

n = tX × tY
tX × tY

=
1

tX × tY
det

uX uY uZ
1 0 f X
0 1 fY

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

f X =
∂f
∂x
, fY =

∂f
∂y

→ tX = 1,0, f X ,tY = 0,1, fY

6 = 7 #

#

1
79:9

→ ! #, % = 1
79; + 7=; + 1

−79, −7=, 1

3 #, % = ?9 #, % , ?= #, % , ?@ #, % = A #, % ! #, %

A #, % = 3(#, %) ; 79 #, % = −?9 #, %
?@ #, %

; 7= #, % = −?=(#, %)?@(#, %)
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Photometric stereo – dalle normali alla superficie

Dalle derivate parziali alla superficie:
v Date le derivate parziali:

v ricostruisco la superficie f a partire
dalle derivate parziali:

Integrabilità:
v Devo verificare che le derivate seconde miste siano uguali

(in pratica, basta che siano molto simili):

f (x, y) = f X (s,0)ds
0

x

∫ + fY (x,t)dt
0

y

∫

y

x

f (x,y)

Percorso di
integrazione

f XY (x, y) =
dfX (x, y)
dy

= fYX (x, y) =
dfY (x, y)
dx

!" #, % = −(" #, %
() #, %

; !+ #, % = −(+(#, %)()(#, %)
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Photometric stereo – integrazione della superficie

Limiti della tecnica “shape from shading”:
v Modello di camera quasi ortografico
v Modello di luminosità quasi ideale:

niente ombre, inter-riflessioni
specularità, sorgenti diffuse

v Non possono mancare
dati

v Integrazione non
robusta

v Acquisizione di 
immagini multiple
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Photometric stereo – integrazione della superficie

“shape from shading” con una sola immagine a 
colori
[Brostow, et al, "Video Normals from Colored Lights", IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 2011]

Tecnica:
v illumino la scena con tre sorgenti: 

Ø luce ROSSA
Ø luce VERDE
Ø luce BLU

v acquisisco una sola immagine a colori
…che poi separo nelle sue tre componenti R,G,B

è tre immagini: N = 3

v ogni componente dell'immagine "vede" soltanto la 
propria sorgente (R,G,B)

v Criticità: i sensori R,G,B non sono del tutto ortogonali…

5

Fig. 2: Applying the original algorithm to a face with white
makeup. Top: example input frames from video of an actor smiling
and grimacing. Bottom: the resulting integrated surfaces.

multiplexing to recover detailed surface geometry.
Furukawa and Ponce [51] have recently introduced a
new tangential rigidity constraint for registration, but
also rely on multiple synchronized cameras. Bradley
et al. [52] recently showed excellent results with a 14-
camera system with special lighting that allowed them
to register geometry and textures using a stereo flow-
based technique, similar to the one we use here for
single-view capture. While they succeed by tracking
highly detailed texture, we are able to track the video
of normals, though we take no face-specific steps
to counteract drift, which eventually leads to our
accumulation of errors.

Good facial expression capture should not depend
on makeup. The calibration step is extended, on the
basis of [13], to cope with unpainted faces, and more
generally, with single-hue objects that can be rotated
in front of the camera without significant deformation.
In practice, during this calibration step, the makeup-
free actor need only hold some expression while
turning their head all the way to the left and right. The
head itself is used as a rigid calibration object, and the
per-frame pose and 3D shape are estimated in order
to obtain M , the skin’s response to this arrangement
of multi-colored illumination.

The first step is to establish the changing pose of
the head. Although skin can appear mostly smooth,
the blue channel of facial skin shows fairly distinct
(though sparse) trackable features. The 3D pose of
these points on a rigid object is computed from the
2D tracks using established SfM algorithms [53]. We
feed our own 2D tracks to the Boujou [54] software,
producing the relative pose between the camera and
each frame of the head. If 2D tracks are not avail-
able, silhouette-based calibration methods such as [55]
or [56] can serve this purpose.

The second step uses the poses to help estimate the
shape of the head, to an extent slightly better than a
visual hull. We apply the silhouette and stereo fusion
technique of [57] because it is simple and reliable. Rea-

sonable alternatives exist for this stage, including [58]
and [59]. The expectation here is only that the surface
patches with a given world-orientation have a similar
color overall, so the recovered head model’s shape can
be approximate. This initial head geometry is shown
in Figure 3(B).

In the third step, the head’s poses and approximate
geometry are used to compute the illumination di-
rections and intensities. Here, instead of the previous
calibration of the 3⇥ 3 M matrix using a flat material
sample, we use the estimated head model itself. Un-
like Lim et al.’s reconstruction algorithm [17], we do
not assume that all projected 3D surfaces are equally
informative of illumination. We follow the RANSAC-
based formulation of [8], where lighting is estimated
from partially correct geometry. Our algorithm ran-
domly selects a fixed number of points on the sur-
face and uses their corresponding pixel intensities
to hypothesize an illumination candidate. All surface
points are then used for testing this hypothesis. This
process is iterated and the candidate with the largest
support is selected as the illumination estimate. This
is more robust to both inaccurate geometry and in-
consistent hue, because an illumination hypothesized
based on an unfortunate choice of three points on
the head mesh will receive fewer votes and appear
as an unusual outlier compared to choices from the
dominant color. For a pure Lambertian surface and
distant point light source model, only three points
are required to estimate illumination. However, the
approach can easily cope with more complex lighting
models. For example, a first order spherical harmonic
model (3 ⇥ 4 matrix) could be estimated from four
points. This approximation is equivalent to a distant
point light source with ambient lighting. Figure 3
shows sample input and output frames from a longer
face sequence without the use of the calibration board
or any face makeup.

5 TRACKING THE SURFACE

While the video of depth-maps representation can be
adequate for some applications, for texture mapping,
points on different depth maps must be brought
into correspondence. Figure 10 (second row) shows
the failure of directly texture-mapping each depth-
map of moving cloth without any registration. As
mentioned in Section 2, one could choose to register
the time-varying surfaces using one of many available
algorithms, based on articulations, speed, or subject-
specific constraints. Instead, we showcase the spatio-
temporal detail of the points derived from Video Nor-
mals by doing simple frame-to-frame registration that
is not limited by memory constraints when processing
long sequences. We use optical flow, precisely because
it relies on good texture details, and advect the first
point cloud in experiments using two different reg-
istration optimizations. Let zt (u, v) denote the depth-
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surface
normal

BRDF: modello generale di descrizione della riflessione superficiale
v Definisce la luminosità percepita da una direzione di osservazione, a causa di una 

sorgente illuminante da un’altra direzione

!"#$ % '⃑ , ) ∶ rapporto tra
– radianza in direzione uscente ) e 
– irradianza in direzione incidente '⃑

Radianza totale uscente verso una direzione:  + ) = + -. , /.
à integro i contributi da ogni direzione incidente

Ω: angolo solido contenente la sorgente

Bidirectional Reflectance Distribution Function (BRDF)

Le θe ,φe( ) = ρ θi ,φi ,θe ,φe( )Li θi ,φi( )cosθi dωi
Ω

∫

% '⃗ , ) = % -1, /1 , -1, /. = +. -. , /.
21 -1 , /1

= +. -. , /.
+1 -1 , /1 cos -1
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Helmholtz stereopsis: 
ricostruzione 3D di superfici con BRDF arbitrario
v senza vincoli sul tipo di superficie (Lambertiana, speculare, con ombre, …)

v sfrutto la reciprocità della BRDF: ! "# , "% = ! "% , "#
T. Zickler, P. Belhumeur, and D. Kriegman, 
“Helmholtz Stereopsis: Exploiting Reciprocity for Surface Reconstruction”, ECCV 2002.

IDEA: acquisizione stereo, scambiando di posto sorgente e camera

Helmholtz stereopsis 
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Helmholtz stereopsis

Helmholtz Stereopsis:
Consideriamo la sorgente in Or e la camera in Ol

La BRDF !(#$, #&) in questo caso è il rapporto:

v Radianza uscente ((#&) in direzione di camera

v Irradianza incidente ) #$
in direzione di illuminazione

v Radianza uscente ((#&) :
proporzionale all’irradianza osservata nell’immagine, Il
(camera calibrata radiometricamente – kcam)

v Irradianza incidente )(#$) :
potenza S ricevuta sulla superficie, 
moltiplicata per * + #$ = cos γ
e divisa per 12 = 34 − 6 2

! #$, #& = 7 #&
8 #$

7 #& = 9:;< =>

8 #$ = ? cos(@)12 = ? * + #4
34 − 6 2

ol or

p
vl vr

n

γ d

! #$, #& = 9:;< =>
? * + #4
34 − 6 2

= A =>
* + #4
34 − 6 2

Ponendo A = BCDE
F ,  ottengo:
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Helmholtz reciprocity: !(#$, #&) = !(#&, #$)

Helmholtz stereopsis

ol or

p
vl vr

n

ol or

p
vl vr

n

Acquisizione immagini
Per ogni coppia di direzioni

(#l , #r)
effettuo 2 fotografie,
scambiando di posto
camera e sorgente

illluminante

(per M coppie)

! #&, #$ = + ,-
. / #0
10 − 3 4

! #$, #& = + ,0
. / #-
1- − 3 4

uguali
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Helmholtz stereopsis

Applico la reciprocità !(#$, #&) = !(#&, #$) e semplifico:

v Per ogni punto considerato, )(*) · , = 0 fornisce un vincolo sulla distanza del 
punto * e sulla sua normale , à 6 incognite/punto

v Per ogni punto considerato, otteniamo un’equazione (non lineare) di vincolo per 
ogni coppia sorgente/camera (M coppie sorgente/camera à M equazioni/punto)

è Per M>6, tali vincoli permettono di arrivare alla ricostruzione 3D della superficie

Proprietà: nessuna ipotesi a priori sul modello di riflessione della superficie

. /0
, 1 #2
32 − * 5

= . /2
, 1 #0
30 − * 5

⟹ /0
, 1 #0
30 − * 5 = /2

, 1 #2
32 − * 5

→ /0 #0
30 − * 5 −

/2 #2
32 − * 5 1 , = ) * 1 , = 8 ⟹ 9: * 9; * 9< *

=:=;
=<

= 0
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Example results

custom stereo rig

reciprocal stereo pairs

original image recovered depth map and normal field

M
angles


