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• Download slides data and scripts:

https://homes.di.unimi.it/munoz/teaching.html
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Unsupervised learning

• Supervised learning:
– Methods such as regression and classification
– We observe both a set of features P1, P2, ..., Pn for each object, as well 

as a response or outcome variable Y
– The goal is then to predict Y using P1, P2, ..., Pn

• Unsupervised learning
– We observe only the features P1, P2, ..., Pn

– We are not interested in prediction, because we do not have an 
associated response variable Y
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The Goals of Unsupervised Learning

• The goal is to discover 
interesting things about the 
measurements: 
– Is there an informative way to 

visualize the data? 
– Can we discover subgroups 

among the variables or 
among the observations?

• We will discuss three 
methods:
– Self organizing maps
– K-means
– Fuzzy C-means
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Applications of unsupervised learning

• Market segmentation by grouping people according to 
their buying patterns

• Bioinformatic analysis by grouping genes with related 
expression patterns

• Profiling of the behavior of criminals
• Categorization of galaxies  
• Categorization of real estates
• Exploration of full-text databases, i.e., document 

organization and retrieval
• Image segmentation
• …
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Self organizing maps

• Also known as SOMs or Kohonen maps

• A type of neural network

• Capable of representing multidimensional 
data in much lower dimensional spaces, 
usually one or two dimensions

• Store information so that any topological 
relationships within the training set are 
maintained
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SOM: network architecture

• Lattice of nodes fully connected to 
the input layer

• Neurons can be arranged in n-
dimensional patterns, we will focus
on 2-dimensional patterns

• Each node has a specifical
topological position (coordinates x 
and y)

• Each node contains a vector of 
weights of the same dimension of 
the input vectors: w1, w2, …, wn

• Lines indicate adjacency
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SOM: basic learning algorithm

1. Initialize the weights

– Typically small standardized random values

2. Present a sample to the network

3. Calculate the Best Matching Unit (BMU)

– 𝐷𝑖𝑠𝑡 =  𝑖=0
𝑖=𝑛 𝑝𝑖 −𝑊𝑖

2

4. Determine the BMU's Local Neighborhood

– Ni(d)={j,dij≤d}

5. Adjust the weights of BMU and its neighbors

– wi(q)=wi (q−1)+α(p(q)−wi (q−1))
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SOM: learning algorithm phases

• Ordering Phase

– The neighborhood distance starts at a given initial 
distance, and decreases to 1

– The neurons of the network typically order 
themselves in the input space with the same 
topology in which they are ordered physically.

• Tuning Phase

– Only the winning neuron learns for each sample

– Refining cluster centers
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SOM: topologies

• Grid

– Matlab function gridtop

• Hexagonal (default)

– Matlab function hextop

• Random

– Matlab function randtop
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SOM: distances

• Euclidean
– Matlab function dist

• Link (default)
– Number of links to get to the considered neuron
– Matlab function linkdist

• Manhattan
– D = sum(abs(x-y))
– Matlab function mandist

• Box
– Matlab function boxdist
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SOM: Matlab commands

• Create SOM
– som=selforgmap(dimensions, ordering_epochs, 

initial_neighbor_distance, topologyFcn, distanceFcn)
– Example: som=selforgmap([10 10], 100, 5, 'hextop', 'linkdist') 

• Indicate total number of epochs (ordering + tuning):
– som.trainParam.epochs=200

• Training
– [som, stats] = train(som, data)

• Plotting network activations
– plotsomhits(som, data) 
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Example 1

• Training on simple 3-dimensional data 
– Use a SOM to map a 3-D space (input) into a 2-D 

space (SOM grid)

– Data: 
• Included in sphere_data.mat

(https://homes.di.unimi.it/munoz/teaching.html)

• Points given by their Cartesian coordinates (x; y; z), that lie 
on the unit sphere (x2 + y2 + z2 = 1)

• Form two clusters:
– Cluster 1: samples from 1:100

– Cluster 2: samples from 101:200
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Exercises

1. Study overlap of activations for two clusters
– Train two models, one using P20 and the other using P30 (included in 

sphere_data, download from
https://homes.di.unimi.it/munoz/teaching.html)

– Use plotsomhits to study overlap (you can use the code in example1)
– What amount of overlapping do you see for each different data set? 

2. Study activations with models trained using some other dataset 
(e.g. train using P10, test using P30)
– What is the response of a network that is trained on a data set

with a large standard deviation, when used on a data set with a small 
standard deviation? Why? 

– What is the response of a network that is trained on a data set
with a small standard deviation, when used on a data set with a large 
standard deviation? Why?
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Example 2

• Mapping of RGB color data

– Create a mapping from 3 to 2 dimensions

– Analyze how SOMs preserve the “topology” of the 
data

– Data:

• Included in rgb_data.mat
(https://homes.di.unimi.it/munoz/teaching.html)

• Colors are represented using red, green and blue 
components, ranging from 0 (no color) to 1 (full color)
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Exercises

3. Find a SOM that obtains a smoot representation, 
i.e., with colors that change only gradually 
between neighboring nodes 
– Try to optimize the results changing the parameters: 

number of epochs in the ordering phase and tuning 
phase, and initial neighborhood size

– What relation between ordering phase and tuning 
phase seems to be best in order to get a smooth 
color map? Why do you think that is? 
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Data preprocessing: Normalization

• To calculate the BMU we use 

𝐷𝑖𝑠𝑡 =  𝑖=0
𝑖=𝑛 𝑉𝑖 −𝑊𝑖

2

• Consider a dataset of employees
• Distances between employees is

dominated by salary
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Empid Salary Age
Experi
ence

1 25000 24 4

2 40000 27 5

3 55000 32 7

4 27000 25 5

5 53000 30 5

1 2 3 4 5

1 0.0000000 15000.0003333 30000.0012167 2000.0005000 28000.0006607

2 15000.0003333 0.0000000 15000.0009667 13000.0001538 13000.0003462

3 30000.0012167 15000.0009667 0.0000000 28000.0009464 2000.0020000

4 2000.0005000 13000.0001538 28000.0009464 0.0000000 26000.0004808

5 28000.0006607 13000.0003462 2000.0020000 26000.0004808 0.0000000



Data preprocessing: Normalization

• How to solve this problem? 
• Apply normalization:

– Scale data to fit in a specific range
– We will focus on Min Max 

Normalization, which transforms a value 
A to B which fits in the range[C,D]

𝐵 =
𝐴 −min(𝐴)

max(𝐴) − min(𝐴)
× 𝐷 − 𝐶 + 𝐶
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Empid Salary Age
Experi
ence

1 -1 -1 -1

2 0 -0,25 -0,33333

3 1 1 1

4 -0,86667 -0,75 -0,33333

5 0,86667 0,5 -0,33333

1 2 3 4 5

1 0 1,416667 3,464102 0,724377 2,485737

2 1,416667 0 2,083333 1,000555 1,146129

3 3,464102 2,083333 0 2,885259 1,430229

4 0,724377 1,000555 2,885259 0 2,137041

5 2,485737 1,146129 1,430229 2,137041 0



Example 3

• Analysis of wine data

– Analyze how SOMs can differentiate classes with 
unsupervised learning

– Study overlapping of neuron activations

– Create a 5x5 node SOM with hextop topology and 
linkdist distance
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Exercises

4. Try to optimize the parameters of the SOM to reduce overlap
– What training parameters did you use? How well does the trained 

SOM separate the classes in your opinion? Is some class easier to 
separate than the rest? 

5. Repeat the same procedure as with a 10x10-node SOM
– What training parameters did you use? What major differences do you 

see in the results compared to the 5x5-node SOM? 

6. Training with normalized data
– Normalize the data using Matlab function mapminmax
– Retrain the 5x5 and the 10x10-node SOMs
– How well do the two SOMs separate the classes in the normalized

data? 
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Analyzing SOM neighbor weight
distances

• Provide an insight of distinct groups in the data
• Blue hexagons represent the neurons
• Red lines connect neighboring neurons
• Colors indicate the distances between neurons

– Darker colors represent larger distances, and lighter colors 
smaller distances
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Analyzing SOM weight planes

• Visualization of the weights that connect each input to each of the 
neurons

• Shows a weight plane for each element of the input vector
• Darker colors represent larger weights, lighter colors smaller 

weights
• If the connection patterns of some inputs were very similar, the 

inputs can be considered highly correlated
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Exercises

7. Analysis of flower data 
– Load iris_dataset (included in Matlab)
– Create and train a 10x10-node SOM with suitable parameters
– Study the class separation using sample hits plots (Iris Setosa (samples 1-

50), Iris Versicolour (samples 51-100) and Iris Virginica (samples 101-150))
– Analyze SOM Neighbor Distances, does any evidence indicate that data 

are not from a single species? 
– Analyze SOM Weight Planes, Does any attribute seem particularly 

correlated? 

8. Analysis unknown data
– Load unknown_data, it contains a matrix and 5 points

(https://homes.di.unimi.it/munoz/teaching.html)
– Analyze the unknown_data using a SOM, in some suitable way 
– How many well-separated clusters are there in the data set? 
– Which data points are from the same cluster? 
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Exercises

9. Analysis of hand-written digits
– Analyze the digits data using a SOM, in some suitable 

way 
– Could you obtain separated clusters for different

digits?
– Load images from digits directory and targets from 

digit_names.mat (download from 
https://homes.di.unimi.it/munoz/teaching.html)

– Useful code to create P and T
load('digits_names.mat');
files=dir('digits/*.bmp');
for i=1:numel(files)    

im=imread(['digits/' files(i).name]);    
P(:,i)=double(reshape(im,[1,35]));    
for j=1:numel(names)

if strcmp(files(i).name,names{j})
[~,T(i)]=max(targetsByName(:,j));
break;

end
end

end
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Clustering

• Basic idea: group together similar instances 

• Example: 2D point patterns 

• What could “similar” mean? 

– One option: small Euclidean distance (squared) 
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K-means clustering

• Iterative clustering algorithm
– Initialize: pick K random 
points as cluster centers
– Alternate:
1. Assign data points to closest 

cluster center
2. Change the cluster center to 

the average of its assigned 
points

• Stop when no points’ 
assignments change 
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Example 4

© Enrique Muñoz Ballester 2017 27

• Help deciding where to place hospitals
– We have a matrix with coordinates of emergency

calls

– Decide the best position for 3 hospitals that
minimizes the distance from all the points of a 
particular cluster



K-means: deciding number of clusters

• K-means requires that a number of clusters k
is decided a-priori

• How to find an optimal k

• Possibility 1:
– Minimize objective function, elbow method
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K-means: deciding number of clusters

• Possibility 2:

– Use a cluster evaluation technique

– Silhouette: a measure of how close each point in 
one cluster is to points in the neighboring clusters

– Minimize mean Silhouette values

© Enrique Muñoz Ballester 2017 29



Exercises

10.Obtain the optimal number of hospitals in 
example 4
– Try different values for k
– Evaluate the solutions obtained using objective

function
[idx, C, sumd] = kmeans(points, numberOfClusters);

– Evaluate the solutions obtained using mean Silhouette 
values

[silh,h] = silhouette(points,idx);
mean(silh)

– Which value of k obtains better performance with 
each measure?
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Fuzzy C-means

• Similar to K-means

• Uses concepts from the field of fuzzy logic and 
fuzzy set theory

• Objects are allowed to belong to more than 
one cluster

• Each object belongs to every cluster with 
some weight wij
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Fuzzy C-means: algorithm

• Iterative algorithm:

– Initialize: select an initial fuzzy pseudo-partition, 
i.e., assign values to all wij

– Alternate:

1. Compute the centroid of each cluster using the fuzzy 
partition

2. Update the fuzzy partition, i.e, the wij

– Stop when the centroids don’t change
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Example 5

• Cluster foods according to preference
correlations

– 42 individuals were asked to order 15 breakfast 
items due to their preference

– Cluster breakfast data into three clusters, to 
represent cluster membership in RGB color space

– Analyze the visual results
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Example 6

• Segment an image

– Use fuzzy C-Means to separate background and 
objects from an image
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