

UNIVERSITÀ DEGLI STUDI DI MILANO

Unsupervised learning

Enrique Muñoz Ballester

Dipartimento di Informatica via Bramante 65, 26013 Crema (CR), Italy @Brique.msmoz@unimi.it

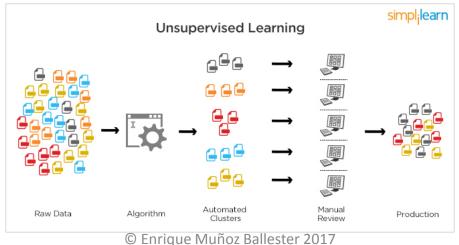
Material

• Download slides data and scripts:

https://homes.di.unimi.it/munoz/teaching.html

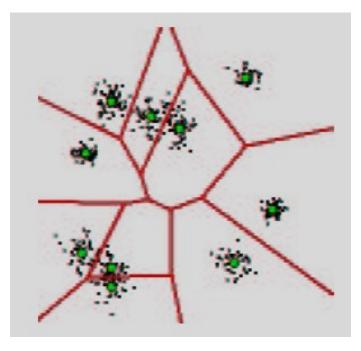
Unsupervised learning

- Supervised learning:
 - Methods such as regression and classification
 - We observe both a set of features P_1 , P_2 , ..., P_n for each object, as well as a response or outcome variable Y
 - The goal is then to predict Y using $P_1, P_2, ..., P_n$
- Unsupervised learning
 - We observe only the features P_1 , P_2 , ..., P_n
 - We are not interested in prediction, because we do not have an associated response variable Y



The Goals of Unsupervised Learning

- The goal is to discover interesting things about the measurements:
 - Is there an informative way to visualize the data?
 - Can we discover subgroups among the variables or among the observations?
- We will discuss three methods:
 - Self organizing maps
 - K-means
 - Fuzzy C-means



Applications of unsupervised learning

- Market segmentation by grouping people according to their buying patterns
- Bioinformatic analysis by grouping genes with related expression patterns
- Profiling of the behavior of criminals
- Categorization of galaxies
- Categorization of real estates
- Exploration of full-text databases, i.e., document organization and retrieval
- Image segmentation

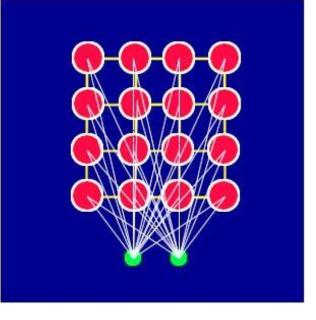
•

Self organizing maps

- Also known as SOMs or Kohonen maps
- A type of neural network
- Capable of representing multidimensional data in much lower dimensional spaces, usually one or two dimensions
- Store information so that any topological relationships within the training set are maintained

SOM: network architecture

- Lattice of nodes fully connected to the input layer
- Neurons can be arranged in ndimensional patterns, we will focus on 2-dimensional patterns
- Each node has a specifical topological position (coordinates x and y)
- Each node contains a vector of weights of the same dimension of the input vectors: w₁, w₂, ..., w_n
- Lines indicate adjacency



SOM: basic learning algorithm

- 1. Initialize the weights
 - Typically small standardized random values
- 2. Present a sample to the network
- 3. Calculate the Best Matching Unit (BMU)

$$- Dist = \sqrt{\sum_{i=0}^{i=n} (p_i - W_i)^2}$$

- 4. Determine the BMU's Local Neighborhood $- N_i(d) = \{j, d_{ij} \le d\}$
- 5. Adjust the weights of BMU and its neighbors
 - $w_i(q) = w_i(q-1) + \alpha(p(q) w_i(q-1))$

SOM: learning algorithm phases

Ordering Phase

- The neighborhood distance starts at a given initial distance, and decreases to 1
- The neurons of the network typically order themselves in the input space with the same topology in which they are ordered physically.

Tuning Phase

- Only the winning neuron learns for each sample
- Refining cluster centers

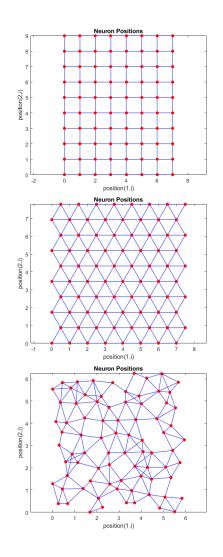
SOM: topologies

• Grid

– Matlab function gridtop

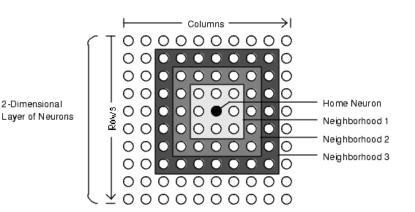
- Hexagonal (default)
 - Matlab function *hextop*
- Random

- Matlab function *randtop*



SOM: distances

- Euclidean
 - Matlab function dist
- Link (default)
 - Number of links to get to the considered neuron
 - Matlab function *linkdist*
- Manhattan
 - D = sum(abs(x-y))
 - Matlab function mandist
- Box
 - Matlab function boxdist



SOM: Matlab commands

- Create SOM
 - som=selforgmap(dimensions, ordering_epochs, initial_neighbor_distance, topologyFcn, distanceFcn)
 - Example: som=selforgmap([10 10], 100, 5, 'hextop', 'linkdist')
- Indicate total number of epochs (ordering + tuning):
 - som.trainParam.epochs=200
- Training
 - [som, stats] = train(som, data)
- Plotting network activations
 - plotsomhits(som, data)

Example 1

- Training on simple 3-dimensional data
 - Use a SOM to map a 3-D space (input) into a 2-D space (SOM grid)
 - Data:
 - Included in sphere_data.mat (https://homes.di.unimi.it/munoz/teaching.html)
 - Points given by their Cartesian coordinates (x; y; z), that lie on the unit sphere (x² + y² + z² = 1)
 - Form two clusters:
 - Cluster 1: samples from 1:100
 - Cluster 2: samples from 101:200

Exercises

- 1. Study overlap of activations for two clusters
 - Train two models, one using P20 and the other using P30 (included in sphere_data, download from https://homes.di.unimi.it/munoz/teaching.html)
 - Use plotsomhits to study overlap (you can use the code in example1)
 - What amount of overlapping do you see for each different data set?
- 2. Study activations with models trained using some other dataset (e.g. train using P10, test using P30)
 - What is the response of a network that is trained on a data set with a large standard deviation, when used on a data set with a small standard deviation? Why?
 - What is the response of a network that is trained on a data set with a small standard deviation, when used on a data set with a large standard deviation? Why?

Example 2

- Mapping of RGB color data
 - Create a mapping from 3 to 2 dimensions
 - Analyze how SOMs preserve the "topology" of the data
 - Data:
 - Included in rgb_data.mat (https://homes.di.unimi.it/munoz/teaching.html)
 - Colors are represented using red, green and blue components, ranging from 0 (no color) to 1 (full color)

Exercises

- Find a SOM that obtains a smoot representation, i.e., with colors that change only gradually between neighboring nodes
 - Try to optimize the results changing the parameters: number of epochs in the ordering phase and tuning phase, and initial neighborhood size
 - What relation between ordering phase and tuning phase seems to be best in order to get a smooth color map? Why do you think that is?

Data preprocessing: Normalization

- To calculate the BMU we use $Dist = \sqrt{\sum_{i=0}^{i=n} (V_i - W_i)^2}$
- Consider a dataset of employees
- Distances between employees is dominated by salary

Empid	Salary	Age	Experi ence
1	25000	24	4
2	40000	27	5
3	55000	32	7
4	27000	25	5
5	53000	30	5

	1	2	3	4	5
1	0.0000000	15000.0003333	30000.0012167	2000.0005000	28000.0006607
2	15000.0003333	0.0000000	15000.0009667	13000.0001538	13000.0003462
3	30000.0012167	15000.0009667	0.0000000	28000.0009464	2000.0020000
4	2000.0005000	13000.0001538	28000.0009464	0.0000000	26000.0004808
5	28000.0006607	13000.0003462	2000.0020000	26000.0004808	0.0000000

Data preprocessing: Normalization

- How to solve this problem?
- Apply normalization:
 - Scale data to fit in a specific range
 - We will focus on Min Max Normalization, which transforms a value A to B which fits in the range[C,D]

$$B = \frac{A - \min(A)}{\max(A) - \min(A)} \times (D - C) + C$$

Empid	Salary	Age	Experi ence
1	-1	-1	-1
2	0	-0,25	-0,33333
3	1	1	1
4	-0,86667	-0,75	-0,33333
5	0,86667	0,5	-0,33333

	1	2	3	4	5
1	0	1,416667	3,464102	0,724377	2,485737
2	1,416667	0	2,083333	1,000555	1,146129
3	3,464102	2,083333	0	2,885259	1,430229
4	0,724377	1,000555	2,885259	0	2,137041
5	2,485737	1,146129	1,430229	2,137041	0

Example 3

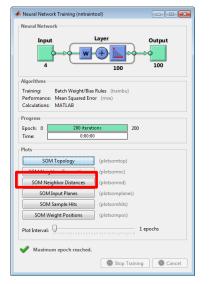
- Analysis of wine data
 - Analyze how SOMs can differentiate classes with unsupervised learning
 - Study overlapping of neuron activations
 - Create a 5x5 node SOM with hextop topology and linkdist distance

Exercises

- 4. Try to optimize the parameters of the SOM to reduce overlap
 - What training parameters did you use? How well does the trained SOM separate the classes in your opinion? Is some class easier to separate than the rest?
- 5. Repeat the same procedure as with a 10x10-node SOM
 - What training parameters did you use? What major differences do you see in the results compared to the 5x5-node SOM?
- 6. Training with normalized data
 - Normalize the data using Matlab function mapminmax
 - Retrain the 5x5 and the 10x10-node SOMs
 - How well do the two SOMs separate the classes in the normalized data?

Analyzing SOM neighbor weight distances

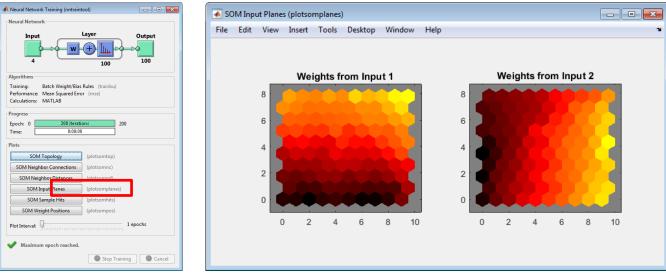
- Provide an insight of distinct groups in the data
- Blue hexagons represent the neurons
- Red lines connect neighboring neurons
- Colors indicate the distances between neurons
 - Darker colors represent larger distances, and lighter colors smaller distances





Analyzing SOM weight planes

- Visualization of the weights that connect each input to each of the neurons
- Shows a weight plane for each element of the input vector
- Darker colors represent larger weights, lighter colors smaller weights
- If the connection patterns of some inputs were very similar, the inputs can be considered highly correlated



Exercises

- 7. Analysis of flower data
 - Load iris_dataset (included in Matlab)
 - Create and train a 10x10-node SOM with suitable parameters
 - Study the class separation using sample hits plots (Iris Setosa (samples 1-50), Iris Versicolour (samples 51-100) and Iris Virginica (samples 101-150))
 - Analyze SOM Neighbor Distances, does any evidence indicate that data are not from a single species?
 - Analyze SOM Weight Planes, Does any attribute seem particularly correlated?
- 8. Analysis unknown data
 - Load unknown_data, it contains a matrix and 5 points (<u>https://homes.di.unimi.it/munoz/teaching.html</u>)
 - Analyze the unknown_data using a SOM, in some suitable way
 - How many well-separated clusters are there in the data set?
 - Which data points are from the same cluster?

Exercises

```
9. Analysis of hand-written digits
```

- Analyze the digits data using a SOM, in some suitable way
- Could you obtain separated clusters for different digits?
- Load images from digits directory and targets from digit_names.mat (download from https://homes.di.unimi.it/munoz/teaching.html)
- Useful code to create P and T

load('digits_names.mat');

```
files=dir('digits/*.bmp');
```

for i=1:numel(files)

```
im=imread(['digits/' files(i).name]);
```

```
P(:,i)=double(reshape(im,[1,35]));
```

for j=1:numel(names)

```
if strcmp(files(i).name,names{j})
```

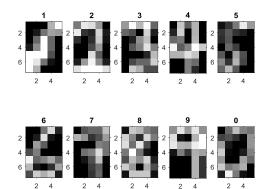
```
[~,T(i)]=max(targetsByName(:,j));
```

```
break;
```

end

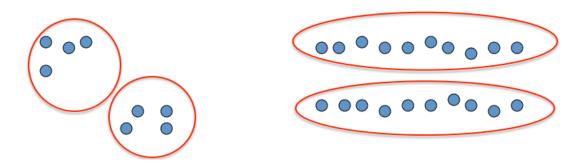
end

end



Clustering

- Basic idea: group together similar instances
- Example: 2D point patterns



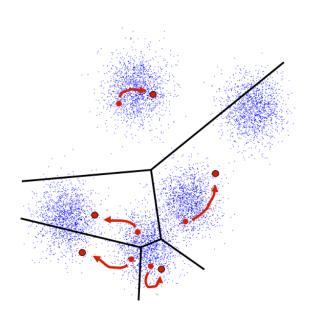
• What could "similar" mean?

- One option: small Euclidean distance (squared)

K-means clustering

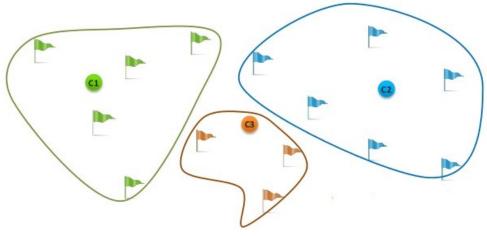
- Iterative clustering algorithm

 Initialize: pick K random
 points as cluster centers
 Alternate:
 - 1. Assign data points to closest cluster center
 - 2. Change the cluster center to the average of its assigned points
- Stop when no points' assignments change



Example 4

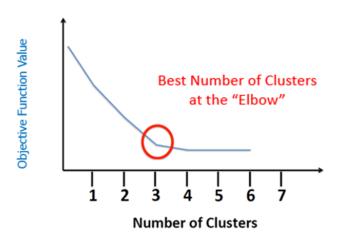
- Help deciding where to place hospitals
 - We have a matrix with coordinates of emergency calls
 - Decide the best position for 3 hospitals that minimizes the distance from all the points of a particular cluster



K-means: deciding number of clusters

- K-means requires that a number of clusters k is decided a-priori
- How to find an optimal k
- Possibility 1:

- Minimize objective function, elbow method



K-means: deciding number of clusters

- Possibility 2:
 - Use a cluster evaluation technique
 - Silhouette: a measure of how close each point in one cluster is to points in the neighboring clusters
 - Minimize mean Silhouette values



Exercises

10. Obtain the optimal number of hospitals in example 4

- Try different values for k
- Evaluate the solutions obtained using objective function
- [idx, C, sumd] = kmeans(points, numberOfClusters);
- Evaluate the solutions obtained using mean Silhouette values
- [silh,h] = silhouette(points,idx);

mean(silh)

– Which value of k obtains better performance with each measure?

Fuzzy C-means

- Similar to K-means
- Uses concepts from the field of fuzzy logic and fuzzy set theory
- Objects are allowed to belong to more than one cluster
- Each object belongs to every cluster with some weight w_{ij}

Fuzzy C-means: algorithm

- Iterative algorithm:
 - Initialize: select an initial fuzzy pseudo-partition,
 i.e., assign values to all w_{ij}
 - Alternate:
 - 1. Compute the centroid of each cluster using the fuzzy partition
 - 2. Update the fuzzy partition, i.e, the w_{ii}
 - Stop when the centroids don't change

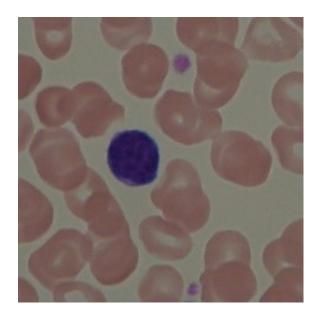
Example 5

- Cluster foods according to preference correlations
 - 42 individuals were asked to order 15 breakfast items due to their preference
 - Cluster breakfast data into three clusters, to represent cluster membership in RGB color space
 - Analyze the visual results

Example 6

• Segment an image

 Use fuzzy C-Means to separate background and objects from an image



Suggested readings

- A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.
- A. K. Jain, R.P.W Duin, J. Mao, "Statistical pattern recognition: a review," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol.22, no.1, pp.4,37, Jan 2000.
- T. Kohonen, "The Self-Organizing map", *Proceedings of the IEEE*, 78, pp. 1464-1480, 1990.
- B. Fritzke, "A growing neural gas network learns topologies," Advances in Neural Information Processing Systems 7 (NIPS'94), MIT Press, Cambridge, MA, pp. 625-632, 1995.
- https://www.it.uu.se/edu/course/homepage/mil/vt11/labcou rse/lab3.pdf