
Neural Networks
for Classification

Enrique Muñoz Ballester

Dipartimento di Tecnologie dell’Informazione
via Bramante 65, 26013 Crema (CR), Italy

enrique.munoz@unimi.it 1

Material

• Download slides data and scripts:

https://homes.di.unimi.it/munoz/teaching.html

© Enrique Muñoz Ballester 2

G.P. Zhang, "Neural networks for classification: a survey,“ in IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, vol.30, no.4, pp.451- 462, November 2000.

• Classification is one of the most frequently
encountered decision making tasks of human
activity.

• A classification problem occurs when an object
needs to be assigned into a predefined group or class
based on a number of observed attributes related to
that object.

Classification

3© Enrique Muñoz Ballester 2017

G.P. Zhang, "Neural networks for classification: a survey,“ in IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, vol.30, no.4, pp.451- 462, November 2000.

Classification with NN
• Neural networks have emerged as an important tool

for classification.

• Advantages:
– NN are data driven self-adaptive methods in that they can

adjust themselves to the data without any explicit
specification of functional or distributional form for the
underlying model

– NN are universal functional approximators in that neural
networks can approximate any function with arbitrary
accuracy

– NN are non-linear models, which makes them flexible in
modeling real world complex relationships

4© Enrique Muñoz Ballester 2017

Examples of classification with NN

• Some our works

– Acute Limphoblastic Leucemia

• "healty cell" & "lymphoblast“

– Wildfires

• "Smoke frame" & "not smoke frame"

– Wood

• 21 classes

© Enrique Muñoz Ballester 2017 5

Classification with NN in Matlab

• We will use:

– Neural Network Toolbox

– Feedforward Neural Networks

6© Enrique Muñoz Ballester 2017

Neural networks in Matlab

1. Loading data source

2. Selecting attributes required

3. Decide training, validation, and testing data

4. Data manipulations and Target generation

5. Neural Network creation (selection of network
architecture) and initialisation

6. Network Training and Testing

7. Performance evaluation

© Enrique Muñoz Ballester 7

• nnstart

Neural Network Pattern
Recognition Tool: GUI

© Enrique Muñoz Ballester 8

Neural Network Pattern
Recognition Tool: GUI

© Enrique Muñoz Ballester 9

Neural Network Pattern
Recognition Tool: GUI

© Enrique Muñoz Ballester 2017 10

Neural Network Pattern
Recognition Tool: GUI

© Enrique Muñoz Ballester 2017 11

Neural Network Pattern
Recognition Tool: GUI

© Enrique Muñoz Ballester 2017 12

Neural Network Pattern
Recognition Tool: GUI

© Enrique Muñoz Ballester 2017 13

Neural Network Pattern
Recognition Tool: GUI

© Enrique Muñoz Ballester 2017 14

Example 1

• Train a neural classifier to identify if glass is a
window or not from glass chemistry using the
GUI:

– 9 features: Refractive index, Sodium (unit
measurement: weight percent in corresponding
oxide) , Magnesium, Aluminum, Silicon,
Potassium, Calcium, Barium, Iron

– 2 classes

© Enrique Muñoz Ballester 2017 15

Exercises

1. Train two neural classifiers using the GUI:
– Identify if breast tumor is malignant or not

• Nine features: Clump thickness, Uniformity of cell size, Uniformity of cell shape, Marginal
Adhesion, Single epithelial cell size, Bare nuclei, Bland chomatin, Normal nucleoli

• Two classes: non-malignant, malignant

– Identify the species of iris flowers
• Four physical characteristics of flowers are considered: sepal length (cm), sepal width

(cm), petal length (cm), petal width (cm)
• Three classes (setosa, virginia, versicolor)

– Experiment with different numbers of neurons
– Load the data from the example datasets in Matlab

© Enrique Muñoz Ballester 2017 16

• The GUI has been used only for discussing basic
concepts

• In real applications, it is better to use command-line
functions

Neural Networks in real applications

© Enrique Muñoz Ballester 17

Example 2

© Enrique Muñoz Ballester 2017 18

• Two classes classification
– train a neural classifier

– evaluate the obtained results in a
graphical mode

– evaluate the obtained error

Note: download code from
https://homes.di.unimi.it/munoz/teaching.html

Exercises

2. Evaluate the impact of changes in the
dataset and neural network from example 2
– change the number of the input points

– reduce the separation between classes (parameter q)

– change the parameters of the neural network

Note: download code from https://homes.di.unimi.it/munoz/teaching.html

© Enrique Muñoz Ballester 2017 19

Classification with more than two
classes

• In many cases the number of classes is greater
than two

– Digits

– Flowers

– Wood types…

© Enrique Muñoz Ballester 2017 20

Classification with more than two
classes: method I

• One output neuron
• Assign to each class a different integer identifier
• Training:

tA = zeros(1, size(A,2));
tB = ones(1, size(A,2));
tC = ones(1, size(A,2))*2;
…
T=[tA, tB, tC, …];

• Classification:
testResult = net(P_test);
testResult = round(testResult);
testResult(testResult<0)=0;
testResult(testResult>numClasses-1)=numClasses-1;

© Enrique Muñoz Ballester 2017 21

Classification with more than two
classes: method II

• N output neurons, one per each class
• Assign to each class a different target vector, with ones for samples

belonging to the class and zeros for the rest
• Training:

tA = zeros(1, N*4);
tA(1:N)=1;
tB = zeros(1, N*4);
tB(N+1:2*N) = 1;
tC = zeros(1, N*4);
tC(2*N+1:3*N)=1;
…

• Classification:
trainResult = net(P_test);
[~,testResult] = max(testResult);

© Enrique Muñoz Ballester 2017 22

Exercises
3. Four classes classification with one output

neuron
– Generate four classes as those depicted in the figure

– Train a neural classifier using method I (one output
neuron)

– Optimize the parameters (in terms of test
classification error)

– Plot and analyze results graphically

4. Four classes classification with four output
neurons
– Train a neural classifier using method II (four output

neurons)

– Optimize the parameters (in terms of test
classification error)

– Plot and analyze results graphically

Note: download code of example2 from
https://homes.di.unimi.it/munoz/teaching.html

23

-1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

x

y

Input data

A

B

© Enrique Muñoz Ballester 2017

Accuracy evaluation

• Error rate:
Error rate % = incorrect predictions / total predictions * 100

• Classification accuracy:
classification accuracy % = 100 – error rate %

• Good performance measure, but may have problems for particular
applications

• It hides the detail needed to better understand the performance of
a classification model:
– When data is not balanced. Example: achieving 90% of accuracy, for a

dataset where 90 samples out of 100 belong to one class. It could be
that we are predicting that all samples belong to the dominant class.

– When data has more than 2 classes. We don’t know if all classes are
being predicted equally well or whether one or two classes are being
neglected by the model.

© Enrique Muñoz Ballester 2017 24

Confusion matrix

• A summary of prediction results on
classification problems

• Correct and incorrect predictions are counted
and displayed for each class

• It shows the way in which a classification
model (neural network) makes mistakes with
its predictions

• It overcomes the limitation of using
classification accuracy alone

© Enrique Muñoz Ballester 2017 25

Two-class confusion matrix
• Generally, in a two-class problem, we tray to

discriminate between special samples and normal
observations
– E.g. disease or no disease

• Two classes
– True positives (TP) - the number of elements correctly

classified as positive by the test;
– True negatives (TN) - the number of elements

correctly classified as negative by the test;
– False positive (FP) - also known as type I error, is the

number of elements classified as positive by the test,
but they are not;

– False positive (FN) - also known as type II error, is the
number of elements classified as negative by the test,
but they are not.

• Matlab code
cm = confusionmat(actualT, predictedT); % matrix
plotconfusion(actualT, predictedT); % visual plot

26© Enrique Muñoz Ballester 2017

5. Two-class classification with
confusion matrix

– Train a neural classifier to identify the
gender of crabs from physical dimensions of
the crab:
• Six physical characterstics of a crab are

considered: species, frontallip, rearwidth,
length, width and depth.

• 2 classes (male, female)

– Load the dataset using the commands:
[x,t] = crab_dataset;
P = x;
T = t(1,:);

– Divide in training and test sets
– Try to optimize the parameters to minimize

test error rate
– Analyze the results using a confusion matrix

Exercises

27© Enrique Muñoz Ballester 2017

N-class confusion matrix
• Similar to two-class confusion

matrix

• Each column of the matrix
represents the instances in a
predicted class, while each row
represents the instances in an
actual class

• Matlab code
cm = confusionmat(actualT,predictedT); %
matrix

Plotconfusion(actualT,predictedT); %
visual plot

28© Enrique Muñoz Ballester 2017

6. N-class classification with confusion
matrix
– Train a neural classifier to detect

thyroid malfunctioning
• 21 features describing patient attributes
• Three classes corresponding to: normal,

hyperthyroidism, hypothyroidism

– Load the dataset with the command
[x,t] = thyroid_dataset;

– Divide in training and test sets
– Try to optimize the parameters to

minimize test error rate
– Analyze the results using a confusion

matrix

Exercises

29© Enrique Muñoz Ballester 2017

Cross Validation

• Cross-validation is a model evaluation method for
assessing how the results of a statistical analysis will
generalize:
– Holdout method: simplest method. Data separated into

training and test. Disadvantage: evaluation dependent on
the partition.

– K-fold cross-validation method: divide data into k folds
and repeat holdout k times. Each time a fold is used for
training and the rest for test. Results variance is reduced
with a larger k. Disadvantage: computational time.

– Leave one out method: extreme k-fold. Each fold contains
just one sample. Disadvantage: computational time.

© Enrique Muñoz Ballester 2017 30

k-Fold cross validation

• Algorithm
– In k-fold cross-validation, the original sample is randomly partitioned into k equal

size subsamples.
– Of the k subsamples, a single subsample is retained as the validation data for

testing the model, and the remaining k − 1 subsamples are used as training data.
– The cross-validation process is then repeated k times (the folds), with each of the k

subsamples used exactly once as the validation data.
– The k results from the folds then can be averaged (or otherwise combined) to

produce a single estimation.

• All observations are used for both training and validation, and each
observation is used for validation exactly once.

• 10-fold cross-validation is the most commonly used.

© Enrique Muñoz Ballester 2017 31

indices = crossvalind('Kfold', T ,k);

kFoldTrainResults = [];
kFoldTestResults = [];
kFoldTotalResults = [];

kFoldTrainTs = [];
kFoldTestTs = [];
kFoldTotalTs = [];
for i =1:k

P_train=P(:,indices ~=i);
T_train=T(:,indices ~=i);
P_test=P(:,indices ==i);
T_test=T(:,indices ==i);
% train the network and evaluate performance

…
% Aggregate results
kFoldTrainResults=[kFoldTrainResults, trainResult];
kFoldTestResults=[kFoldTestResults, testResult];
kFoldTotalResults=[kFoldTotalResults, trainResult, testResult];

k-Fold cross validation:
Matlab script

© Enrique Muñoz Ballester 2017

kFoldTrainTs=[kFoldTrainTs, T_train];

kFoldTestTs=[kFoldTestTs, T_test];

kFoldTotalTs=[kFoldTotalTs, T_train, T_test];

end

% compute summary results

kFoldTrainErrors=kFoldTrainTs~=kFoldTrainResults;

kFoldTestErrors=kFoldTestTs~=kFoldTestResults;

kFoldTotalErrors=kFoldTotalTs~=kFoldTotalResults;

kFoldTrainErrorRate=sum(kFoldTrainErrors)/size(kFoldTrainErr
ors,2)*100;

kFoldTestErrorRate=sum(kFoldTestErrors)/size(kFoldTestError
s,2)*100;

kFoldTotalErrorRate=sum(kFoldTotalErrors)/size(kFoldTotalErr
ors,2)*100;

cm=confusionmat(kFoldTestTs,kFoldTestResults);

32

Leave-one-out cross validation

• Algorithm
– In leave-one-out cross validation, the original sample is partitioned

into as many subsets as samples contained in the dataset (n)
– One sample is used for test and the remaining are used as training

data
– The cross-validation process is then repeated n times (the number of

samples in the dataset)
– The results from the process are aggregated to produce a single

estimation

• All observations are used for both training and validation, and
each observation is used for validation exactly once

© Enrique Muñoz Ballester 2017 33

LOOTrainResults = [];
LOOTestResults = [];
LOOTotalResults = [];

LOOTrainTs = [];
LOOTestTs = [];
LOOTotalTs = [];
for i =1:size(T,2)

P_train=P(:,[1:i-1 i+1:end]);
T_train=T(:,[1:i-1 i+1:end]);
P_test=P(:,i);
T_test=T(:,i);
% train the network and evaluate performance

…
% Aggregate results
LOOTrainResults=[LOOTrainResults, trainResult];
LOOTestResults=[LOOTestResults, testResult];
LOOTotalResults=[LOOTotalResults, trainResult,

testResult];

Leave-one-out cross validation:
Matlab script

© Enrique Muñoz Ballester 2017

LOOTrainTs=[LOOTrainTs, T_train];

LOOTestTs=[LOOTestTs, T_test];

LOOTotalTs=[LOOTotalTs, T_train, T_test];

end% compute summary results

LOOTrainErrors=LOOTrainTs~=LOOTrainResults;

LOOTestErrors=LOOTestTs~=LOOTestResults;

LOOTotalErrors=LOOTotalTs~=LOOTotalResults;

LOOTrainErrorRate=sum(LOOTrainErrors)/size(LOOTrainErrors
,2)*100;

LOOTestErrorRate=sum(LOOTestErrors)/size(LOOTestErrors,2)
*100;

LOOTotalErrorRate=sum(LOOTotalErrors)/size(LOOTotalErrors
,2)*100;

cm=confusionmat(LOOTestTs,LOOTestResults);

34

Exercises

© Enrique Muñoz Ballester 2017

7. Calculate the performance of the neural
network developed for exercise 3 using:

– Hold out

– 5-fold cross validation

– 10-fold cross validation

– Leave-one-out cross validation

35

Exercises

8. Hand-written digit classification
– Train a neural classifier to classify hand-written digits

• 35 features (5x7 grayscale image)
• 10 classes (0, …, 9)

– Optimize parameters to minimize 10-fold cross
validation error

– Load images from digits directory and targets from
digit_names.mat (download from
https://homes.di.unimi.it/munoz/teaching.html)

– Useful code to create P and T
load('digits_names.mat');
files=dir('digits/*.bmp');
for i=1:numel(files)

im=imread(['digits/' files(i).name]);
P(:,i)=double(reshape(im,[1,35]));
for j=1:numel(names)

if strcmp(files(i).name,names{j})
T(:,i)=targetsByName(:,j);
break;

end
end

end © Enrique Muñoz Ballester 2017 36

