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Material

• Download slides data and scripts:

https://homes.di.unimi.it/munoz/teaching.html
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G.P. Zhang, "Neural networks for classification: a survey,“ in IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, vol.30, no.4, pp.451- 462, November 2000.

• Classification is one of the most frequently 
encountered decision making tasks of human 
activity.

• A classification problem occurs when an object 
needs to be assigned into a predefined group or class 
based on a number of observed attributes related to 
that object.

Classification
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G.P. Zhang, "Neural networks for classification: a survey,“ in IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, vol.30, no.4, pp.451- 462, November 2000.

Classification with NN
• Neural networks have emerged as an important tool 

for classification.

• Advantages:
– NN are data driven self-adaptive methods in that they can 

adjust themselves to the data without any explicit 
specification of functional or distributional form for the 
underlying model

– NN are universal functional approximators in that neural 
networks can approximate any function with arbitrary 
accuracy

– NN are non-linear models, which makes them flexible in 
modeling real world complex relationships
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Examples of classification with NN

• Some our works

– Acute Limphoblastic Leucemia

• "healty cell" & "lymphoblast“

– Wildfires

• "Smoke frame" & "not smoke frame"

– Wood

• 21 classes
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Classification with NN in Matlab

• We will use:

– Neural Network Toolbox

– Feedforward Neural Networks
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Neural networks in Matlab

1. Loading data source

2. Selecting attributes required

3. Decide training, validation, and testing data

4. Data manipulations and Target generation

5. Neural Network creation (selection of network 
architecture) and initialisation

6. Network Training and Testing

7. Performance evaluation
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• nnstart

Neural Network Pattern 
Recognition Tool: GUI
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Neural Network Pattern 
Recognition Tool: GUI

© Enrique Muñoz Ballester 9



Neural Network Pattern 
Recognition Tool: GUI
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Neural Network Pattern 
Recognition Tool: GUI
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Neural Network Pattern 
Recognition Tool: GUI
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Example 1

• Train a neural classifier to identify if glass is a 
window or not from glass chemistry using the 
GUI:

– 9 features: Refractive index, Sodium (unit 
measurement: weight percent in corresponding 
oxide) , Magnesium,  Aluminum, Silicon, 
Potassium, Calcium, Barium,  Iron 

– 2 classes
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Exercises

1. Train two neural classifiers using the GUI:
– Identify if breast tumor is malignant or not

• Nine features: Clump thickness, Uniformity of cell size, Uniformity of cell shape, Marginal 
Adhesion, Single epithelial cell size, Bare nuclei, Bland chomatin, Normal nucleoli 

• Two classes: non-malignant, malignant

– Identify the species of iris flowers
• Four physical characteristics of flowers are considered: sepal length (cm), sepal width 

(cm), petal length (cm), petal width (cm)
• Three classes (setosa, virginia, versicolor)

– Experiment with different numbers of neurons
– Load the data from the example datasets in Matlab
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• The GUI has been used only for discussing basic 
concepts

• In real applications, it is better to use command-line 
functions

Neural Networks in real applications
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Example 2

© Enrique Muñoz Ballester 2017 18

• Two classes classification
– train a neural classifier

– evaluate the obtained results in a 
graphical mode

– evaluate the obtained error

Note: download code from 
https://homes.di.unimi.it/munoz/teaching.html



Exercises

2. Evaluate the impact of changes in the 
dataset and neural network from example 2
– change the number of the input points

– reduce the separation between classes (parameter q)

– change the parameters of the neural network

Note: download code from https://homes.di.unimi.it/munoz/teaching.html
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Classification with more than two
classes

• In many cases the number of classes is greater
than two

– Digits

– Flowers

– Wood types…
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Classification with more than two
classes: method I

• One output neuron
• Assign to each class a different integer identifier
• Training:

tA = zeros(1, size(A,2));
tB = ones(1, size(A,2));
tC = ones(1, size(A,2))*2;
…
T=[tA, tB, tC, …];

• Classification:
testResult = net(P_test);
testResult = round(testResult);
testResult(testResult<0)=0;
testResult(testResult>numClasses-1)=numClasses-1;
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Classification with more than two
classes: method II

• N output neurons, one per each class
• Assign to each class a different target vector, with ones for samples

belonging to the class and zeros for the rest
• Training:

tA = zeros(1, N*4);
tA(1:N)=1;
tB = zeros(1, N*4);
tB(N+1:2*N) = 1;
tC = zeros(1, N*4);
tC(2*N+1:3*N)=1;
…

• Classification:
trainResult = net(P_test);
[~,testResult] = max(testResult);
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Exercises
3. Four classes classification with one output 

neuron
– Generate four classes as those depicted in the figure

– Train a neural classifier using method I (one output 
neuron)

– Optimize the parameters (in terms of test 
classification error)

– Plot and analyze results graphically

4. Four classes classification with four output 
neurons
– Train a neural classifier using method II (four output 

neurons)

– Optimize the parameters (in terms of test 
classification error)

– Plot and analyze results graphically

Note: download code of example2 from 
https://homes.di.unimi.it/munoz/teaching.html
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Accuracy evaluation

• Error rate:
Error rate % = incorrect predictions / total predictions * 100

• Classification accuracy:
classification accuracy % = 100 – error rate %

• Good performance measure, but may have problems for particular
applications

• It hides the detail needed to better understand the performance of 
a classification model:
– When data is not balanced. Example: achieving 90% of accuracy, for a 

dataset where 90 samples out of 100 belong to one class. It could be 
that we are predicting that all samples belong to the dominant class.

– When data has more than 2 classes. We don’t know if all classes are 
being predicted equally well or whether one or two classes are being 
neglected by the model.
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Confusion matrix

• A summary of prediction results on 
classification problems

• Correct and incorrect predictions are counted 
and displayed for each class

• It shows the way in which a classification 
model (neural network) makes mistakes with 
its predictions

• It overcomes the limitation of using 
classification accuracy alone
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Two-class confusion matrix
• Generally, in a two-class problem, we tray to 

discriminate between special samples and normal 
observations
– E.g. disease or no disease

• Two classes
– True positives (TP) - the number of elements correctly 

classified as positive by the test;
– True negatives (TN) - the number of elements 

correctly classified as negative by the test;
– False positive (FP) - also known as type I error, is the 

number of elements classified as positive by the test, 
but they are not;

– False positive (FN) - also known as type II error, is the 
number of elements classified as negative by the test, 
but they are not.

• Matlab code
cm = confusionmat(actualT, predictedT); % matrix
plotconfusion(actualT, predictedT); % visual plot
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5. Two-class classification with 
confusion matrix

– Train a neural classifier to identify the 
gender of crabs from physical dimensions of 
the crab:
• Six physical characterstics of a crab are 

considered: species, frontallip, rearwidth, 
length, width and depth.

• 2 classes (male, female)

– Load the dataset using the commands:
[x,t] = crab_dataset;
P = x;
T = t(1,:);

– Divide in training and test sets
– Try to optimize the parameters to minimize

test error rate
– Analyze the results using a confusion matrix

Exercises
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N-class confusion matrix
• Similar to two-class confusion 

matrix

• Each column of the matrix 
represents the instances in a 
predicted class, while each row 
represents the instances in an 
actual class

• Matlab code
cm = confusionmat(actualT,predictedT); % 
matrix

Plotconfusion(actualT,predictedT); % 
visual plot
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6. N-class classification with confusion
matrix
– Train a neural classifier to detect 

thyroid malfunctioning 
• 21 features describing patient attributes
• Three classes corresponding to: normal, 

hyperthyroidism, hypothyroidism

– Load the dataset with the command
[x,t] = thyroid_dataset;

– Divide in training and test sets
– Try to optimize the parameters to 

minimize test error rate
– Analyze the results using a confusion

matrix

Exercises
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Cross Validation

• Cross-validation is a model evaluation method for 
assessing how the results of a statistical analysis will 
generalize:
– Holdout method: simplest method. Data separated into 

training and test. Disadvantage: evaluation dependent on 
the partition.

– K-fold cross-validation method: divide data into k folds 
and repeat holdout k times. Each time a fold is used for 
training and the rest for test. Results variance is reduced 
with a larger k. Disadvantage: computational time.

– Leave one out method: extreme k-fold. Each fold contains
just one sample. Disadvantage: computational time.
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k-Fold cross validation

• Algorithm
– In k-fold cross-validation, the original sample is randomly partitioned into k equal 

size subsamples.
– Of the k subsamples, a single subsample is retained as the validation data for 

testing the model, and the remaining k − 1 subsamples are used as training data.
– The cross-validation process is then repeated k times (the folds), with each of the k

subsamples used exactly once as the validation data.
– The k results from the folds then can be averaged (or otherwise combined) to 

produce a single estimation.

• All observations are used for both training and validation, and each 
observation is used for validation exactly once.

• 10-fold cross-validation is the most commonly used.

© Enrique Muñoz Ballester 2017 31



indices = crossvalind('Kfold', T ,k);

kFoldTrainResults = [];
kFoldTestResults = [];
kFoldTotalResults = [];

kFoldTrainTs = [];
kFoldTestTs = [];
kFoldTotalTs = [];
for i =1:k    

P_train=P(:,indices ~=i);
T_train=T(:,indices ~=i);
P_test=P(:,indices ==i);
T_test=T(:,indices ==i);
% train the network and evaluate performance

…
% Aggregate results
kFoldTrainResults=[kFoldTrainResults, trainResult];
kFoldTestResults=[kFoldTestResults, testResult];
kFoldTotalResults=[kFoldTotalResults, trainResult, testResult];

k-Fold cross validation:
Matlab script
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kFoldTrainTs=[kFoldTrainTs, T_train];

kFoldTestTs=[kFoldTestTs, T_test];

kFoldTotalTs=[kFoldTotalTs, T_train, T_test];

end

% compute summary results

kFoldTrainErrors=kFoldTrainTs~=kFoldTrainResults;

kFoldTestErrors=kFoldTestTs~=kFoldTestResults;

kFoldTotalErrors=kFoldTotalTs~=kFoldTotalResults;

kFoldTrainErrorRate=sum(kFoldTrainErrors)/size(kFoldTrainErr
ors,2)*100;

kFoldTestErrorRate=sum(kFoldTestErrors)/size(kFoldTestError
s,2)*100;

kFoldTotalErrorRate=sum(kFoldTotalErrors)/size(kFoldTotalErr
ors,2)*100;

cm=confusionmat(kFoldTestTs,kFoldTestResults);
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Leave-one-out cross validation

• Algorithm
– In leave-one-out cross validation, the original sample is partitioned 

into as many subsets as samples contained in the dataset (n)
– One sample is used for test and the remaining are used as training 

data
– The cross-validation process is then repeated n times (the number of 

samples in the dataset)
– The results from the process are aggregated to produce a single 

estimation

• All observations are used for both training and validation, and 
each observation is used for validation exactly once
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LOOTrainResults = [];
LOOTestResults = [];
LOOTotalResults = [];

LOOTrainTs = [];
LOOTestTs = [];
LOOTotalTs = [];
for i =1:size(T,2)

P_train=P(:,[1:i-1 i+1:end]);
T_train=T(:,[1:i-1 i+1:end]);
P_test=P(:,i);
T_test=T(:,i);
% train the network and evaluate performance

…
% Aggregate results
LOOTrainResults=[LOOTrainResults, trainResult];
LOOTestResults=[LOOTestResults, testResult];
LOOTotalResults=[LOOTotalResults, trainResult, 

testResult];

Leave-one-out cross validation:
Matlab script
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LOOTrainTs=[LOOTrainTs, T_train];

LOOTestTs=[LOOTestTs, T_test];

LOOTotalTs=[LOOTotalTs, T_train, T_test];

end% compute summary results

LOOTrainErrors=LOOTrainTs~=LOOTrainResults;

LOOTestErrors=LOOTestTs~=LOOTestResults;

LOOTotalErrors=LOOTotalTs~=LOOTotalResults;

LOOTrainErrorRate=sum(LOOTrainErrors)/size(LOOTrainErrors
,2)*100;

LOOTestErrorRate=sum(LOOTestErrors)/size(LOOTestErrors,2)
*100;

LOOTotalErrorRate=sum(LOOTotalErrors)/size(LOOTotalErrors
,2)*100;

cm=confusionmat(LOOTestTs,LOOTestResults);
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Exercises
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7. Calculate the performance of the neural 
network developed for exercise 3 using:

– Hold out

– 5-fold cross validation

– 10-fold cross validation

– Leave-one-out cross validation
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Exercises

8. Hand-written digit classification
– Train a neural classifier to classify hand-written digits

• 35 features (5x7 grayscale image)
• 10 classes (0, …, 9)

– Optimize parameters to minimize 10-fold cross 
validation error

– Load images from digits directory and targets from 
digit_names.mat (download from 
https://homes.di.unimi.it/munoz/teaching.html)

– Useful code to create P and T
load('digits_names.mat');
files=dir('digits/*.bmp');
for i=1:numel(files)    

im=imread(['digits/' files(i).name]);    
P(:,i)=double(reshape(im,[1,35]));    
for j=1:numel(names)

if strcmp(files(i).name,names{j})
T(:,i)=targetsByName(:,j);
break;

end
end
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