
Introduction to
Neural Networks

using Matlab
Enrique Muñoz Ballester

Dipartimento di Informatica
via Bramante 65, 26013 Crema (CR), Italy

enrique.munoz@unimi.it 1



Material

• Download slides data and scripts:

https://homes.di.unimi.it/munoz/teaching.html

© Enrique Muñoz Ballester 2



Neural networks

• Inspired by biological nervous systems

• Collection of connected artificial neurons

• Interesting properties:

– Adaptive

– Non-linear

– General approximators

© Enrique Muñoz Ballester 3



Neural networks applications

• Aerospace
– Autopilot, flight path simulation, control systems, fault 

detection

• Automotive
– Automatic guidance

• Banking
– Check reading, credit evaluation, credit card activity

checking

• Defense
– Target tracking, object discrimination, new sensors

• Electronics
– Process control, chip failure analysis

© Enrique Muñoz Ballester 4



Neural network applications

• Entertainment
– Animations, special effects

• Financial
– Portfolio trading program, currency price prediction

• Industrial
– Manufacturing control, machine diagnosis, visual quality

inspection systems

• Medical
– Cancer analysis, prosthesis design, ECG analysis

• Oil and gas
– Exploration

© Enrique Muñoz Ballester 5



Neural networks applications

• Robots
– Trajectory control, manipulator controlers, vision

systems

• Speech
– Speech recognition, text-to-speech synthesis

• Telecommunications
– Image and data compression, automated information 

services

• Transportation
– Truck brake diagnosis, vehicle scheduling

© Enrique Muñoz Ballester 6



Neural networks in Matlab

© Enrique Muñoz Ballester 7

• What can we do with NN Toolbox?

– Fit Data with a Neural Network

– Classify Patterns with a Neural 
Network

– Cluster Data 

– Time Series Prediction and Modeling 



Neural networks in Matlab

1. Loading data source

2. Selecting attributes required

3. Decide training, validation, and testing data

4. Data manipulations and Target generation

5. Neural Network creation (selection of network 
architecture) and initialisation

6. Network Training and Testing

7. Performance evaluation

© Enrique Muñoz Ballester 8



• nnstart

Neural Network Fitting Tool:
GUI

© Enrique Muñoz Ballester 9



Neural Network Fitting Tool:
GUI

© Enrique Muñoz Ballester 10



Neural Network Fitting Tool:
GUI

© Enrique Muñoz Ballester 11



Neural Network Fitting Tool:
GUI

© Enrique Muñoz Ballester 12

Two-fold validation



Neural Network Fitting Tool:
GUI

© Enrique Muñoz Ballester 13

1 hidden layer



Neural Network Fitting Tool:
GUI

© Enrique Muñoz Ballester 14

The Levenberg–Marquardt
algorithm (LMA),also known 
as the damped least-squares 
(DLS) method, provides a 
numerical solution to the 
problem of minimizing a 
function, generally 
nonlinear, over a space of 
parameters of the function. 
These minimization 
problems arise especially in 
least squares curve fitting 
and nonlinear programming.

http://en.wikipedia.org/wiki/Least_squares


Neural Network Fitting Tool:
GUI

© Enrique Muñoz Ballester 15

Learning algorithm state

Evaluate the performance
of the training algorithm



Neural Network Fitting Tool:
GUI

© Enrique Muñoz Ballester 16

• Why four results?

• We need to evaluate:

– learning capability

– generalization capability



Example 1

• Consider humps(x) function in Matlab, is given 
by:

y = 1 ./ ((x-.3).^2 + .01) + 1 ./ ((x-.9).^2 + .04) - 6; 

• Build a neural network to fit the data 
generated by humps-function between [0,2] 

© Enrique Muñoz Ballester 17



Exercises

1. Obtain the neural network approximation of 
the signal

x = (0: 0.1: 5); 

y=erf(x);

2. Obtain the neural network approximation of 
a sinusoidal signal

x=(0:0.0001:0.05)

y=sin(100*pi*x - 2*pi*0.75)

© Enrique Muñoz Ballester 18



• The GUI has been used only for discussing basic 
concepts

• In real applications, it is better to use command-line 
functions

Neural Networks in real applications

© Enrique Muñoz Ballester 19



Example 2

• One-dimensional fitting with command-line functions
– 1Ddata.mat contains data describing the connections 

between the enzymes X and Y. 

– The vectors describing the enzymes are X_train and 
Y_train. 

– Feedforward neural networks should be used to learn the 
connections between the enzymes X and Y. 

– The generalization capability of trained neural networks 
should be evaluated on X_test and Y_test. 

Note: download data from 
https://homes.di.unimi.it/munoz/teaching.html

© Enrique Muñoz Ballester 20



Exercises

3. Re-run the script example1 and analyze the 
results

4. Try different numbers of epochs and plot the 
results in terms of validation MAE

5. Try different transfer functions and plot the 
results in terms of validation MAE

6. Try different numbers of neurons and plot the 
results and plot the results in terms of validation
MAE

7. Try different numbers of hidden layers and plot 
the results in terms of validation MAE

© Enrique Muñoz Ballester 21



Exercises

8. Two-dimensional fitting
– Load 2Ddata.mat, it contains data describing the connections of 

the enzymes X1 and X2 with Y. 
– Use feedforward neural networks to learn the connections 

between the enzymes X and Y. 
– Try to optimize the parameters (epochs, transfer functions, 

number of neurons, number of layers) to obtain a low validation 
error

– Plot the results using function scatter3 (training and test) 

Suggestion: many parts of the script are similar to example2
Note: download data from 
https://homes.di.unimi.it/munoz/teaching.html

© Enrique Muñoz Ballester 22



Divide into training and test set

• To validate a neural network model it is necessary to 
test the results on a dataset different from the training 
dataset

• In the previous exercises it was pre-divided
• Usually it is necessary to do divide the original dataset

– Use of dividerand function
[trainInd, valInd, testInd] = 
dividerand(sizeDB, trainProp, valProp, testProp);

P_train=P(:,trainInd);

T_train=T(:,trainInd);
P_test=P(:,testInd);
T_test=T(:,testInd);

© Enrique Muñoz Ballester 23



Exercises

9. N-dimensional fitting
– Load bodyfat dataset (load('bodyfat_dataset.mat');)
– Train a neural network to estimate the bodyfat of someone from 

various measurements. Bodyfat_dataset contains two variables
• bodyfatInputs - a 13x252 matrix defining thirteen attributes for 252 people: 

– Age (years), Weight (lbs), Height (inches), Neck circumference (cm), Chest circumference 
(cm), Abdomen circumference (cm), Hip circumference (cm), Thigh circumference (cm), 
Knee circumference (cm), Ankle circumference (cm), Biceps (extended) circumference 
(cm), Forearm circumference (cm), Wrist circumference (cm)

• bodyfatTargets - a 1x252 matrix of associated body fat percentages, to be 
estimated from the inputs. 

– Divide dataset into training and testing sets (use dividerand function)
– Evaluate performance in terms of MAE
– Plot original target values and predicted target values (for training and 

test sets)
– Try to optimize the parameters (epochs, transfer functions, number of 

neurons, number of layers) 

© Enrique Muñoz Ballester 24



Radial Basis Function networks (RBF)

• A radial basis network is a network with two layers
• It consists of a hidden layer of radial basis neurons and an output 

layer of linear neurons
• The weights and biases of each neuron in the hidden layer define 

the position and width of a radial basis function 
• Each linear output neuron forms a weighted sum of these radial 

basis functions
• With the correct weight and bias values for each layer, and enough 

hidden neurons, a radial basis network can fit any function with 
any desired accuracy 

© Enrique Muñoz Ballester 25



Radial Basis Function networks (RBF)

• Receptive fields overlap a bit, so there is usually more
than one unit active.

• But for a given input, the total number of active units
will be small. 

© Enrique Muñoz Ballester 26



Example 3

• Consider humps(x) function in Matlab, given 
by:

y = 1 ./ ((x-.3).^2 + .01) + 1 ./ ((x-.9).^2 + .04) - 6; 

• Build a RBF network to fit the data generated 
by humps-function between [0,2]

© Enrique Muñoz Ballester 27



Exercises

10. Surface reconstruction
– Load doll.mat, it contains data describing the 3D 

reconstruction of a doll’s face (P describes axes X and Y, T axes
Z)

– Divide dataset into training and testing sets (use dividerand
function)

– Build a RBF network to learn the connections between the P 
and T

– Try to optimize the parameters (goal and spread) to obtain a 
low validation error

– Plot the results using function scatter3 (training and test) 

Note: download data from 
https://homes.di.unimi.it/munoz/teaching.html

© Enrique Muñoz Ballester 28


