
Evolutionary Algorithms

Enrique Muñoz Ballester

Dipartimento di Informatica
via Bramante 65, 26013 Crema (CR), Italy

enrique.munoz@unimi.it

Material

• Download slides data and scripts:

https://homes.di.unimi.it/munoz/teaching.html

© Enrique Muñoz Ballester 2017 2

Mathematical optimization

• In general, optimization is
the problem of finding the
(global) minimum (or
maximum) of an objective
function

• Usually, but not always,
the objective function is a
specific, well-defined
mathematical function

• F=f(x1,x2,x3,…,xn)

© Enrique Muñoz Ballester 2017 3

Evolutionary Algorithms

• ‘Evolutionary Algorithms’ (EA) constitute a collection of methods
that originally have been developed to solve combinatorial
optimization problems

• They adapt Darwinian principles to automated problem solving.
Nowadays, Evolutionary Algorithms is a subset of Evolutionary
Computation that itself is a subfield of Artificial Intelligence /
Computational Intelligence

• Evolutionary Algorithms are those metaheuristic optimization
algorithms from Evolutionary Computation that are population-
based and are inspired by natural evolution. Typical ingredients are:
– A population (set) of individuals (the candidate solutions)
– A problem-specific fitness (objective function to be optimized)
– Mechanisms for selection, recombination and mutation (search

strategy)

© Enrique Muñoz Ballester 2017 4

Motivation

• Why might Evolution be an interesting model for
computer algorithms?
– Evolution has proven a powerful mechanism in ‘improving’

life-forms and forming ever more complex species
– Driven by surprisingly simple mechanisms, nevertheless

produced astonishing results

• Evolution is basically a random process, driven by
evolutionary pressure:
– Tinkering with genes (Genotype)

• Mating: recombination of genes in descendants
• Mutation: random changes (external influences, reproduction

errors)

– Testing (Phenotype), Competition (‘Survival of the fittest’)

© Enrique Muñoz Ballester 2017 5

Motivation

• EA's are useful for solving multidimensional
problems containing many local maxima (or minima)
in the solution space

© Enrique Muñoz Ballester 2017 6

Simple optimization problem
Complex real optimization problems

General idea

• Traditional method (hill climbing, gradient ascent)

• Problem: may find only a local maxima

© Enrique Muñoz Ballester 2017 7

General idea

• EAs use a population of searchers to find the global
optimum

© Enrique Muñoz Ballester 2017 8

General idea

• Some iterations later, a searcher has approached the
global maximum

© Enrique Muñoz Ballester 2017 9

Evolutionary algorithms: types

• Genetic algorithm

• Genetic programming

• Memetic algorithm

• Differential evolution

• Neuroevolution

© Enrique Muñoz Ballester 2017 10

Evolutionary algorithms: applications

• Control
– Gas pipeline, pole balancing, missile evaluation, pursuit

• Robotics
– Trajectory planning

• Signal processing
– Filter design

• Game playing
– Chess, poker, checker, prisoner’s dilemma

• Scheduling
– Manufacturing facility, resource allocation

• Design
– Semiconductor layout, aircraft design, keyboard configuration, communication

networks

• Combinatorial optimization
– Set covering, travelling salesman problem, routing, bin packing, graph coloring

or partitioning

© Enrique Muñoz Ballester 2017 11

GA: the schema

© Enrique Muñoz Ballester 2017 12

Example 1: optimization of a binary
function, MAXONE

• Objective: maximize the number of ones in a
string of x binary digits, e.g.: x=10

• Gene encoding: string of 10 binary digits, e.g.,
0110110001

• Fitness function: number of ones in
its genetic code, e.g. f(0110110001) = 5

• Start with a population of n random binary
strings, e.g.: n = 6

© Enrique Muñoz Ballester 2017 13

Example 1: initialization

• Initial population of random parent genes:
s1 = 1001011101 f (s1) = 6
s2 = 0110100101 f (s2) = 5
s3 = 1101110110 f (s3) = 7
s4 = 0101000011 f (s4) = 4
s5 = 1101111101 f (s5) = 8
s6 = 0000110010 f (s6) = 3

© Enrique Muñoz Ballester 2017 14

Example 1: selection

• Choose the best parent genes from the
current population for breeding a new child
population to focus the search in promising
regions of the solution space

• Classical: roulette wheel

© Enrique Muñoz Ballester 2017 15

Example 1: crossover

• Combine two «parents» to obtain new offspring
• Probability to perform crossover pcross

• Randomly generate a crossover point to mix parents
• E.g.: s1 x s2 e s5 x s6

before crossover
s1' = 1001011101 s5' = 1101111101
s2' = 0110100101 s6' = 0000110010
after crossover
s1'' = 1000100101 s5'' = 1101110010
s2'' = 0111011101 s6'' = 0000111101

© Enrique Muñoz Ballester 2017 16

Example 1: mutation

• Switch a small number of bits

• Probability to perform mutation pmut

before mutation after mutation

s1'' = 1000100101 s1''' = 1100100101

s2'' = 0111011101 s2''' = 0111111001

s5'' = 1101110010 s5''' = 1101110010

s6'' = 0000111101 s6''' = 0000101101

© Enrique Muñoz Ballester 2017 17

Matlab coding

• Call genetic algorithm
x = ga(fitnessfcn,nvars)
[x,fval,exitflag,output,population,scores] = ga(fitnessfcn,nvars,...)
x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)

• Specify binary problem
opts.PopulationType='bitstring';

• Indicate Selection function
opts.SelectionFcn=@selectionroulette;

• Indicate Cross function parameters
opts.CrossoverFcn=@crossoversinglepoint;
opts.CrossoverFraction=0.8;

• Indicate Mutation function
opts.MutationFcn= {@mutationuniform, 0.01};

© Enrique Muñoz Ballester 2017 18

Stopping Conditions

• Generations — The algorithm stops when the number of generations reaches the
value of Generations.

• Time limit — The algorithm stops after running for an amount of time in seconds
equal to Time limit.

• Fitness limit — The algorithm stops when the value of the fitness function for the
best point in the current population is less than or equal to Fitness limit.

• Stall generations — The algorithm stops when the weighted average change in the
fitness function value over Stall generations is less than Function tolerance.

• Stall time limit — The algorithm stops if there is no improvement in the objective
function during an interval of time in seconds equal to Stall time limit.

• Function Tolerance — The algorithm runs until the weighted average change in the
fitness function value over Stall generations is less than Function tolerance.

• Nonlinear constraint tolerance — The Nonlinear constraint tolerance is not used as
stopping criterion. It is used to determine the feasibility with respect to nonlinear
constraints.

© Enrique Muñoz Ballester 2017 19

Exercises

1. Maximize y=-x2/10 + 3x over the interval {0,
1, …, 31} (reuse code from example 1)

– Use a binary coding (5 bits) e.g. 01101 -> 13

– Define a fitness function (clue: bin2dec(int2str(x))
function)

– Which value did you obtain?

© Enrique Muñoz Ballester 2017 20

Real-world binary problems

• Knapsack problem, financial applications

• Warehouse Location

• Scheduling

• Routing

• Register allocation

• …

© Enrique Muñoz Ballester 2017 21

Example 2: optimization of a
continuous function

• Objective: searching the
biggest circle that can be
drawn without enclosing a
set of points

• Gene encoding: string of 2
real values (coordinates)

• Fitness function: minimum
distance to a star or the
bounds

• Constraints
0 <= x <= 20 and 0 <= y <= 20

© Enrique Muñoz Ballester 2017 22

Example 2: selection

• Roulette Wheel

• Stochastic uniform selection, only one roulette spin,
then equally spaced selections, reduces selection
pressure
– Matlab code: opts.SelectionFcn=@selectionstochunif;

© Enrique Muñoz Ballester 2017 23

Example 2: crossover

• Scattered crossover: creates a random binary
vector and selects the genes where the vector
is a 1 from the first parent, and the genes
where the vector is a 0 from the second
parent

parent1 = [a b c d] parent2 = [1 2 3 4]

child = [a 2 3 d]

© Enrique Muñoz Ballester 2017 24

Example 2: mutation

• Uniform:

1. Select a fraction of the elements of the gene to
mutate using pmut

2. Replace values by a random number in the range
of the entry

© Enrique Muñoz Ballester 2017 25

Exercises

2. Lab4.mat contains 3 instances (star1, star2, star3) of the circle
problem (to change instance, substitute param.star=star1, by the
appropriate instance)
– Try to find the global optimum of each instance by adjusting the

parameters of the GA (may be different for each instance)
– Global optimums:

• Star1: x= 15.85 y=11.43 f=-3.7123
• Star2: x=16.9 y=15,85 f=-3.0844
• Star3: x=6.15 y=4.65 f=-2.86

– You can adjust:
• PopulationSize
• Generations
• CrossoverFraction
• mutationFraction
• EliteCount
• Try also changing the selection to @selectionstochunif

© Enrique Muñoz Ballester 2017 26

Exercises

3. Searching the lowest elevation
on a topographical map (reuse
code from example 2)
– Create a fitness function using

f(x,y) = x sin(4x) + 1.1 y sin(2y)
(modify ObjFunGA_example2)

– 0 <= x <= 10 and 0 <= y <= 10
Gene encoding: string of 2 real
values

– Adjust the parameters to obtain
the global maximum (x=9, y=8.7,
f=-18.426)

(avoid the use of
gaplotCircleVisualizer)

© Enrique Muñoz Ballester 2017 27

Constrained optimization problem

• Constrains limit the feasible set of choices in an
optimization problem

• A constrained optimication problem reflects a
tension between what is desired and what is
obtainable

• Types
– Equality constrains: constrains that hold exactly, e.g.

hi(x1,x2,…,xn)=0
– Inequality constrains: allow a function of one or more

of the variables to be less than or greater than some
level, e.g. gj(x1,x2,…,xn)≤0

© Enrique Muñoz Ballester 2017 28

Adaptive feasible mutation

• Randomly generates directions that are adaptive with
respect to the last successful or unsuccessful
generation

• The mutation chooses a direction and step length that
satisfies bounds and linear constraints

• Matlab code:
opts.MutationFcn= @mutationadaptfeasible;

© Enrique Muñoz Ballester 2017 29

Example 3

• Minimize the constrained optimization problem:

min f(x) = 100 * (x1^2 - x2) ^2 + (1 - x1)^2;

• such that the following two nonlinear constraints
and bounds are satisfied

x1*x2 + x1 - x2 + 1.5 ≤ 0,

10 - x1*x2 ≤ 0,

0 ≤ x1 ≤ 1,

0 ≤ x2 ≤ 13

© Enrique Muñoz Ballester 2017 30

Exercises

4. Minimize the function:
f(x,y) = (x - 0.8)^2 + (y – 0.2)^2
– Subject to the constraints:

g1(x,y)=((x - 0.2)^2 + (y - 0.5)^2) - 0.3 ≤ 0,
g2(x,y)=-((x + 0.5)^2 + (y - 0.5)^2) * 2.0 + 1.5 ≤ 0,
0 ≤ x ≤ 1
0 ≤ y ≤ 2

– Define the fitness function and constraints function
according to the formulas

– Try different parameters to get the optimum
(f=0.0157, x=0.69, y=0.26)

© Enrique Muñoz Ballester 2017 31

Multi-objective optimization

• Single Objective : Only one objective function

• Multi-Objective : Two or more and often
conflicting objective functions

• e.g. Buying a car : minimize cost and maximize
comfort

© Enrique Muñoz Ballester 2017 32

Pareto front

• Dominated solutions: Set of design points performing worse than
some other better points

• Domination criterion:
A feasible solution x1 dominates an other feasible solution x2 (denoted as
x1< x2), if both of the following conditions are true:

1) The solution x1 is no worse than x2 in all objectives, i.e. fi(x1) ≤ fi(x2)
2) The solution x1 is strictly better than x2 in at least one objective, i.e. fi(x1) < fi(x2)

• Non-dominated solutions:
If two solutions are compared, then the solutions are said to be non-
dominated with respect to each other IF neither solution dominates the
other

• Pareto optimal front :
The function space representation of all the non-dominated solutions

© Enrique Muñoz Ballester 2017 33

Pareto front

© Enrique Muñoz Ballester 2017 34

Matlab coding

• Call genetic algorithm for multiobjective optimization
x = gamultiobj(fitnessfcn,nvars)

[x,fval,exitflag,output,population,scores] = gamultiobj(___)

x = gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,nonlcon,options)

© Enrique Muñoz Ballester 2017 35

Example 4

• min F(x) = [objective1(x); objective2(x)]

where,

objective1(x) = (x+2)^2 - 10, and

objective2(x) = (x-2)^2 + 20

with -10 ≤ x ≤ 10

© Enrique Muñoz Ballester 2017 36

Exercises

5. Minimize the lateral surface area
and total surface area of a right
circular cone
– Min f(r,h)=[S,T]

with 0 ≤ r ≤ 10
0 ≤ h ≤ 20

(use the formulas in the figure
to define fitness function for S
and T)

– Constraint:
200 – V ≤ 0
(constraints in gamultiobj and ga are
managed in an analogous way, define a
constraint function)

– Only plot ‘objectives space’

© Enrique Muñoz Ballester 2017 37

