

Università degli Studi di Milano

Evolutionary Algorithms

Enrique Muñoz Ballester

Dipartimento di Informatica via Bramante 65, 26013 Crema (CR), Italy enrique.munoz@unimi.it

Material

• Download slides data and scripts:

https://homes.di.unimi.it/munoz/teaching.html

Mathematical optimization

- In general, optimization is the problem of finding the (global) minimum (or maximum) of an objective function
- Usually, but not always, the objective function is a specific, well-defined mathematical function
- $F=f(x_1, x_2, x_3, ..., x_n)$

Evolutionary Algorithms

- 'Evolutionary Algorithms' (EA) constitute a collection of methods that originally have been developed to solve combinatorial optimization problems
- They adapt Darwinian principles to automated problem solving. Nowadays, Evolutionary Algorithms is a subset of Evolutionary Computation that itself is a subfield of Artificial Intelligence / Computational Intelligence
- Evolutionary Algorithms are those metaheuristic optimization algorithms from Evolutionary Computation that are population-based and are inspired by natural evolution. Typical ingredients are:
 - A population (set) of individuals (the candidate solutions)
 - A problem-specific fitness (objective function to be optimized)
 - Mechanisms for selection, recombination and mutation (search strategy)

Motivation

- Why might Evolution be an interesting model for computer algorithms?
 - Evolution has proven a powerful mechanism in 'improving' life-forms and forming ever more complex species
 - Driven by surprisingly simple mechanisms, nevertheless produced astonishing results
- Evolution is basically a random process, driven by evolutionary pressure:
 - Tinkering with genes (Genotype)
 - Mating: recombination of genes in descendants
 - Mutation: random changes (external influences, reproduction errors)
 - Testing (Phenotype), Competition ('Survival of the fittest')

Motivation

• EA's are useful for solving multidimensional problems containing many local maxima (or minima) in the solution space

Simple optimization problem

Complex real optimization problems

- Traditional method (hill climbing, gradient ascent)
- Problem: may find only a local maxima

General idea

EAs use a population of searchers to find the global optimum

General idea

Some iterations later, a searcher has approached the global maximum

Evolutionary algorithms: types

- Genetic algorithm
- Genetic programming
- Memetic algorithm
- Differential evolution
- Neuroevolution

Evolutionary algorithms: applications

- Control
 - Gas pipeline, pole balancing, missile evaluation, pursuit
- Robotics
 - Trajectory planning
- Signal processing
 - Filter design
- Game playing
 - Chess, poker, checker, prisoner's dilemma
- Scheduling
 - Manufacturing facility, resource allocation
- Design
 - Semiconductor layout, aircraft design, keyboard configuration, communication networks
- Combinatorial optimization
 - Set covering, travelling salesman problem, routing, bin packing, graph coloring or partitioning

GA: the schema

Example 1: optimization of a binary function, MAXONE

- Objective: maximize the number of ones in a string of x binary digits, e.g.: x=10
- Gene encoding: string of 10 binary digits, e.g., 0110110001
- Fitness function: number of ones in its genetic code, e.g. f(0110110001) = 5
- Start with a population of *n* random binary strings, e.g.: *n* = 6

Example 1: initialization

- Initial population of random parent genes:
 - s1 = 1001011101 f(s1) = 6
 - s2 = 0110100101 f(s2) = 5
 - s3 = 1101110110 f(s3) = 7
 - s4 = 0101000011 f(s4) = 4
 - s5 = 1101111101 f(s5) = 8
 - s6 = 0000110010 f(s6) = 3

Example 1: selection

- Choose the best parent genes from the current population for breeding a new child population to focus the search in promising regions of the solution space
- Classical: roulette wheel

Example 1: crossover

- Combine two «parents» to obtain new offspring
- Probability to perform crossover p_{cross}
- Randomly generate a crossover point to mix parents
- E.g.: s1 x s2 e s5 x s6 before crossover s1' = 1001011101 s2' = 0110100101 after crossover s1'' = 1000100101 s2'' = 0111011101

*s*5' = 1101111101 *s*6' = 0000110010

```
s5'' = 1101110010
s6'' = 0000111101
```

Example 1: mutation

- Switch a small number of bits
- Probability to perform mutation p_{mut}

before mutationafter mutations1'' = 1000100101s1''' = 1100100101s2'' = 0111011101s2''' = 0111111001s5'' = 1101110010s5''' = 1101110010s6'' = 0000111101s6''' = 0000101101

Matlab coding

- Call genetic algorithm
 - x = ga(fitnessfcn,nvars)

[x,fval,exitflag,output,population,scores] = ga(fitnessfcn,nvars,...)

- x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)
- Specify binary problem opts.PopulationType='bitstring';
- Indicate Selection function opts.SelectionFcn=@selectionroulette;
- Indicate Cross function parameters opts.CrossoverFcn=@crossoversinglepoint; opts.CrossoverFraction=0.8;
- Indicate Mutation function opts.MutationFcn= {@mutationuniform, 0.01};

Stopping Conditions

- **Generations** The algorithm stops when the number of generations reaches the value of Generations.
- Time limit The algorithm stops after running for an amount of time in seconds equal to Time limit.
- Fitness limit The algorithm stops when the value of the fitness function for the best point in the current population is less than or equal to Fitness limit.
- Stall generations The algorithm stops when the weighted average change in the fitness function value over Stall generations is less than Function tolerance.
- Stall time limit The algorithm stops if there is no improvement in the objective function during an interval of time in seconds equal to Stall time limit.
- Function Tolerance The algorithm runs until the weighted average change in the fitness function value over Stall generations is less than Function tolerance.
- Nonlinear constraint tolerance The Nonlinear constraint tolerance is not used as stopping criterion. It is used to determine the feasibility with respect to nonlinear constraints.

Exercises

- 1. Maximize $y=-x^2/10 + 3x$ over the interval {0,
 - 1, ..., 31} (reuse code from example 1)
 - Use a binary coding (5 bits) e.g. 01101 -> 13
 - Define a fitness function (clue: bin2dec(int2str(x)) function)
 - Which value did you obtain?

Real-world binary problems

- Knapsack problem, financial applications
- Warehouse Location
- Scheduling
- Routing
- Register allocation

Example 2: optimization of a continuous function

- Objective: searching the biggest circle that can be drawn without enclosing a set of points
- Gene encoding: string of **2** real values (coordinates)
- Fitness function: minimum distance to a star or the bounds
- Constraints
 - 0 <= x <= 20 and 0 <= y <= 20

Example 2: selection

Roulette Wheel

- Stochastic uniform selection, only one roulette spin, then equally spaced selections, reduces selection pressure
 - Matlab code: opts.SelectionFcn=@selectionstochunif;

Example 2: crossover

 Scattered crossover: creates a random binary vector and selects the genes where the vector is a 1 from the first parent, and the genes where the vector is a 0 from the second parent

```
parent1 = [a b c d] parent2 = [1 2 3 4]
child = [a 2 3 d]
```

Example 2: mutation

- Uniform:
 - Select a fraction of the elements of the gene to mutate using p_{mut}
 - 2. Replace values by a random number in the range of the entry

Exercises

- 2. Lab4.mat contains 3 instances (star1, star2, star3) of the circle problem (to change instance, substitute param.star=star1, by the appropriate instance)
 - Try to find the global optimum of each instance by adjusting the parameters of the GA (may be different for each instance)
 - Global optimums:
 - Star1: x= 15.85 y=11.43 f=-3.7123
 - Star2: x=16.9 y=15,85 f=-3.0844
 - Star3: x=6.15 y=4.65 f=-2.86
 - You can adjust:
 - PopulationSize
 - Generations
 - CrossoverFraction
 - mutationFraction
 - EliteCount
 - Try also changing the selection to @selectionstochunif

Exercises

- 3. Searching the lowest elevation on a topographical map (reuse code from example 2)
 - Create a fitness function using f(x,y) = x sin(4x) + 1.1 y sin(2y) (modify ObjFunGA_example2)
 - 0 <= x <= 10 and 0 <= y <= 10
 Gene encoding: string of 2 real values
 - Adjust the parameters to obtain the global maximum (x=9, y=8.7, f=-18.426)

(avoid the use of gaplotCircleVisualizer)

Constrained optimization problem

- Constrains limit the feasible set of choices in an optimization problem
- A constrained optimication problem reflects a tension between what is desired and what is obtainable
- Types
 - Equality constrains: constrains that hold exactly, e.g. $h_i(x_1, x_2, ..., x_n)=0$
 - Inequality constrains: allow a function of one or more of the variables to be less than or greater than some level, e.g. g_j(x₁,x₂,...,x_n)≤0

Adaptive feasible mutation

- Randomly generates directions that are adaptive with respect to the last successful or unsuccessful generation
- The mutation chooses a direction and step length that satisfies bounds and linear constraints
- Matlab code: opts.MutationFcn= @mutationadaptfeasible;

Example 3

• Minimize the constrained optimization problem: min f(x) = 100 * (x102 - x2) 02 + (1 - x1)02

min $f(x) = 100 * (x1^2 - x2) ^2 + (1 - x1)^2;$

 such that the following two nonlinear constraints and bounds are satisfied

```
x1^*x2 + x1 - x2 + 1.5 \le 0,
10 - x1^*x2 \le 0,
0 \le x1 \le 1,
0 \le x2 \le 13
```

Exercises

4. Minimize the function:

$$f(x,y) = (x - 0.8)^2 + (y - 0.2)^2$$

- Subject to the constraints: $g1(x,y)=((x - 0.2)^2 + (y - 0.5)^2) - 0.3 \le 0,$ $g2(x,y)=-((x + 0.5)^2 + (y - 0.5)^2) * 2.0 + 1.5 \le 0,$ $0 \le x \le 1$ $0 \le y \le 2$
- Define the fitness function and constraints function according to the formulas
- Try different parameters to get the optimum (f=0.0157, x=0.69, y=0.26)

Multi-objective optimization

- Single Objective : Only one objective function
- Multi-Objective : Two or more and often conflicting objective functions
- e.g. Buying a car : minimize cost and maximize comfort

Pareto front

- Dominated solutions: Set of design points performing worse than some other better points
- Domination criterion:

A feasible solution x_1 dominates an other feasible solution x_2 (denoted as $x_1 < x_2$), if both of the following conditions are true:

1) The solution x_1 is no worse than x_2 in all objectives, i.e. $f_i(x_1) \le f_i(x_2)$

2) The solution x_1 is strictly better than x_2 in at least one objective, i.e. $f_i(x_1) < fi(x_2)$

• Non-dominated solutions:

If two solutions are compared, then the solutions are said to be nondominated with respect to each other IF neither solution dominates the other

• Pareto optimal front :

The function space representation of all the non-dominated solutions

Pareto front

Matlab coding

Call genetic algorithm for multiobjective optimization
 x = gamultiobj(fitnessfcn,nvars)

[x,fval,exitflag,output,population,scores] = gamultiobj(____)

x = gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,nonlcon,options)

Example 4

 min F(x) = [objective1(x); objective2(x)] where,
 objective1(x) = (x+2)^2 - 10, and
 objective2(x) = (x-2)^2 + 20
 with -10 ≤ x ≤ 10

Exercises

- Minimize the lateral surface area and total surface area of a right circular cone
 - Min f(r,h)=[S,T]with $0 \le r \le 10$ $0 \le h \le 20$

(use the formulas in the figure to define fitness function for S and T)

- Constraint:
 - $200 \mathsf{V} \le 0$

(constraints in gamultiobj and ga are managed in an analogous way, define a constraint function)

Only plot 'objectives space'

$$T = B + S = \pi r \left(r + s \right)$$