UNIVERSITA DEGLI STUDI
DI MILANO

Evolutionary Algorithms

Enrigue Munoz Ballester

Dipartimento di Informatica
via Bramante 65, 26013 Crema (CR), Italy
enrigue.munoz@unimi.it

Material

* Download slides data and scripts:
https://homes.di.unimi.it/munoz/teaching.html

© Enrique Mufioz Ballester 2017 2

Mathematical optimization

* |n general, optimization is
the problem of finding the
(global) minimum (or
maximum) of an objective
function

* Usually, but not always,
the objective function is a
specific, well-defined
mathematical function

o F=f(x{,X5,X3,--,X,))

© Enrique Mufioz Ballester 2017 3

Evolutionary Algorithms

e ‘Evolutionary Algorithms’ (EA) constitute a collection of methods
that originally have been developed to solve combinatorial
optimization problems

* They adapt Darwinian principles to automated problem solving.
Nowadays, Evolutionary Algorithms is a subset of Evolutionary
Computation that itself is a subfield of Artificial Intelligence /
Computational Intelligence

* Evolutionary Algorithms are those metaheuristic optimization
algorithms from Evolutionary Computation that are population-
based and are inspired by natural evolution. Typical ingredients are:

— A population (set) of individuals (the candidate solutions)
— A problem-specific fitness (objective function to be optimized)

— Mechanisms for selection, recombination and mutation (search
strategy)

© Enrique Mufioz Ballester 2017 4

Motivation

 Why might Evolution be an interesting model for
computer algorithms?

— Evolution has proven a powerful mechanism in ‘improving’
life-forms and forming ever more complex species

— Driven by surprisingly simple mechanisms, nevertheless
produced astonishing results

* Evolution is basically a random process, driven by
evolutionary pressure:
— Tinkering with genes (Genotype)
* Mating: recombination of genes in descendants

* Mutation: random changes (external influences, reproduction
errors)

— Testing (Phenotype), Competition (‘Survival of the fittest’)

Motivation

 EA's are useful for solving multidimensional
problems containing many local maxima (or minima)
in the solution space

global

Simple optimization problem

Complex real optimization problems

© Enrique Mufioz Ballester 2017 6

General idea

* Traditional method (hill climbing, gradient ascent)

* Problem: may find only a local maxima

global

| found
the top!

© Enrique Mufioz Ballester 2017 7

General idea

 EAs use a population of searchers to find the global
optimum

My height
is 3.6m

© Enrique Mufioz Ballester 2017 8

General idea

 Some iterations later, a searcher has approached the

global maximum
| found
the top!

© Enrique Mufioz Ballester 2017 9

Evolutionary algorithms: types

* Genetic algorithm

* Genetic programming
* Memetic algorithm

* Differential evolution
* Neuroevolution

© Enrique Mufioz Ballester 2017 10

Evolutionary algorithms: applications

Control

— Gas pipeline, pole balancing, missile evaluation, pursuit
Robotics

— Trajectory planning
Signal processing

— Filter design
Game playing

— Chess, poker, checker, prisoner’s dilemma
Scheduling

— Manufacturing facility, resource allocation
Design

— Semiconductor layout, aircraft design, keyboard configuration, communication
networks

Combinatorial optimization

— Set covering, travelling salesman problem, routing, bin packing, graph coloring
or partitioning

© Enrique Mufioz Ballester 2017 11

GA: the schema

Begin

!

Iruti alisation
(m)® Generation

+ ((n+ 1™ Generation)
Evaluation / Fitness 1
Cotnputing [Wutat o]

(eg travel time, cost)

[Crossower]

[Eeproduction]

w]

a T OPY

Y es

v
il End
© Enrique Mufioz Ballester 2017 12

Example 1: optimization of a binary
function, MAXONE

* Objective: maximize the number of onesin a
string of x binary digits, e.g.: x=10

* Gene encoding: string of 10 binary digits, e.g.,
0110110001

* Fitness function: number of ones in
its genetic code, e.g. f(0110110001) =5

e Start with a population of n random binary
strings, e.g.:n=6

© Enrique Mufioz Ballester 2017 13

Example 1: initialization

* |nitial population of random parent genes:
s1=1001011101f(s1) =6
s2=0110100101f(s2)=5
s3=1101110110f(s3) =7
s4 =0101000011 f(s4) =4
s5=1101111101f(s5) =8
s6 =0000110010 f (s6) =3

© Enrique Mufioz Ballester 2017 14

Example 1: selection

* Choose the best parent genes from the
current population for breeding a new child
population to focus the search in promising
regions of the solution space

e Classical: roulette whee| Indvidualiwillhave a i

probability to be chosen

Area is
Proportional
to fitness
value

© Enrique Mufioz Ballester 2017 15

Example 1: crossover

E.g.:s1xs2es5xs6
before crossover
s1'=1001011101
s2'=0110100101
after crossover
s1" =1000100101
s2'""'=0111011101

© Enrique Mufioz Ballester 2017

Combine two «parents» to obtain new offspring
Probability to perform crossover p_,..
Randomly generate a crossover point to mix parents

s5'=1101111101
s6' =0000110010

s5"=1101110010
s6''=0000111101

16

Example 1: mutation

e Switch a small number of bits

* Probability to perform mutation p,

before mutation

s1'" =1000100101
s2'"'=0111011101
s5"=1101110010
s6"' =0000111101

© Enrique Mufioz Ballester 2017

after mutation

s1"'=1100100101
s2"'=0111111001
s5"'=1101110010
s6'"' = 0000101101

17

Matlab coding

* Call genetic algorithm
x = ga(fitnessfcn,nvars)
[x,fval,exitflag,output,population,scores] = ga(fitnessfcn,nvars,...)
x = ga(fitnessfcn,nvars,A,b,Aeq,beq,LB,UB,nonlcon,options)

e Specify binary problem
opts.PopulationType='bitstring’;

* Indicate Selection function
opts.SelectionFcn=@selectionroulette;

* Indicate Cross function parameters
opts.CrossoverFcn=@crossoversinglepoint;
opts.CrossoverFraction=0.8;

* Indicate Mutation function
opts.MutationFcn= {@mutationuniform, 0.01};

© Enrique Mufioz Ballester 2017 18

Stopping Conditions

Generations — The algorithm stops when the number of generations reaches the
value of Generations.

Time limit — The algorithm stops after running for an amount of time in seconds
equal to Time limit.

Fitness limit — The algorithm stops when the value of the fitness function for the
best point in the current population is less than or equal to Fitness limit.

Stall generations — The algorithm stops when the weighted average change in the
fitness function value over Stall generations is less than Function tolerance.

Stall time limit — The algorithm stops if there is no improvement in the objective
function during an interval of time in seconds equal to Stall time limit.

Function Tolerance — The algorithm runs until the weighted average change in the
fitness function value over Stall generations is less than Function tolerance.

Nonlinear constraint tolerance — The Nonlinear constraint tolerance is not used as
stopping criterion. It is used to determine the feasibility with respect to nonlinear
constraints.

© Enrique Mufioz Ballester 2017 19

Exercises

1. Maximize y=-x2/10 + 3x over the interval {0,
1, ..., 31} (reuse code from example 1)

— Use a binary coding (5 bits) e.g. 01101 -> 13

— Define a fitness function (clue: bin2dec(int2str(x))

function)
flx) ¢

— Which value did you obtain?

Real-world binary problems

e Knapsack problem, financial applications
 Warehouse Location
* Scheduling

* Routing
* Register allocation

1.5

© Enrique Mufioz Ballester 2017 21

Example 2: optimization of a
continuous function

* Objective: searching the
biggest circle that can be
drawn without enclosing a
set of points

* Gene encoding: string of 2
real values (coordinates)

e Fitness function: minimum
distance to a star or the
bounds

* Constraints
O0<=x<=20and 0<=y<=20

© Enrique Mufioz Ballester 2017

18 F

141

8

6|

2+

1
15 20

22

Example 2: selection

e Roulette Wheel

Random Sampling

2 20K 20N 20K 200 2R 2R
e = e

e Stochastic uniform selection, only one roulette spin,
then equally spaced selections, reduces selection

pressure
— Matlab code: opts.SelectionFcn=@selectionstochunif;

Evenly Spaced

- —

© Enrique Muioz Ballester

Example 2: crossover

e Scattered crossover: creates a random binary
vector and selects the genes where the vector
is a 1 from the first parent, and the genes
where the vector is a 0 from the second
parent

parentl =[a b cd] parent2 = [1 2 3 4]
child=[a 2 3 d]

© Enrique Mufioz Ballester 2017 24

Example 2: mutation

e Uniform:

1. Select a fraction of the elements of the gene to
mutate using p,,

2. Replace values by a random number in the range
of the entry

© Enrique Mufioz Ballester 2017 25

Exercises

2. Lab4.mat contains 3 instances (starl, star2, star3) of the circle
problem (to change instance, substitute param.star=starl, by the
appropriate instance)

— Try to find the global optimum of each instance by adjusting the
parameters of the GA (may be different for each instance)
— Global optimums:
e Starl:x=15.85y=11.43 f=-3.7123
e Star2:x=16.9 y=15,85 f=-3.0844
e Star3:x=6.15y=4.65 f=-2.86
— You can adjust:

. PopulationSize

. Generations

. CrossoverFraction
. mutationFraction

. EliteCount
. Try also changing the selection to @selectionstochunif

3. Searching the lowest elevation
on a topographical map (reuse
code from example 2)

— Create a fitness function using
f(x,y) = x sin(4x) + 1.1 y sin(2y)
(modify ObjFunGA_example2)

— 0<=x<=10and 0<=y<=10
Gene encoding: string of 2 real
values

— Adjust the parameters to obtain
the global maximum (x=9, y=8.7,
f=-18.426)

(avoid the use of
gaplotCircleVisualizer)

© Enrique Mufioz Ballester 2017

Exercises

27

Constrained optimization problem

e Constrains limit the feasible set of choices in an
optimization problem

* A constrained optimication problem reflects a
tension between what is desired and what is
obtainable

* Types

— Equality constrains: constrains that hold exactly, e.g.
h.(X{,X,,...,X,)=0

— Inequality constrains: allow a function of one or more
of the variables to be less than or greater than some

level, e.g. gj(xl,xz,...,xn)SO

© Enrique Mufioz Ballester 2017 28

Adaptive feasible mutation

 Randomly generates directions that are adaptive with
respect to the last successful or unsuccessful

generation

 The mutation chooses a direction and step length that
satisfies bounds and linear constraints

e Matlab code:

opts.MutationFcn= @mutationadaptfeasible;

© Enrique Mufioz Ballester 2017

. 130
X2

-
136 150
132 142
134
138+t | P! .
/}/T d
140

Adaptive mutation {directions) I

29

Example 3

* Minimize the constrained optimization problem:
min f(x) = 100 * (x172 - x2) A2 + (1 - x1)"2;
* such that the following two nonlinear constraints
and bounds are satisfied
x1*x2 +x1-x2+1.5<0,
10 - x1*x2 <0,
0<x1<1],
0<x2<13

Exercises

4. Minimize the function:
f(x,y) = (x-0.8)"2 + (y—0.2)"2
— Subject to the constraints:
gl(x,y)=((x-0.2)*2 + (y-0.5)22)-0.3<0,
g2(x,y)=-((x + 0.5)*2 + (y-0.5)22) *2.0+1.5<0,
0<x<1
O<y<?2

— Define the fitness function and constraints function
according to the formulas

— Try different parameters to get the optimum
(f=0.0157, x=0.69, y=0.26)

Multi-objective optimization

* Single Objective : Only one objective function

 Multi-Objective : Two or more and often
conflicting objective functions

* e.g. Buying a car : minimize cost and maximize
comfort

4

1 3)
10 k Cost (USS$) 100 k

© Enrique Mufioz Ballester 2017 32

Pareto front

Dominated solutions: Set of design points performing worse than
some other better points
Domination criterion:

A feasible solution x; dominates an other feasible solution x, (denoted as
X;< X,), if both of the following conditions are true:

1) The solution x4 is no worse than x, in all objectives, i.e. fi(x;) < f,(x,)
2) The solution x, is strictly better than x, in at least one objective, i.e. f,(x;) < fi(x,)

Non-dominated solutions:

If two solutions are compared, then the solutions are said to be non-
dominated with respect to each other IF neither solution dominates the
other

Pareto optimal front :
The function space representation of all the non-dominated solutions

Pareto front

Dot T T T
‘SUMMARY_PARETO' o
- "pointz.car
0.008 |- - <
Dominated solutions
a
~ 0006 | -
[}
> °
e -
(@)
e
o .
O 0004r Pareto Optimal . 1
solutions
[-]
e
0.002 |- . , -
L™ "
L -'.. ’
- L e
0 L 1 [l L
0 1D 20 3n 40 50
Objective 1

© Enrique Mufioz Ballester 2017 34

Matlab coding

e Call genetic algorithm for multiobjective optimization

x = gamultiobj(fitnessfcn,nvars)
[x,fval,exitflag,output,population,scores] = gamultiobj(__)
x = gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,Ib,ub,nonlcon,options)

© Enrique Mufioz Ballester 2017 35

Example 4

* min F(x) = [objectivel(x); objective2(x)]
where,
objectivel(x) = (x+2)*2 - 10, and
objective2(x) = (x-2)"2 + 20
with -10 < x<10

© Enrique Muioz Ballester 2017 36

5. Minimize the lateral surface area
and total surface area of a right
circular cone

— Min f(r,h)=[S,T]
with0<r<10
0<h<20

(use the formulas in the figure

to define fitness function for S
and T)

— Constraint:
200-V<O0

(constraints in gamultiobj and ga are
managed in an analogous way, define a
constraint function)

— Only plot ‘objectives space’

© Enrique Mufioz Ballester 2017

Exercises

2
B =mnr"
S=7nrs

T=B+S=nr(r+s)

37

