
Fuzzy Logic Using Matlab

Enrique Muñoz Ballester

Dipartimento di Informatica
via Bramante 65, 26013 Crema (CR), Italy

enrique.munoz@unimi.it

Material

• Download slides data and scripts:

https://homes.di.unimi.it/munoz/teaching.html

© Enrique Muñoz Ballester 2

Introduction

• Fuzzy concepts first introduced by Zadeh in
the 1960s and 70s

• Traditional computational logic and set theory
is all about
– true or false

– zero or one

– in or out (in terms of set membership)

– black or white (no grey)

• Fuzzy logic and sets are different

© Enrique Muñoz Ballester 2017 3

Basic concepts

• Approximation (“granulation”)
– A color can be described precisely using RGB

values, or it can be approximately described as
“red”, “blue”, etc.

• Degree (“graduation”)
– Two different colors may both be described as

“red”, but one is considered to be more red than
the other

• Fuzzy logic attempts to reflect the human way
of thinking

© Enrique Muñoz Ballester 2017 4

Terminology

• Fuzzy set
– A set X in which each element y has a grade of

membership μX(y) in the range 0 to 1, i.e. set membership
may be partial

– e.g. if cold is a fuzzy set, exact temperature values might
be mapped to the fuzzy set as follows:
• 15 degrees → 0.2 (slightly cold)

• 10 degrees → 0.5 (quite cold)

• 0 degrees → 1 (totally cold)

• Fuzzy relation
– Relationships can also be expressed on a scale of 0 to 1

– e.g. degree of resemblance between two people

© Enrique Muñoz Ballester 2017 5

Terminology

• Fuzzy variable
– Variable with (labels of) fuzzy sets as its values

• Linguistic variable
– Fuzzy variable with values that are words or sentences

in a language
– e.g. variable color with values red, blue, yellow,

green...

• Linguistic hedge
– Term used as a modifier for basic terms in linguistic

values
– e.g. words such as very, a bit, rather, somewhat, etc.

© Enrique Muñoz Ballester 2017 6

Why fuzzy logic?

• Fuzzy logic is conceptually easy to understand.
– The mathematical concepts behind fuzzy reasoning are very simple. Fuzzy

logic is a more intuitive approach without the far-reaching complexity.

• Fuzzy logic is flexible
– With any given system, it is easy to layer on more functionality without

starting again from scratch.

• Fuzzy logic is tolerant of imprecise data
– Everything is imprecise if you look closely enough, but more than that, most

things are imprecise even on careful inspection. Fuzzy reasoning builds this
understanding into the process rather than tacking it onto the end.

• Fuzzy logic can model nonlinear functions of arbitrary complexity
– You can create a fuzzy system to match any set of input-output data. This

process is made particularly easy by adaptive techniques like Adaptive Neuro-
Fuzzy Inference Systems (ANFIS), which are available in Fuzzy Logic Toolbox
software.

© Enrique Muñoz Ballester 2017 7

Why fuzzy logic

• Fuzzy logic can be built on top of the experience of experts.
– In direct contrast to neural networks, which take training data and

generate opaque, impenetrable models, fuzzy logic lets you rely on the
experience of people who already understand your system.

• Fuzzy logic can be blended with conventional control techniques.
– Fuzzy systems don't necessarily replace conventional control methods.

In many cases fuzzy systems augment them and simplify their
implementation.

• Fuzzy logic is based on natural language.
– The basis for fuzzy logic is the basis for human communication. This

observation underpins many of the other statements about fuzzy
logic. Because fuzzy logic is built on the structures of qualitative
description used in everyday language, fuzzy logic is easy to use.

© Enrique Muñoz Ballester 2017 8

Fuzzy logic applications

• Control Systems
– Consumer systems

• automatic transmissions
• washing machines
• camera autofocus
• Temperature controllers
• ABS

– Industrial systems
• Train driving
• aircraft engines
• power supply regulation
• steam turbine start-up

© Enrique Muñoz Ballester 2017 9

Fuzzy logic applications

• Artificial Intelligence

– Robotics

– Image segmentation

– Medical diagnosis systems

– Pattern recognition

© Enrique Muñoz Ballester 2017 10

Fuzzy Logic Toolbox™ 1/2

• Impleamentation of Fuzzy Inference Systems
– GUI

– M-files

• Interaction with Simulink

• Standalone C

© Enrique Muñoz Ballester 2017 11

Fuzzy Logic Toolbox™ 2/2

• Important concepts:

– Membership Functions

– Logical Operations

– If-Then Rules

– Defuzzification Methods

• ANFIS

© Enrique Muñoz Ballester 2017 12

Membership Functions
• 11 functions (mfdemo) + custom functions

© Enrique Muñoz Ballester 2017 13

Logical Operations

© Enrique Muñoz Ballester 2017 14

If-Then Rules 1/3
• Interpreting if-then rules is a three-part process.

– Fuzzify inputs: Resolve all fuzzy statements in the antecedent to
a degree of membership between 0 and 1.

– Apply fuzzy operator to multiple part antecedents: If there are
multiple parts to the antecedent, apply fuzzy logic operators
and resolve the antecedent to a single number between 0 and
1. This is the degree of support for the rule.

– Apply implication method: Use the degree of support for the
entire rule to shape the output fuzzy set. The consequent of a
fuzzy rule assigns an entire fuzzy set to the output. This fuzzy set
is represented by a membership function that is chosen to
indicate the qualities of the consequent. If the antecedent is
only partially true, (i.e., is assigned a value less than 1), then the
output fuzzy set is truncated according to the implication
method.

© Enrique Muñoz Ballester 2017 15

If-Then Rules 2/3

© Enrique Muñoz Ballester 2017 16

If-Then Rules 3/3

• Sintax

– Verbose

• If (service is poor) or (food is rancid) then (tip is cheap)

– Symbolic

• If (service == poor) | (food == rancid) => (tip = cheap)

– Indexed

• 1 1, 1

© Enrique Muñoz Ballester 2017 17

• 5 methods

• Custom methods

Defuzzification Methods

© Enrique Muñoz Ballester 2017 18

Fuzzy Logic Toolbox™ GUI Tools

© Enrique Muñoz Ballester 2017 19

Implementation of
Fuzzy Inference Systems

© Enrique Muñoz Ballester 2017 20

Example 1

• Create an automatic tipper (Mamdani)
– Inputs:

• Quality of service: between 0 and 10 with fuzzy
sets poor, good or excellent

• Quality of food: between 0 and 10 with fuzzy sets
rancid and delicious

– Output: Percentage of tip between 5 and 30
with fuzzy sets cheap, average and generous

– Rules:
• If the service is poor or the food is rancid, then tip

is cheap (5%)
• If the service is good, then tip is average (15%)
• If the service is excellent or the food is delicious,

then tip is generous (25%)
• Function: fuzzyLogicDesigner or fuzzy

© Enrique Muñoz Ballester 2017 21

Exercise

1. Design a motor speed controller
for air conditioner
– Input: Temperature (in Farenheit)
– Output: Motor speed of the air

conditioner
– Rules:

• If temperature is cold then motor
speed is stop

• If temperature is cool then motor
speed is slow

• If temperature is just right then motor
speed is medium

• If temperature is warm then motor
speed is fast

• If temperature is hot then motor
speed is blast

© Enrique Muñoz Ballester 2017 22

Example 2

• Create a controller to regulate water level in a
tank (using simulink)
– A tank with a pipe flowing in and a pipe flowing

out
– Adjust the valve controlling the water that flows in
– The outflow rate depends on the diameter of the

outflow pipe (constant) and the pressure in the
tank (varies with the water level)

• The controller
– Knows current water level
– Sets the valve aperture
– Input: water level error
– Output: rate at which the valve closes or opens
– Rules:

1. If (level is okay) then (valve is no_change)
2. If (level is low) then (valve is open_fast)
3. If (level is high) then (valve is close_fast)

© Enrique Muñoz Ballester 2017 23

Exercise

2. Correct the problems of Example 2 by adjusting
the controller:
– Use the input ‘rate’ (not used in the example), which

describes the water level's rate of change
– ‘rate’ is in the range [-0.1, 0.1], with negative values

indicating a decrease in water level and positive
values an increase

– Create and tune two fuzzy sets to describe ‘rate’
– Add two rules that use ‘rate’ to slow down the valve

movement when we get close to the right level
– Use the fuzzy sets of the output variable ‘valve’

close_slow and open_slow

© Enrique Muñoz Ballester 2017 24

Important functions
• Main GUI: fuzzy eventualFileName
• Instanciate the FIS: a = readfis('tipper.fis')
• Execute the FIS: evalfis([input1 input2 inputN], a)
• Show the FIS schema: showfis(a)
• Edit the source code: open tipper.fis

• GUI:
– fuzzy(a) displays the FIS Editor
– mfedit(a) displays the Membership Function Editor
– ruleedit(a) displays the Rule Editor
– ruleview(a) displays the Rule Viewer
– surfview(a) displays the Surface Viewer

• Plots:
– plotfis(a)
– plotmf(a,'input',1)
– gensurf(a)
– showrule(a)

© Enrique Muñoz Ballester 2017 25

Textual mode

• Example
a=newfis('tipper');
a=addvar(a,'input','service',[0 10]);
a=addmf(a,'input',1,'poor','gaussmf',[1.5 0]);
a=addmf(a,'input',1,'good','gaussmf',[1.5 5]);
a=addmf(a,'input',1,'excellent','gaussmf',[1.5 10]);
a=addvar(a,'input','food',[0 10]);
a=addmf(a,'input',2,'rancid','trapmf',[-2 0 1 3]);
a=addmf(a,'input',2,'delicious','trapmf',[7 9 10 12]);
a=addvar(a,'output','tip',[0 30]);
a=addmf(a,'output',1,'cheap','trimf',[0 5 10]);
a=addmf(a,'output',1,'average','trimf',[10 15 20]);
a=addmf(a,'output',1,'generous','trimf',[20 25 30]);
ruleList=[...
1 1 1 1 2
2 0 2 1 1
3 2 3 1 2];
a=addrule(a,ruleList);

© Enrique Muñoz Ballester 2017 26

Sugeno-Type Fuzzy Systems

• Takagi-Sugeno or simply Sugeno-type FIS has a different way of
computing the consequence and defuzzification

• A general Sugeno rule has a form
IF x1 is Ak

1 AND x2 is Al
2 AND …AND xn is Ap

n THEN zi = fi(·)
• Here z = f(·) may be any function (even another mapping, like

neural network, or another FIS)
• Usually zi = fi(x1; x2; …; xn) is used. If this function is a first

order polynomial, i.e.
zi = anx1 + an-1x2 + · · · + a1xn + a0;
the inference system is called a first-order Sugeno FIS.

• When fi is a constant, the system is called a zero-order Sugeno FIS.

© Enrique Muñoz Ballester 2017 27

Sugeno-Type Fuzzy Inference 1/2

• The output level zi of each rule is weighted by the firing
strength wi of the rule. For example, for an AND rule
with Input 1 = x and Input 2 = y, the firing strength is

where F1,2 (.) are the membership functions for Inputs
1 and 2

• The final output of the system is the weighted average
of all rule outputs, computed as

© Enrique Muñoz Ballester 2017 28

Sugeno-Type Fuzzy Inference 2/2

© Enrique Muñoz Ballester 2017 29

Sugeno-Type Fuzzy Inference: example

© Enrique Muñoz Ballester 2017 30

Example 3

• Create a controller for an inverted pendulum
– A rigid pole hinged to a cart through a free joint with one

degree of freedom
– The cart can be moved to its right or left depending on the

force exerted on it
– Controller:

• generates appropriate force on the cart such that we can move the
cart to a desired position while keeping
the pole balanced

• Inputs:
– Input 1: angular error
– Input 2: angular error gain
– Input 3: distance to desired position
– Input 4: distance to desired position gain

© Enrique Muñoz Ballester 2017 31

Sugeno-Type Fuzzy Inference:
advantages

• Can be more expressive than Mamdani
systems

• Compact representation

• Computationally efficient

• Can be used with adaptive techniques, such as
neuro-fuzzy systems

© Enrique Muñoz Ballester 2017 32

Adaptive Neuro-Fuzzy Inference
System (ANFIS)

• Suppose you want to apply fuzzy inference to a system for which
you already have a collection of input/output data that you would
like to use for modeling, model-following, or some similar scenario.
You do not necessarily have a predetermined model structure
based on characteristics of variables in your system.

• In some modeling situations, you cannot discern what the
membership functions should look like simply from looking at data.
Rather than choosing the parameters associated with a given
membership function arbitrarily, these parameters could be chosen
so as to tailor the membership functions to the input/output data in
order to account for these types of variations in the data values. In
such cases, you can use the Fuzzy Logic Toolbox neuro-adaptive
learning techniques incorporated in the anfis command.

© Enrique Muñoz Ballester 2017 33

ANFIS

• Representation of the Sugeno FIS in a form of
a feed-forward neural network

© Enrique Muñoz Ballester 2017 34

ANFIS GUI
• anfisedit

© Enrique Muñoz Ballester 2017 35

Example 4

• Approximate humps function with an ANFIS

y = 1 ./ ((x-.3).^2 + .01) + 1 ./ ((x-.9).^2 + .04) - 6;

– Generate a train set (200 random numbers in a
range [0 to 2])

– Generate a test set (200 random numbers in a
range [0 to 2])

– Optimize an ANFIS to approximate the function

– Plot results

© Enrique Muñoz Ballester 2017 36

Exercises

3. Obtain a suitable ANFIS approximation of the signal
x = rand(200,1)*5;

y = erf(x);

4. Obtain a suitable ANFIS approximation of a sinusoidal
signal
x = rand(200,1)*0.05

y = sin(100*pi*x - 2*pi*0.75)

5. Obtain a suitable ANFIS approximation of the signal
x = rand(100,3)*6;

1+x(:,1)0.5+x(:,2)-1+x(:,3)-1.5

© Enrique Muñoz Ballester 2017 37

Exercises

6. System identification with ANFIS
– Open folder invpen_identify (inside examples), set the MATLAB path to the

folder, open invpen_sugeno.mdl (identical to the system from example 3,
except for the To Workspace block)

– Gather training data
• Change the To Workspace block variable name to train_data
• Choose a target position function type in the animation window and run the

simulation for 20 steps

– Train an appropriate ANFIS using the data generated
– Save the trained FIS in a file with a different name, e.g. anfis.fis
– Change the FIS name in the Fuzzy Logic Controller and perform the simulation

with different target position functions
– Repeat the training and test process with data obtained using the different

target position functions (sine, square and sawtooth) and analyze the results
– Repeat the training and test process with a dataset that will train the FIS for all

(Sinusoid, Square, Saw) kinds of target position function types. And analyze
the results

© Enrique Muñoz Ballester 2017 38

Fuzzy Robotics

• The Big Dog
o http://www.youtube.com/watch?v=cHJJQ0zNNOM

• Football
o http://www.youtube.com/watch?v=s5y-0SPdnVQ

• Rescue robot
o http://www.youtube.com/watch?v=v2WRIuVI1W8

• Collaborative robots
o http://www.youtube.com/watch?v=exEjV-Q7OKw

© Enrique Muñoz Ballester 2017 39

http://www.youtube.com/watch?v=cHJJQ0zNNOM
http://www.youtube.com/watch?v=s5y-0SPdnVQ
http://www.youtube.com/watch?v=v2WRIuVI1W8
http://www.youtube.com/watch?v=exEjV-Q7OKw

Fuzzy image processing

• Different applications:

– fuzzy edge detection;

– fuzzy contrast adjustment;

– fuzzy image segmentation;

– fuzzy image enhancement;

– …

• An interesting approach consists in performing
the analysis of every pixel with a FIS.

© Enrique Muñoz Ballester 2017 40

Edge detectors

© Enrique Muñoz Ballester 2017 41

Example 5
Fuzzy edge detector 4 pixel 1/2

© Enrique Muñoz Ballester 2017 42

1

2

3

4

5

6

7

8

9

Matlab
matrix(:)

IF THEN IF THEN

ELSE

Example 5
Fuzzy edge detector 4 pixel 2/2

• Membership functions should be designed
according to the details that are more
important in the considered applicative
context.

• Evaluation of three membership functions.

© Enrique Muñoz Ballester 2017 43

Exercise

• Create a fuzzy edge detector 8
pixel
– Define membership functions

for the 9 pixels of the
neighborhood of current pixel

– Define rules according to the
following schema

© Enrique Muñoz Ballester 2017 44

1

2

3

4

5

6

7

8

9

Matlab
matrix(:)

IF THEN IF THEN

ELSE

Example 6
Fuzzy background removal 1/2

• If we interpret the image features as linguistic
variables, then we can use fuzzy if-then rules
to segment the image into different regions. A
simple fuzzy segmentation rule may seem as
follows:

– IF the pixel is dark
AND its neighbourhood is also dark
AND homogeneous
THEN it belongs to the background.

© Enrique Muñoz Ballester 2017 45

Example 6
Fuzzy background removal 2/2

• Three variables:
– intensity = intensity of the pixel I(i,j)

– meanI = mean intensity of the local region centered in
I(i,j)

– stdI = standard deviation of the local region centered
in I(i,j)

• The parameters of the membership functions
should be tuned according to the considered
image

© Enrique Muñoz Ballester 2017 46

Suggested Lectures

• S. N. Sivanandam, S. Sumathi, S. N. Deepa, “Introduction to
Fuzzy Logic using MatLab,” Springer, 2007

• Section “Fuzzy Logic Toolbox” of the Matlab Help
• http://a-

lab.ee/edu/system/files/eduard.petlenkov/courses/ISS0023/2
017_Autumn/materials/Sergei_Astapov_Fuzzy_Control_lectur
e_slides.pdf

• http://a-
lab.ee/edu/system/files/eduard.petlenkov/courses/ISS0023/2
017_Autumn/materials/Sergei_Astapov_Fuzzy_Control_Lab.p
df

• Passino, Kevin M., Stephen Yurkovich, and Michael Reinfrank.
Fuzzy control. Vol. 20. Reading, MA: Addison-wesley, 1998.

© Enrique Muñoz Ballester 2017 47

http://a-lab.ee/edu/system/files/eduard.petlenkov/courses/ISS0023/2017_Autumn/materials/Sergei_Astapov_Fuzzy_Control_lecture_slides.pdf
http://a-lab.ee/edu/system/files/eduard.petlenkov/courses/ISS0023/2017_Autumn/materials/Sergei_Astapov_Fuzzy_Control_Lab.pdf

