
PyQB

Monga

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

1

Programming in Python1

Mattia Monga

Dip. di Informatica
Università degli Studi di Milano, Italia

mattia.monga@unimi.it

Academic year 2025/26, I semester

1
cba 2025 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo 4.0

Internazionale. http://creativecommons.org/licenses/by-sa/4.0/deed.it

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

PyQB

Monga

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

94

Lecture XIII: NumPy arrays

PyQB

Monga

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

95

NumPy

NumPy is a third-party library very popular for
scientific/numerical programming (https://numpy.org/).

Features familiar to matlab, R, Julia programmers

The key data structure is the array

1-dimension arrays: vectors
2-dimension arrays: matrices
n-dimension arrays

In some languages array is more or less synonym of list: Python
distinguishes: lists (mutable, arbitrary elements), arrays
(mutable, all elements have the same type), tuples (immutable,
fixed length, arbitrary elements).

https://numpy.org/

PyQB

Monga

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

96

NumPy arrays

The most important data structure in NumPy is ndarray: a
(usually fixed-size) sequence of same type elements, organized
in one or more dimensions.
https://numpy.org/doc/stable/reference/arrays.

ndarray.html

Implementation is based on byte arrays: accessing an element
(all of the same byte-size) is virtually just the computation of
an ‘address’.

https://numpy.org/doc/stable/reference/arrays.ndarray.html
https://numpy.org/doc/stable/reference/arrays.ndarray.html

PyQB

Monga

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

97

Why?

using NumPy arrays is often more compact, especially
when there’s more than one dimension

faster than lists when the operation can be vectorized

(slower than lists when you append elements to the end)

can be used with element of different types but this is less
efficient

PyQB

Monga

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

98

ndarray

A ndarray has a dtype (the type of elements) and a shape

(the length of the array on each dimensional axis). (Note the
jargon: slightly different from linear algebra)

Since appending is costly, normally they are pre-allocated
(zeros, ones, arange, linspace, . . .)

vectorized operations can simplify code (no need for loops)
and they are faster with big arrays

vector indexing syntax (similar to R): very convenient (but
you need to learn something new)

PyQB

Monga

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

99

All the elements must have the same size

This is actually a big limitation: the faster access comes with a
price in flexibility.

>>> np.array(['','',''])

array(['', '', ''], dtype='<U1')

>>> np.array(['a','bb','ccc'])

array(['a', 'bb', 'ccc'], dtype='<U3')

>>> np.array(['a','bb','cccxxxxxxxxxxxxxxxxxx'])

array(['a', 'bb', 'cccxxxxxxxxxxxxxxxxxx'], dtype='<U21')

PyQB

Monga

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

100

Usually the length is not changed

The best use of arrays is to avoid a change in their length, that
can be costly. Thus, they are normally preallocated at creation:

np.array([1,2,3])

np.zeros(2), np.zeros(2, float), np.ones(2)

np.empty((2,3)) six not meaningful float values

np.arange(1, 5) be careful with floats:

>>> np.arange(0.4, 0.8, 0.1)
array([0.4, 0.5, 0.6, 0.7])

>>> np.arange(0.5, 0.8, 0.1)

array([0.5, 0.6, 0.7, 0.8])

np.linspace(0.5, 0.8, 3) with this the length is
easier to predict

You can concatenate arrays with np.concatenate (be careful
with the shapes!)

PyQB

Monga

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

101

Don’t remove, select

In general you don’t remove elements but select them. Be
careful: if you don’t make an explicit copy you get a “view”
and possibly side-effects.

>>> a = np.ones((2,3))

>>> a

array([[1., 1., 1.],

[1., 1., 1.]])

>>> x = a[:, 1]

>>> x

array([1., 1.])

>>> x[0] = 0

>>> x

array([0., 1.])

>>> a

array([[1., 0., 1.],

[1., 1., 1.]])

>>> x = a[:, 1].copy()

>>> x[1] = 100

>>> x

array([0., 100.])

>>> a

array([[1., 0., 1.],

[1., 1., 1.]])

PyQB

Monga

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

102

Indexing is powerful

Picture from “NumPy Illustrated: The Visual Guide to NumPy”, highly

recommended

https://betterprogramming.pub/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d

PyQB

Monga

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

103

Indexing is powerful

Picture from “NumPy Illustrated: The Visual Guide to NumPy”, highly

recommended

https://betterprogramming.pub/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d

PyQB

Monga

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

104

Warning! Assignment works differently from lists

>>> np = np.array([1,2,3,4,5])
>>> lst = [1,2,3,4,5]
>>> np[2:4] = 0
>>> np
array([1, 2, 0, 0, 5])
>>> lst[2:4] = 0 # Error!
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: can only assign an iterable
>>> lst[2:4] = [0,0]
>>> lst
[1, 2, 0, 0, 5]
>>> lst[2:4] = [0,0,0]
>>> lst
[1, 2, 0, 0, 0, 5]
>>> np[2:4] = [0,0]
>>> np[2:4] = [0,0,0] # Error!
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: could not broadcast input array from shape (3,) into

shape (2,)↪→

PyQB

Monga

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

105

The highest power: vectorization

Most of the basic mathematical function are vectorized: no
need for loops! This is both convenient and faster!

>>> a = np.array([1,2,3,4])
>>> a + 1

array([2, 3, 4, 5])

>>> a ** 2

array([1, 4, 9, 16])

>>> np.exp(a)

array([2.71828183, 7.3890561 , 20.08553692,

54.59815003])↪→

PyQB

Monga

NumPy

ndarr ⌋
ay
Creation

Indexing

Vectorization

Array operations

106

Array operations

On arrays you have many “aggregate” operations.

>>> a
array([1, 2, 3, 4])

>>> a.sum()

10

>>> a.max()

4

>>> a.argmin()

0

>>> a.mean()

2.5

Remember to look at dir or the online documentation.

	NumPy
	ndarray
	Creation

	Indexing
	Vectorization
	Array operations

