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Lecture XIlI: NumPy arrays



NumPy is a third-party library very popular for
scientific/numerical programming (https://numpy.org/).

@ Features familiar to matlab, R, Julia programmers
@ The key data structure is the array
e l-dimension arrays: vectors
e 2-dimension arrays: matrices
e n-dimension arrays
In some languages array is more or less synonym of list: Python
distinguishes: lists (mutable, arbitrary elements), arrays
(mutable, all elements have the same type), tuples (immutable,
fixed length, arbitrary elements).


https://numpy.org/

NumPy arrays

The most important data structure in NumPy is ndarray: a ndarr
(usually fixed-size) sequence of same type elements, organized ay

in one or more dimensions.
https://numpy.org/doc/stable/reference/arrays.

ndarray.html

Implementation is based on byte arrays: accessing an element

(all of the same byte-size) is virtually just the computation of
an ‘address’.
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https://numpy.org/doc/stable/reference/arrays.ndarray.html
https://numpy.org/doc/stable/reference/arrays.ndarray.html

@ using NumPy arrays is often more compact, especially
when there's more than one dimension

o faster than lists when the operation can be vectorized
@ (slower than lists when you append elements to the end)

@ can be used with element of different types but this is less
efficient
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ndarray

A ndarray has a dtype (the type of elements) and a shape
(the length of the array on each dimensional axis). (Note the ndarr
jargon: slightly different from linear algebra)

@ Since appending is costly, normally they are pre-allocated
(zeros, ones, arange, linspace, ... )

@ vectorized operations can simplify code (no need for loops)
and they are faster with big arrays

@ vector indexing syntax (similar to R): very convenient (but
you need to learn something new)



All the elements must have the same size

This is actually a big limitation: the faster access comes with a
price in flexibility.

>>> np.array(['','',""'])

array(['', '', ''], dtype='<U1')

>>> np.array(['a','bb', 'ccc'])

array(['a', 'bb', 'ccc']l, dtype='<U3')

>>> np.array(['a','bb','cc(,x XXXXXXXXXXXXXX x'])

array(['a', 'bb', 'CCCXXXXXXXXXXXXXXXXxXX'], dtype='<U21')




Usually the length is not changed

The best use of arrays is to avoid a change in their length, that
can be costly. Thus, they are normally preallocated at creation:

@ np.array([1,2,3])

@ np.zeros(2), np.zeros(2, float), np.ones(2)
@ np.empty((2,3)) six not meaningful float values
°

np.arange (1, 5) be careful with floats:
>>> np.arange(0.4, 0.8, 0.1)
array([0.4, 0.5, 0.6, 0.7])
>>> np.arange(0.5, 0.8, 0.1)
array([0.5, 0.6, 0.7, 0.81)

@ np.linspace(0.5, 0.8, 3) with this the length is
easier to predict

You can concatenate arrays with np.concatenate (be careful
with the shapes!)
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Don't remove, select

In general you don't remove elements but select them. Be
careful: if you don't make an explicit copy you get a “view"
and possibly side-effects.

>>> a = np.ones((2,3))

>>> a
array([[1., 1., 1.1,

[1., 1., 1.1 >>> x = al:, 1].copy()
>>> x = al:, 1] >>> x[1] = 100
>>> x >>> x
array([1., 1.1) array([ 0., 100.])
>>> x[0] =0 >>> a
>>> x array([[1., 0., 1.],
array([0., 1.1) [1., 1., 1.1
>>> a
array([[1., 0., 1.1,

[1., 1., 1.1
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Indexing is powerful

a=

np.arange(1, 6)

hea
der

aL[1,3,41]
3] ’ 5 ‘ 2 4

* a[® 1 [2]3]]s]
a[2:4]|hea

2
"fancy indexing"
a[2:4]1 =09

‘ 1 ‘ 2 ‘ o o ‘ 5
Picture from “NumPy lllustrated: The Visual Guide to NumPy", highly
recommended
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https://betterprogramming.pub/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d

Indexing is powerful

a > 5 False False False False False True True True False False False False False

np.any(a > 5) ala > 5] np.all(a > 5)
True 6 7 6 False .
Indexing
ala >5] =80

1 7 3 4 i 2] 2] 2] 5 4 3 2 1 r N
“ | & and
| or
al(a>=3)8 (a<=5)1=9 A xor

a 1| 2 o o |6 7 & e e |2 1 - ™)

Picture from “NumPy lllustrated: The Visual Guide to NumPy", highly
recommended
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https://betterprogramming.pub/numpy-illustrated-the-visual-guide-to-numpy-3b1d4976de1d

Warning! Assignment works differently from lists

>>> np = np.array([1,2,3,4,5])

>>> 1st = [1,2,3,4,5]

>>> np[2:4] = 0

>>> np

array([1, 2, 0, 0, 5])

>>> 1st[2:4] = 0 # Error!

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: can only assign an iterable

>>> 1st[2:4] = [0,0]

>>> 1st

[1, 2, 0, 0, 5]

>>> 1st[2:4] = [0,0,0]

>>> 1st

[1, 2, 0, 0, O, 5]

>>> np[2:4] = [0,0]

>>> np[2:4] = [0,0,0] # Error!

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: could not broadcast input array from shape (3,) into

— shape (2,)
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The highest power: vectorization

Most of the basic mathematical function are vectorized: no
need for loops! This is both convenient and faster!

>>> a = np.array([1,2,3,4])

>>> a + 1

array([2, 3, 4, 5])

>>> a *% 2

array([ 1, 4, 9, 16])

>>> np.exp(a)

array([ 2.71828183, 7.3890561 , 20.08553692,

< 54.59815003])
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Array operations

On arrays you have many “aggregate” operations.
>>> a

array([1, 2, 3, 4])
>>> a.sum()

10

>>> a.max()

4

>>> a.argmin()

0

>>> a.mean()

2.5

Remember to look at dir or the online documentation.
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