Mattia Monga

Dip. di Informatica
Universita degli Studi di Milano, ltalia

mattia.monga@unimi.it

Academic year 2025/26, | semester

@@@ 2025 M. Monga. Creative Commons Attribuzione — Condividi allo stesso modo

Internazionale. http://creativecommons.org/licenses/by-<sa/4.07deed it

.0

DA

1

mattia.monga@unimi.it
http://creativecommons.org/licenses/by-sa/4.0/deed.it

Lecture IX: Working with abstractions

Status of the homework

accepted | done
One triangle 19 10
Triangle kinds 14 5
Newton square root 10 4
Pythagorean triplets 15 7
Sonar 13 3

List slicing is a powerful feature in Python that allows you
to create a new list by extracting a portion of an existing
list.

It's like cutting out a piece of a list you specify the
starting and ending indices (exclusive of the end index).

Syntax: mylist[start:end]

start (optional): The index where the slice begins
(inclusive). Defaults to 0.

end (optional): The index where the slice ends (exclusive).

Defaults to the end of the list.

1a1 rbr

ydy

1

e

0 1

3

Z

mylist[1:4]

my_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Slice from index 2 to 5 (exclusive):
slicel = my_list[2:5] # [2, 3, 4]

Slice from the beginning to indexr 3 (exclusive):
slice2 = my_list[:3] # [0, 1, 2]

Slice from index 6 to the end:
slice3 = my_list[6:] # [6, 7, 8, 9]

Create a copy of the entire list:
slice4 = my_list[:]1 # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

More slicing

my_list = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

@ Step Size: You can add a third argument to specify a step
size (e.g., mylist[start:end:stepl). my_list[1:8:2]
creates a slice starting at index 1, going up to (but not
including) index 8, with a step size of 2. [1, 3, 5, 7]

o Negative Indices: Indices can be negative, counting from
the end of the list. -1 is the last element, -2 is the second
to last, etc. my_list[-3:] takes the last three elements
of the list. [7, 8, 9]; my_list[:-1] gets all elements
except the last.

A slice is always a new object

x = [100, 200, 300, 400, 500]
slice = x[1:4]

slice[0] = 666

print(f'{x=} {slice=}")

x=[100, 200, 300, 400, 500] slice=[666, 300, 400]

Procedural abstraction

Procedural abstraction is key for our thinking process
(remember the power of recursion, for example): giving a name
to a procedure/function enhances our problem solving skills.

def sum_range(a: int, b: int) -> int:
"""Sum integers from a through b.

>>> sum_range (1, 4)
10

>>> sum_range(3, 3)

3

nmnn

assert b >= a

result = 0

for i in range(a, b+1):
result = result + i

return result

u]
|
I
ul
i

Abstracting
similarities

Another “sum”

This is very similar. ..

def sum_range_cubes(a: int, b: int) -> int:

"""Sum the cubes of the integers from a through b. Abstracting

similarities
>>> sum_range_cubes (1, 3)
36

>>> sum_range_cubes (-2, 2)
0

nnn

assert b >= a

result = 0

for i in range(a, b+1):
result = result + cube(i) # cube(i: int) -> int
— defined elsewhere

return result

u]
|
I
ul
i

69

Another “sum”

This is also very similar. ..

Abstracting
similarities

L+ S SR VI S

a-(a+2) " (a+4)-(a+6) ' (a+8)-(a+10) (b-2)-(b)

(Leibniz: &5 + &% + o35+

ool

)

Another “sum”

This is also very similar. ..

1 1 1 1
762 T @) T e T T
H H—. 1 1 1 _ T Abstracting
(LelanZ. ﬁ + ﬁ + m + crt = §) similarities
def pi_sum(a: int, b: int) -> float:
"igum 1/(a(a+2)) terms until (a+2) > b.

>>> from math import pi
>>> abs(8*pi_sum(1, 1001) - pi) < 10e-3
True

nmnn

assert b >= a
result = 0.0
for i in range(a, b+l, 4):
result = result + (1 / (i * (1 + 2)))

return result
[m] = = =

Can we abstract the similarity?

from collections.abc import Callable

Num = int | float
Abstracting
def gen_sum(a: int, b: int, fun: Callable[[int], Num], step: int = 1) -> Num: similarities
"""Sum terms from a through b, incrementing by step.

>>> gen_sum(1, 4, lambda z: z)
10

>>> gen_sum(1, 3, lambda x: T**3)
36

>>> from math import pi
>>> abs(8*gen_sum(1, 1000, lambda z: 1 / (z * (z + 2)), 4) - pi) < 10e-3
True

win

assert b >= a

result = 0.0

for i in range(a, b+l, step):
result = result + fun(i)

if isinstance(result, float) and result.is_integer():
return int(result)

return result

The huge value of procedural abstraction

It is worth to emphasize again the huge value brought by
procedural abstraction. In Python it is not mandatory to use
procedures/functions: the language is designed to be used also

for on the fly calculations.

« - a5 This is ok, but it is not encapsulated Procedulratl_

= encapsulation
(in fact, since encapsulation is so

in range(0, x): Important you can at least consider it

s + i encapsulated in file which contains it)

S =
for
s

N P O

@ the piece of functionality is not easily to distinguish

it could be intertwined x -5

a = 67 # another concern
with other unrelated oY

or i in range(0, x):
code St

print(a) # another concern

@ the goal is not explicit, which data are needed, what
computes

@ it's hard to reuse even in slightly different contexts

Encapsulate the functionality

def sum_to(x: int) -> int:
assert x >= 0
r =20
for i in range(0, x):
r=r+ i

Procedural
return r encapsulation

s = sum_to(45)

@ It gives to our mind a “piece of functionality”, the
interpreter we are programming is now “able” to do a new
thing that can be used without thinking about the internal
details

@ It makes clear which data it needs (an integer, > 0 if we
add also an assertion or a docstring)

@ It makes clear that the interesting result is another integer
produced by the calculation

@ It can be reused easily and safely _

73

Homework

@ https://classroom.github.

encapsulation

Procedural
com/a/Auwejr2m

https://classroom.github.com/a/Auwejr2m

	Abstracting similarities
	Procedural encapsulation

